
Learning in Description Logics with Fuzzy Concrete Domains

Francesca A. Lisi
Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy

francesca.lisi@uniba.it

Umberto Straccia
ISTI - CNR, Pisa, Italy

umberto.straccia@isti.cnr.it

2015

Abstract

Description Logics (DLs) are a family of logic-based Knowledge Representation (KR) formalisms,
which are particularly suitable for representing incomplete yet precise structured knowledge. Several
fuzzy extensions of DLs have been proposed in the KR field in order to handle imprecise knowledge
which is particularly pervading in those domains where entities could be better described in natural
language. Among the many approaches to fuzzification in DLs, a simple yet interesting one involves
the use of fuzzy concrete domains. In this paper, we present a method for learning within the KR
framework of fuzzy DLs. The method induces fuzzy DL inclusion axioms from any crisp DL knowledge
base. Notably, the induced axioms may contain fuzzy concepts automatically generated from numerical
concrete domains during the learning process. We discuss the results obtained on a popular learning
problem in comparison with state-of-the-art DL learning algorithms, and on a test bed in order to
evaluate the classification performance.

1 Introduction

Description Logics (DLs) are a family of decidable First Order Logic (FOL) fragments that allow for the
specification of structured knowledge in terms of classes (concepts), instances (individuals), and binary
relations between instances (roles) [2]. Complex concepts (denoted with C) can be defined from atomic
concepts (A) and roles (R) by means of the constructors available for the DL in hand. As logic-based
formalisms for Knowledge Representation (KR) compliant with the Open World Assumption (OWA), they
are particularly suitable for representing incomplete knowledge. The OWA is used in KR to codify the
informal notion that in general no single agent or observer has complete knowledge. The OWA limits
the kinds of inference and deductions an agent can make to those that follow from statements that are
known to the agent to be true. In contrast, the Closed World Assumption (CWA) allows an agent to
infer, from its lack of knowledge of a statement being true, anything that follows from that statement
being false. It traditionally applies in databases and related KR settings such as Logic Programming (LP)
and Inductive Logic Programming (ILP). Heuristically, the OWA applies when we represent knowledge
within a system as we discover it, and where we cannot guarantee that we have discovered or will discover
complete information. In the OWA, statements about knowledge that are not included in or inferred from
the knowledge explicitly recorded in the system may be considered unknown, rather than wrong or false.
Thanks to the OWA-compliancy, DLs have been considered as the ideal starting point for the definition
of ontology languages for the Web (an inherently open world), giving raise to the OWL 2 standard. 1

1http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

1

In many applications, it is important to equip DLs with expressive means that allow to describe
“concrete qualities” of real-world objects such as the length of a car. The standard approach is to augment
DLs with so-called concrete domains, which consist of a set (say, the set of real numbers in double
precision) and a set of n-ary predicates (typically, n = 1) with a fixed extension over this set [3]. Starting
from numerical properties such as “length” one may want to deduce whether, e.g., a car is long or not.
However, it is well known that “classical” DLs are not appropriate to deal with imprecise (or vague)
knowledge (such as a ‘long car’), which is inherent to several real world domains and is particularly
pervading in those domains where entities could be better described in natural language [29]. Vagueness
is traditionally captured with fuzzy logic. We recall that all those approaches in which statements (for
example, “the car is long”) are true to some degree, which is taken from a truth space (usually [0, 1]), fall
under fuzzy theory. That is, an interpretation maps a statement to a truth degree, since we are unable to
establish whether a statement is entirely true or false due to the involvement of vague concepts, such as
“long car” (the degree to which the sentence is true depends on the length of the car). 2

Although a relatively important amount of work has been carried out in the last years concerning the
use of fuzzy DLs as ontology languages [21, 31], the problem of automatically managing the evolution of
fuzzy ontologies by applying machine learning algorithms still remains relatively unaddressed [11, 13, 18].
In this paper, we present a novel method, named Foil-DL, for learning fuzzy DL inclusion axioms from
any crisp DL knowledge base. The distinguishing feature of Foil-DL w.r.t. previous work in DL learning
(see, e.g., [9, 15, 16]) is the treatment of numerical concrete domains with fuzzification techniques so that
the induced axioms may contain fuzzy concepts.

The paper is structured as follows. For the sake of self-containment, Section 2 introduces some basic
definitions we rely on. Section 3 describes the learning problem and the solution strategy of Foil-DL.
Section 4 discusses related work and illustrates the results of a comparative evaluation with state-of-the-art
DL learning algorithms on the popular ILP problem of Michalski’s trains whereas Section 5 reports the
results of an evaluation of Foil-DL’s effectiveness as a classifier on a test bed. Section 6 concludes the
paper with final remarks and outlines possible directions for future work.

2 Preliminaries
Description Logics. For the sake of illustrative purposes, we present here a salient representative of
the DL family, namely ALC [26], which is often considered to illustrate some new notions related to DLs.
The set of constructors for ALC is reported in Table 1. A DL Knowledge Base (KB) K = 〈T ,A〉 is a pair
where T is the so-called Terminological Box (TBox) and A is the so-called Assertional Box (ABox). The
TBox is a finite set of General Concept Inclusion (GCI) axioms which represent is-a relations between
concepts, whereas the ABox is a finite set of assertions (or facts) that represent instance-of relations
between individuals (resp. couples of individuals) and concepts (resp. roles). Thus, when a DL-based
ontology language is adopted, an ontology is nothing else than a TBox (i.e., the intensional level of
knowledge), and a populated ontology corresponds to a whole KB (i.e., encompassing also an ABox, that
is, the extensional level of knowledge). We denote the set of all individuals occurring in K with Ind(A). We
also introduce two well-known DL macros, namely (i) domain restriction, denoted domain(R,A), which is
a macro for the GCI ∃R.> v A, and states that the domain of the abstract role R is the atomic concept
A; and (ii) range restriction, denoted range(R,A), which is a macro for the GCI > v ∀R.A, and states
that the range of R is A. Finally, in ALC(D) (obtained by enriching ALC with concrete domains D), each
role is either abstract (denoted with R) or concrete (denoted with T). A new concept constructor is then
introduced, which allows to describe constraints on concrete values using predicates from the concrete
domain. We shall make further clarifications about the notion of concrete domains later on in this Section
while presenting fuzzy ALC(D).

The semantics of DLs can be defined directly with set-theoretic formalizations (as shown in Table
1 for the case of ALC) or through a mapping to FOL (as shown in [5]). Specifically, an interpretation

2For a clarification about the differences between uncertainty and vagueness see [8].

2

Table 1: Syntax and semantics of constructs for ALC.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)

atomic concept A AI ⊆ ∆I

(abstract) role R RI ⊆ ∆I ×∆I

individual a aI ∈ ∆I

concept intersection C uD CI ∩DI
concept union C tD CI ∪DI

concept negation ¬C ∆I \ CI
universal role restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}

existential role restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

general concept inclusion C v D CI ⊆ DI

concept assertion a : C aI ∈ CI
role assertion (a, b) : R (aI , bI) ∈ RI

I = (∆I , ·I) for a DL KB consists of a domain ∆I and a mapping function ·I . For instance, I maps a
concept C into a set of individuals CI ⊆ ∆I , i.e. I maps C into a function CI : ∆I → {0, 1} (either an
individual belongs to the extension of C or does not belong to it). Under the Unique Names Assumption
(UNA) [25], individuals are mapped to elements of ∆I such that aI 6= bI if a 6= b. However UNA does not
hold by default in DLs. An interpretation I is a model of a KB K iff it satisfies all axioms and assertions
in T and A . In DLs a KB represents many different interpretations, i.e. all its models. This is coherent
with the OWA that holds in FOL semantics. A DL KB is satisfiable if it has at least one model. We also
write C vK D if in any model I of K, CI ⊆ DI (concept C is subsumed by concept D). Moreover we
write C @K D if C vK D and D 6vK C.

The main reasoning task for a DL KB K is the consistency check which tries to prove the satisfiability
of K. Another well known reasoning service in DLs is instance checking, i.e., to check whether an ABox
assertion is a logical consequence of a DL KB. A more sophisticated version of instance checking, called
instance retrieval, retrieves, for a DL KB K, all (ABox) individuals that are instances of the given (possibly
complex) concept expression C, i.e., all those individuals a such that K entails that a is an instance of C,
denoted {a | K |= a:C}.
Mathematical Fuzzy Logic. Fuzzy Logic is the logic of fuzzy sets [32]. A crisp set A over a countable
crisp set X is characterised by a function A : X → {0, 1}, that is, for any x ∈ X either x ∈ A (i.e.,
A(x) = 1) or x 6∈ A (i.e., A(x) = 0). A fuzzy set A over X is characterised by a function A : X → [0, 1].
For a fuzzy set A, unlike crisp sets, x ∈ X belongs to A to a degree A(x) in [0, 1]. The classical set
operations of intersection, union and complementation naturally extend to fuzzy sets as follows. Let
A and B be two fuzzy sets. The standard fuzzy set operations are (A ∩ B)(x) = min(A(x), B(x)),
(A ∪ B)(x) = max(A(x), B(x)) and Ā(x) = 1 − A(x), while the inclusion degree between A and B is
typically defined as

(A ⊆ B)(x) =

∑
x∈X(A ∩B)(x)∑

x∈X A(x)
. (1)

The trapezoidal (Fig. 1 (a)), the triangular (Fig. 1 (b)), the left-shoulder function (Fig. 1 (c)), and the
right-shoulder function (Fig. 1 (d)) are frequently used functions to specify membership functions of fuzzy
sets. Although fuzzy sets have a greater expressive power than crisp sets, their usefulness depends critically
on the capability to construct appropriate membership functions for various given concepts in different
contexts. The problem of constructing meaningful membership functions is not an easy one (see, e.g., [12,
Chapter 10]). However, one easy and typically satisfactory method to define the membership functions is
to uniformly partition the range of values into 5 or 7 fuzzy sets by using either trapezoidal or triangular
functions. The latter is the more used one, as it has less parameters and is also the approach we adopt.

While classical logic is based on crisp set theory, Mathematical Fuzzy Logic (MFL) [10] is based on
generalised fuzzy set theory. Specifically, in MFL the convention prescribing that a statement is either
true or false is changed. Truth is a matter of degree measured on an ordered scale that is no longer {0, 1},

3

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Figure 1: (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c) left-shoulder func-
tion ls(a, b), and (d) right-shoulder function rs(a, b).

but e.g. [0, 1]. This degree is called degree of truth of the logical statement φ in the interpretation I. For
us, fuzzy statements have the form 〈φ, α〉, where α∈ (0, 1] and φ is a statement, encoding that the degree
of truth of φ is greater than or equal to α. A fuzzy interpretation I maps each atomic statement pi into
[0, 1] and is then extended inductively to all statements as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) I(φ→ ψ) = I(φ)⇒ I(ψ) I(∃x.φ(x)) = supy∈∆I I(φ(y))
I(φ ∨ ψ) = I(φ)⊕ I(ψ) I(¬φ) = 	I(φ) I(∀x.φ(x)) = infy∈∆I I(φ(y)) ,

(2)

where ∆I is the domain of I, and ⊗, ⊕,⇒, and 	 are so-called t-norms, t-conorms, implication functions,
and negation functions, respectively, which extend the Boolean conjunction, disjunction, implication,
and negation, respectively, to the fuzzy case. One usually distinguishes three different logics, namely

Table 2: Combination functions of various fuzzy logics.

 Lukasiewicz logic Gödel logic Product logic Zadeh logic
a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a⇒ b min(1− a+ b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a
{

1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a

 Lukasiewicz, Gödel, and Product logics [10], whose combination functions are reported in Table 2. Note
that any other continuous t-norm can be obtained from them (see, e.g. [10]).

Satisfiability and logical consequence are defined in the standard way, where a fuzzy interpretation I
satisfies a fuzzy statement 〈φ, α〉 or I is a model of 〈φ, α〉, denoted as I |= 〈φ, α〉, iff I(φ) ≥ α.

Description Logics with Fuzzy Concrete Domains. We recap here the syntactic features of the
fuzzy DL obtained by extending ALC with fuzzy concrete domains [30]. A fuzzy concrete domain or fuzzy
datatype theory D= 〈∆D, ·D〉 consists of a datatype domain ∆D and a mapping ·D that assigns to each
data value an element of ∆D, and to every n-ary datatype predicate d an n-ary fuzzy relation over ∆D.
We will restrict to unary datatypes as usual in fuzzy DLs. Therefore, ·D maps indeed each datatype
predicate into a function from ∆D to [0, 1]. Typical examples of datatype predicates are

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | ≥v | ≤v | =v , (3)

where e.g. ≥v corresponds to the crisp set of data values that are greater than or equal to the value v.
In fuzzy DLs, an interpretation I = (∆I , ·I) consist of a nonempty (crisp) set ∆I (the domain) and of

a fuzzy interpretation function ·I that, e.g., maps a concept C into a function CI : ∆I → [0, 1] and, thus,
an individual belongs to the extension of C to some degree in [0, 1], i.e. CI is a fuzzy set. The definition
of ·I for ALC(D) with fuzzy concrete domains is reported in Table 3 (where x, y ∈ ∆I and z ∈ ∆D). Note
that the truth degrees vary according to the chosen fuzzy logic, i.e. to its set of combination functions.

Axioms in a fuzzy ALC(D) KB K = 〈T ,A〉 are graded, e.g. a GCI is of the form 〈C1 v C2, α〉 (i.e.
C1 is a sub-concept of C2 to degree at least α). We may omit the truth degree α of an axiom; in this

4

Table 3: Syntax and semantics of constructs for fuzzy ALC(D).

bottom (resp. top) concept ⊥I(x) = 0 (resp. >I(x) = 1)

atomic concept AI(x) ∈ [0, 1]

abstract role RI(x, y) ∈ [0, 1]

concrete role TI(x, z) ∈ [0, 1]

individual aI ∈ ∆I

concrete value vI ∈ ∆D

concept intersection (C uD)I(x) = CI(x)⊗DI(x)

concept union (C tD)I(x) = CI(x)⊕DI(x)

concept negation (¬C)I(x) = 	CI(x)

concept implication (C → D)I(x) = CI(x)⇒ DI(x)

universal abstract role restriction (∀R.C)I(x) = infy∈∆I {R
I(x, y)⇒ CI(y)}

existential abstract role restriction (∃R.C)I(x) = supy∈∆I {R
I(x, y)⊗ CI(y)}

universal concrete role restriction (∀T.d)I(x) = infz∈∆D{TI(x, z)⇒ dD(z)}
existential concrete role restriction (∃T.d)I(x) = supz∈∆D{TI(x, z)⊗ dD(z)}

general concept inclusion (C v D)I = infx∈∆I {C
I(x)⇒ DI(x)}

concept assertion aI ∈ CI
abstract role assertion (aI , bI) ∈ RI
concrete role assertion (aI , vI) ∈ TI

case α = 1 is assumed. An interpretation I satisfies an axiom 〈τ, α〉 if (τ)
I ≥ α. I is a model of K iff I

satisfies each axiom in K. We say that K entails an axiom 〈τ, α〉, denoted K |= 〈τ, α〉, if any model of K
satisfies 〈τ, α〉. The best entailment degree of τ w.r.t. K, denoted bed(K, τ), is defined as

bed(K, τ) = sup{α | K |= 〈τ, α〉} . (4)

For a crisp axiom τ , we also write K |=+ τ iff bed(K, τ) > 0, i.e. τ is entailed to some degree α > 0.

3 Learning fuzzy EL(D) axioms

3.1 The problem statement

The problem considered in this paper and solved by Foil-DL is the automated induction of fuzzy EL(D) 3

GCI axioms from a crisp DL 4 KB and crisp examples, which provide a sufficient condition for a given
atomic target concept At. It can be cast as a rule learning problem, provided that positive and negative
examples of At are available. This problem can be formalized as follows. Given: (i) a consistent crisp
DL KB K = 〈T ,A〉 (the background theory); (ii) an atomic concept At (the target concept); (iii) a set
E = E+ ∪ E− of crisp concept assertions e labelled as either positive or negative examples for At (the
training set); and (iv) a set LH of fuzzy EL(D) GCI axioms (the language of hypotheses), the goal is to
find a set H ⊂ LH (a hypothesis) such that H satisfies the following conditions: ∀e ∈ E+,K ∪ H |=+ e
(completeness), and ∀e ∈ E−,K ∪H 6|=+ e (consistency).

Remark 1 In the above problem statement we assume that K ∩ E = ∅. Please observe that two further
restrictions hold naturally. One is that K 6|=+ E+ since, in such a case, H would not be necessary to
explain E+. The other is that K ∪ H 6|=+ a:⊥, which means that K ∪ H is a consistent theory, i.e. has a
model, that is, adding the learned axioms to the KB keeps the KB consistent.

The background theory. A DL KB allows for the specification of very rich background knowledge in
the form of axioms, e.g. defining the range of roles or the concept subsumption hierarchy. We do not

3EL(D) is a fragment of ALC(D) [31].
4DL stands for any DL.

5

function Learn-Sets-of-Axioms(K, At, E+, E−, LH): H
begin
1. H := ∅; D = InitialiseFuzzyConcreteDomain(K);

2. while E+ 6= ∅ do
3. φ := Learn-One-Axiom(K, At, E+, E−, LH);
4. H := H∪ {φ};
5. E+

φ := {e ∈ E+ | K ∪ {φ} |=+ e};
6. E+ := E+ \ E+

φ ;

7. endwhile
8. return H
end

Figure 2: Foil-DL: Learning a set of GCI axioms.

make any specific assumption about the DL which the language LK of the background theory is based on,
except that K is a crisp KB and that the crisp entailment problem is decidable. However, since H is a set
of fuzzy GCI axioms, K ∪H is fuzzy as well.

The language of hypotheses. The language LH is given implicitly by means of syntactic restrictions
over a given alphabet, as usual in ILP. In particular, the alphabet underlying LH is a subset of the alphabet
for LK. However, LH differs from LK as for the form of axioms. More precisely, given the target concept
At, the hypotheses to be induced are fuzzy GCIs of the form

C v At , (5)

where the left-hand side is defined according to the following syntax

C −→ > | A | C1 u C2 | ∃R.C | ∃T.d (6)

and the concrete domain predicates are the following ones

d := ls(a, b) | rs(a, b) | tri(a, b, c) . (7)

Note that the syntactic restrictions of Eq. (6) w.r.t. fuzzy ALC(D) (see Table 3) allow for a straightforward
translation of the inducible axioms into rules of the kind “if x is a C1 and . . . and x is a Cn then x is
an At”, which corresponds to the usual pattern in fuzzy rule induction (in our case, C v At is seen as a
rule “if C then At”). Also, the restriction of Eq. (7) w.r.t. Eq. (3) is due to the fact that we build fuzzy
concrete domain predicates out of numerical data as described in Section 3.2.1.

The language LH generated by this syntax is potentially infinite due, e.g., to the nesting of existential
restrictions yielding to complex concept expressions such as ∃R1.(∃R2(∃Rn.(C)) . . .). LH is made
finite by imposing further restrictions on the generation process such as the maximal number of conjuncts
and the depth of existential nesting allowed in the left-hand side. Also, note that the learnable GCIs do
not have an explicit truth degree. However, as we shall see later on, once we have learned a fuzzy GCI of
the form (5), we attach to it a confidence degree cf that is obtained by means of the function in Eq. (12).

The training examples. Given the target concept At, the training set E consists of concept assertions
of the form a:At, where a is an individual occurring in K. Note that E is crisp. Also, E is split into E+

and E−. Note that, under OWA, E− consists of all those individuals which can be proved to be instance
of ¬At. On the other hand, under CWA, E− is the collection of individuals, which cannot be proved to
be instance of At. We say that an axiom φ ∈ LH covers an example e ∈ E iff K ∪ {φ} |=+ e.

3.2 The solution strategy

The popular rule induction method Foil [24] has been chosen as a starting point in our proposal for its
simplicity and efficiency. In Foil-DL, the learning strategy of Foil (i.e., the so-called sequential covering
approach) is kept. The function Learn-Sets-of-Axioms (reported in Figure 2) carries on inducing
axioms until all positive examples are covered. When an axiom is induced (step 3.), the positive examples
covered by the axiom (step 5.) are removed from E (step 6.). In order to induce an axiom, the function
Learn-One-Axiom (reported in Figure 3) starts with the most general axiom (i.e. > v At) and refines it

6

function Learn-One-Axiom(K, At, E+, E−, LH): φ
begin
1. C := >;
2. φ := C v At;
3. E−φ := E−;

4. while cf(φ) < θ or E−φ 6= ∅ do

5. Cbest := C;
6. maxgain := 0;
7. Φ := Specialize(φ,LH,K)
8. foreach φ′ ∈ Φ do
9. gain := Gain(φ′, φ);
10. if gain ≥ maxgain then
11. maxgain := gain;
12. Cbest := C′;
13. endif
14. endforeach
15. φ := Cbest v At;
16. E−φ := {e ∈ E− | K ∪ {φ} |=+ e};
17. endwhile
18. return φ
end

Figure 3: Foil-DL: Learning one GCI axiom.

by calling the function Specialize (step 7.). The iterated specialization of the axiom continues until the
axiom does not cover any negative example and its confidence degree is greater than a fixed threshold (θ).
The confidence degree of axioms being generated with Specialize allows for evaluating the information
gain obtained on each refinement step by calling the function Gain (step 9.).

Due to the peculiarities of the language of hypotheses in Foil-DL, necessary changes are made to
Foil as concerns both candidate generation and evaluation. These novel features impact the definition
of the functions Specialize and Gain as detailed in Section 3.2.2 and Section 3.2.3, respectively. A
pre-processing phase (see the function InitialiseFuzzyConcreteDomain called at step 1. of Learn-
Sets-of-Axioms) is also required in order to generate the fuzzy datatypes to be used during the candidate
generation phase. The fuzzification method is shortly described in the next subsection.

3.2.1 The function InitialiseFuzzyConcreteDomain

Given a crisp DL KB K, the function InitialiseFuzzyConcreteDomain behaves as follows. For each
concrete role T occurring in K,

1. determine, by relying on a crisp DL reasoner, the minimal and maximal value that T associates to
individuals according to K, that is minT = min{v | K |= a:∃T. ≤v} and maxT = max{v | K |=
a:∃T. ≥v}. Note that this step terminates as any value v to be checked has to occur in K;

2. partition the interval [minT ,maxT] into four uniform subintervals and, for k = (maxT −minT)/4,
build the fuzzy concrete domain predicates (note thatmaxT = minT+4k): V eryLowT = ls(minT ,minT+
k), LowT = tri(minT ,minT + k,minT + 2k), FairT = tri(minT + k,minT + 2k,minT + 3k),
HighT = tri(minT + 2k,minT + 3k,maxT) and V eryHighT = rs(minT + 3k,maxT).

Eventually, the function returns the set of all built fuzzy datatype predicates

D =
⋃

T concrete role occurring in K
{V eryLowT , LowT , FairT , HighT , V eryHighT }

Example 1 Let us consider the concrete role hasLength whose range has values measured in meters. The
length concrete domain can be automatically fuzzified by the function InitialiseFuzzyConcreteDomain
as follows. The partition into 5 fuzzy sets (VeryLow, Low, Fair, High, and VeryHigh) is obtained by
considering the interval defined by minimal and maximal length values (resp. 23 and 59), and then by
splitting it into four equal subintervals on which three triangular functions, a left-shoulder and a right-
shoulder function are built as illustrated in Figure 4. In particular, the membership function underlying
the fuzzy set High is tri(41, 50, 59).

7

Figure 4: Fuzzy sets derived by the function InitialiseFuzzyConcreteDomain from the concrete
domain used as range of the data property hasLength in Example 1 : VeryLow (VL), Low (L), Fair (F),
High (H), and VeryHigh (VH).

3.2.2 The function Specialize

In line with the tradition in ILP and in conformance with the search direction in Foil-DL, the function
Specialize implements a downward refinement operator ρK which actually exploits the background theory
K in order to avoid the generation of redundant or useless hypotheses:

Specialize(φ,LH,K) = {φ′ ∈ LH | φ′ ∈ ρK(φ)} . (8)

The refinement operator ρK acts only upon the left-hand-side of a GCI:

ρK(φ) = ρK(C v At) = {C′ v At | C′ ∈ ρCK(C)} (9)

by either adding a new conjunct or replacing an already existing conjunct with a more specific one.
More formally, the refinement rules for EL(D) concepts are defined as follows (here dT is one of the fuzzy
datatypes for concrete role T built by means of the InitialiseFuzzyConcreteDomain function, while
A, B, D, and E are atomic concepts, R is an abstract role):

ρCK(C) =



{A} ∪ {∃R.>} ∪ {∃R.B | range(R,B) ∈ T } ∪ {∃T.dT } if C = >
{A uD | D ∈ ρCK(>)} ∪ {B | B @K A} if C = A

{∃R.E | E ∈ ρCK(D)} ∪ {(∃R.D) u E | E ∈ ρCK(>)} if C = ∃R.D
{(∃T.d) uD | D ∈ ρCK(>)} if C = ∃T.dT
{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | D ∈ ρCK(Ci), 1 ≤ i ≤ n} if C = uni=1Ci

(10)

Note that the use of relevant knowledge from K such as range axioms and concept subsumption axioms
makes ρCK an “informed” refinement operator. Indeed, its refinement rules combine the syntactic manipu-
lation with the semantic one. Also, this allows the operator to perform “cautious” big steps in the search
space. More precisely, the less blind the rules are, the bigger the steps. ρCK also incorporates, in our
implementation, a series of simplifications of the concepts built such as

C u C 7→ C

C uD and D vK C 7→ D

C uD and C uD vK ⊥ 7→ ⊥ (in this case we drop the refinement)

to reduce the search space. We are not going to detail them here.

Example 2 Let us consider that At is the target concept, A and B are concepts, R, R′, and T are
properties occurring in K, and A vK B. Under these assumptions, the axiom ∃R.B v At is specialised
into the following axioms:

• A u ∃R.B v At, B u ∃R.B v At;

• ∃R.> u ∃R.B v At, ∃R′.> u ∃R.B v At, ∃T.dT u ∃R.B v At;

• ∃R.A v At, ∃R.(B uA) v At;

8

• ∃R.(B u ∃R.>) v At, ∃R.(B u ∃R′.>) v At, ∃R.(B u ∃T.dT) v At.

Note that in the above list, dT has to be instantiated for any of the five candidates for concrete role T (i.e.,
V eryLowT , LowT , FairT , HighT , V eryHighT).

It is straightforward to see that ρCK is correct, in the sense that it drives the search towards more specific
concepts according to v. Formally, for D ∈ ρCK(C), D vK C holds as any refinement of C is obtained
either by adding a conjunct D′ to some concept D occurring in C or to replace D with a more specific
concept D′′ vK D. As for D ∈ ρCK(C), D vK C holds, this also implies that ρK reduces the number of
examples covered by a GCI. More precisely, the aim of a refinement step is to reduce the number of covered
negative examples, while still keeping some covered positive examples. Eventually, as learned GCIs cover
positive examples only, K will remain consistent after the addition of a learned GCI.

3.2.3 The function Gain

The function Gain implements an information-theoretic criterion for selecting the best candidate at each
refinement step according to the following formula:

Gain(φ′, φ) = p ∗ (log2(cf(φ′))− log2(cf(φ))) , (11)

where p is the number of positive examples covered by the axiom φ that are still covered by φ′. Thus, the
gain is positive iff φ′ is more informative in the sense of Shannon’s information theory, i.e. iff the confidence
degree (cf) increases. If there are some refinements, which increase the confidence degree, the function
Gain tends to favour those that offer the best compromise between the confidence degree and the number
of examples covered. Here, cf for an axiom φ of the form (5) is computed as a sort of fuzzy set inclusion
degree (see Eq. (1)) between the fuzzy set represented by concept C and the (crisp) set represented by
concept At. More formally:

cf(φ) = cf(C v At) =

∑
a∈Ind+

φ
(A)

bed(K, a:C)

|Indφ(A)| (12)

where Ind+
φ (A) (resp., Indφ(A)) is the subset of Ind(A) containing those individuals a involved in E+

φ

(resp., E+
φ ∪ E

−
φ) such that bed(K, a:C) > 0. We remind the reader that bed(K, a:C) denotes the best

entailment degree of the concept assertion a:C w.r.t. K as defined in Eq. (4). Note that K |= a:At holds
for individuals a ∈ Ind+

φ (A) and, thus, bed(K, a:C uAt) = bed(K, a:C). Also, note that, even if K is crisp,
the possible occurrence of fuzzy concrete domains in expressions of the form ∃T.dT in C may imply that
both bed(K, C v At) 6∈ {0, 1} and bed(K, a:C) 6∈ {0, 1}.

3.3 The implementation

A variant of Foil-DL has been implemented in the fuzzyDL-Learner 5 system. Several implementation
choices have been made as detailed below.

Reasoning support. Fuzzy GCIs in LH are interpreted under Gödel semantics (see Table 2). However,
since K and E are represented in crisp DLs, we do not need a fuzzy DL reasoner. In fact, one may use a
classical DL reasoner, together with a specialised code, to compute the confidence degree of fuzzy GCIs
involving expressions of the form ∃T.dT . Therefore, the system relies on the services of crisp DL reasoners
to solve all the deductive inference problems necessary to Foil-DL to work, namely instance retrieval,
instance check and subclasses retrieval. In particular, the sets Ind+

φ (A) and Indφ(A) are computed by
posing instance retrieval problems to the DL reasoner. As illustrative example, bed(K, a:∃T.dT) can be
computed from the derived T -filler restrictions ≥v,≤v,=v, and applying the fuzzy membership function of
dT to v. Specifically, to determine n = bed(K, a:∃T.rs(a, b)), we compute v̄ = max{v | K |= a:∃T. ≥v} and
then n = rs(a, b)(v̄) follows. The case for the other fuzzy concrete domains and more complex concepts

5http://straccia.info/software/FuzzyDL-Learner

9

involving fuzzy concrete domains can be worked out similarly. Note that this computation terminates as
any value v involved in the computation of v̄ has to occur in K.6 The examples covered by a GCI, and,
thus, the entailment tests in Learn-Sets-of-Axioms and Learn-One-Axiom, have been determined in
a similar way. The system can be configured to work under both CWA and OWA.

Optimizations. The search in the hypothesis space can be optimized by enabling a backtracking mode.
This option allows to overcome one of the main limits of Foil, i.e. the sequential covering strategy.
Because it performs a greedy search, formulating a sequence of rules without backtracking, Foil does not
guarantee to find the smallest or best set of rules that explain the training examples. Also, learning rules
one by one could lead to less and less interesting rules. To reduce the risk of a suboptimal choice at any
search step, the greedy search can be replaced in Foil-DL by a beam search which maintains a list of k
best candidates at each step instead of a single best candidate.

Declarative bias. The language of hypotheses can be biased by imposing the use of only “direct”
subclasses. Additionally, Foil-DL provides two parameters to limit the search space and guarantee
termination: namely, the maximal number of conjuncts and the maximal depth of existential nesting
allowed in a fuzzy GCI. In fact, the computation may end without covering all positive examples.

4 A comparative study

4.1 Related work

Several extensions of Foil to the management of vague knowledge are reported in the literature [7, 27, 28]
but they are not conceived for DL ontologies. In DL learning, DL-Foil [9] adapts Foil to learn crisp OWL
DL equivalence axioms.7 DL-Learner [14] is a state-of-the-art system which features several algorithms,
none of which however is based on Foil. Yet, among them, the closest to Foil-DL is ELTL since
it implements a refinement operator for concept learning in EL [16]. Conversely, CELOE learns class
expressions in the more expressive OWL DL [15]. Both DL-Foil, ELTL and CELOE work only under
OWA and deal only with crisp DLs. Learning in fuzzy DLs has been little investigated. Konstantopoulos
and Charalambidis [13] propose an ad-hoc translation of fuzzy Lukasiewicz ALC DL constructs into LP
in order to apply a conventional ILP method for rule learning. However, the method is not sound as it
has been recently shown that the mapping from fuzzy DLs to LP is incomplete [23] and entailment in
 Lukasiewicz ALC is undecidable [6]. Iglesias and Lehmann [11] propose an extension of DL-Learner with
some of the most up-to-date fuzzy ontology tools, e.g. the fuzzyDL reasoner [4]. Notably, the resulting
system can learn fuzzy OWL DL equivalence axioms from FuzzyOWL 2 ontologies. 8 However, it has been
tested only on a toy problem with crisp training examples and does not build automatically fuzzy concrete
domains. Lisi and Straccia [18] present SoftFoil, a Foil-like method for learning fuzzy EL inclusion
axioms from fuzzy DL-Litecore ontologies (a fuzzy variant of the classical DL, DL-Litecore [1]). We would
like to stress the fact that Foil-DL provides a different solution from SoftFoil not only as for the KR
framework but also as for the refinement operator and the heuristic. Also, unlike SoftFoil, Foil-DL has
been implemented and tested. Preliminary experiments with a former implementation of Foil-DL are
reported in [17, 19, 20].

4.2 Foil-DL vs DL-Learner

In this section we report the results of a comparison of Foil-DL with ELTL and CELOE (available in
DL-Learner 9) on a very popular learning task in ILP proposed 20 years ago by Ryszard Michalski [22] and

6Note also that under Gödel semantics we may use the property bed(K, a:C u C′) = min(bed(K, a:C), bed(K, a:C′)), to
further simplify the computation of the confidence degree cf(C u C′ v At).

7The implementation of DL-Foil was not made available by the authors.
8http://www.straccia.info/software/FuzzyOWL
9http://dl-learner.org/Projects/DLLearner

10

Figure 5: Michalski’s example of eastbound (left) and westbound (right) trains (illustration taken from
[22]).

illustrated in Figure 5. Here, 10 trains are described, out of which 5 are eastbound and 5 are westbound.
The aim of the learning problem is to find the discriminating features between these two classes.

For the purpose of this comparative study, we have considered two slightly different versions, trains2
and trains3, of an ontology encoding the original Trains data set. 10 The former has been adapted from
the version distributed with DL-Learner in order to be compatible with Foil-DL. Notably, the target
classes EastTrain and WestTrain have become part of the terminology. Also, several class assertion
axioms have been added for representing examples.11 The metrics for trains2 are reported in Table 4.
The ontology does not encompass any data property. Therefore, no fuzzy concept can be generated when
learning GCIs from trains2 with Foil-DL. However, the ontology can be slightly modified in order to test
the fuzzy concept generation feature of Foil-DL. Note that in trains2 cars can be classified according
to the classes LongCar and ShortCar. Instead of one such crisp classification, we may want a fuzzy
classification of cars. This is made possible by removing LongCar and ShortCar (together with the related
class assertion axioms) from trains2 and introducing the data property hasLength with domain Car and
range double (together with several data property assertions). The resulting ontology, called trains3,
presents the metrics reported in Table 4.

Table 4: Ontology metrics for trains2 and trains3 according to Protégé.

ontology # logical axioms # classes # object properties # data properties # individuals DL
trains2 345 32 5 0 50 ALCO
trains3 343 30 5 1 50 ALCO(D)

Note that a fuzzy OWL 2 version of the trains’ problem (ontology fuzzytrains v1.5.owl)12 has been devel-
oped by Iglesias for testing the fuzzy extension of CELOE proposed in [11]. However, Foil-DL can not
handle fuzzy OWL 2 constructs such as fuzzy classes obtained by existential restriction of fuzzy datatypes,
fuzzy concept assertions, and fuzzy role assertions. Therefore, it has been necessary to prepare an ad-hoc
ontology (trains3) for comparing Foil-DL and DL-Learner.

4.2.1 Qualitative analysis of results on the trains2 ontology

Foil-DL. The settings for this experiment allow for the generation of hypotheses with up to 5 conjuncts
and 2 levels of existential nestings. Under these restrictions, the GCIs learned by Foil-DL for the target
concept EastTrain are:

Confidence Axiom
1,000 3CarTrain and hasCar some (2LoadCar) subclass of EastTrain
1,000 3CarTrain and hasCar some (3WheelsCar) subclass of EastTrain

10http://archive.ics.uci.edu/ml/datasets/Trains
11Note that the 5 positive examples for EastTrain are negative examples for WestTrain and viceversa.
12Available at http://wiki.aksw.org/Projects/DLLearner/fuzzyTrains.

11

1,000 hasCar some (ElipseShapeCar) subclass of EastTrain
1,000 hasCar some (HexagonLoadCar) subclass of EastTrain

whereas the following GCIs are returned by Foil-DL for WestTrain:

Confidence Axiom
1,000 2CarTrain subclass of WestTrain
1,000 hasCar some (JaggedCar) subclass of WestTrain

The algorithm returns the same GCIs under both OWA and CWA. Note that an important difference
between DL learning and standard ILP is that the former works under OWA whereas the latter under
CWA. In order to complete the Trains’ example we would have to introduce definitions and/or assertions
to model the closed world. However, the CWA holds naturally in this example, because we have complete
knowledge of the world, and thus the knowledge completion was not necessary. This explains the behaviour
of Foil-DL which correctly induces the same hypotheses in spite of the opposite semantic assumptions.

ELTL. The class expressions learned by ELTL are the following:

EastTrain: hasCar some (ClosedCar and ShortCar) (accuracy: 1.0)
WestTrain: hasCar some LongCar (accuracy: 0.8)

The latter is not fully satisfactory as for the example coverage.

CELOE. For each target class CELOE learns several class expressions out of which the most accurate
are the following:

EastTrain: hasCar some (ClosedCar and ShortCar) (accuracy: 1.0)
WestTrain: hasCar only (LongCar or OpenCar) (accuracy: 1.0)

Note that the former coincide with the corresponding result obtained with ELTL while the latter is a
more accurate variant of the corresponding class expression returned by ELTL. The increase in example
coverage is due to the augmented expressive power of the DL supported in CELOE.

4.2.2 Qualitative analysis of results on the trains3 ontology

Foil-DL. The outcomes for the target concepts EastTrain and WestTrain remain unchanged when Foil-
DL is run on trains3 with the same configuration as the one adopted for trains2. Yet, fuzzy concepts are
automatically generated by Foil-DL from the data property hasLength (see Figure 4). However, from
the viewpoint of discriminant power, these concepts are weaker than the other crisp concepts occurring in
the ontology. In order to make the fuzzy concepts emerge during the generation of hypotheses, we have
appropriately biased the language of hypotheses. In particular, by enabling only the use of object and
data properties in LH, Foil-DL returns the following axiom for EastTrain:

Confidence Axiom
1,000 hasCar some (hasLength_fair) and hasCar some (hasLength_veryhigh)

and hasCar some (hasLength_verylow) subclass of EastTrain

Conversely, for WestTrain, a softer bias is sufficient to make fuzzy concepts appear in the learned axioms.
In particular, by disabling the class 2CarTrain in LH, Foil-DL returns the following axioms:

Confidence Axiom
1,000 hasCar some (2WheelsCar and 3LoadCar) and hasCar some (3LoadCar and CircleLoadCar) subclass of WestTrain
1,000 hasCar some (0LoadCar) subclass of WestTrain
1,000 hasCar some (JaggedCar) subclass of WestTrain
1,000 hasCar some (2LoadCar and hasLength_high) subclass of WestTrain
1,000 hasCar some (ClosedCar and hasLength_fair) subclass of WestTrain

ELTL. The following class expressions are returned by ELTL:

EastTrain: (hasCar some TriangleLoadCar) and (hasCar some ClosedCar) (accuracy: 0.9)
WestTrain: TOP (accuracy: 0.5)

Note that the class expression learned for EastTrain leaves some positive example uncovered (incomplete
hypothesis) whereas the one induced for WestTrain, being overly general, covers also negative examples
(inconsistent hypothesis). This bad performance of ELTL on trains3 is due to the low expressivity of EL
and to the fact that the classes LongCar and ShortCar, which appeared to be discriminant in the first
trial, do not occur in trains3 and thus can not be used anymore for building hypotheses.

CELOE. The most accurate class expression found by CELOE for the target EastTrain is:

12

((not 2CarTrain) and hasCar some ClosedCar) (accuracy: 1.0)

However, interestingly, CELOE learns also the following class expressions containing classes obtained by
numerical restriction from the data property hasLength:

hasCar some (ClosedCar and hasLength <= 48.5) (accuracy: 1.0)
hasCar some (ClosedCar and hasLength <= 40.5) (accuracy: 1.0)
hasCar some (ClosedCar and hasLength <= 31.5) (accuracy: 1.0)

These “interval classes” are just a step back from the fuzzification which, conversely, Foil-DL is able
to do. It is acknowledged that using fuzzy sets in place of “interval classes” improves the readability of
the induced knowledge about the data. As for the target concept WestTrain, the most accurate class
expression among the ones found by CELOE is:

(2CarTrain or hasCar some JaggedCar) (accuracy: 1.0)

Once again, the augmented expressivity increases the effectiveness of DL-Learner.

4.2.3 Quantitative analysis of results

Some indicators of time performance of the three algorithms for the two learning problems on trains2 and
trains3 are reported in Table 5. Here, we consider the time consumed for solving two core reasoning tasks
in DL learning, namely instance retrieval (i.r.) and instance checking (i.c.). Notably, Foil-DL outperforms
CELOE in 3 out of the four cases. The bad time performance of Foil-DL for the EastTrain learning
problem on trains3 is due to the computational overhead of satisfying the many constraints imposed on
the language of hypotheses in this case.

Table 5: Time performance (in ms) on trains2 and trains3.

EastTrain WestTrain EastTrain WestTrain

algorithm i. r. i. c. tot. i. r. i. c. tot. i. r. i. c. tot. i. r. i. c. tot.
Foil-DL 73 203 649 22 53 230 5,000 8,000 19,093 347 1,000 3,681
ELTL 2 13 62 2 315 1,089 4 350 1,005 5 429 1,028
CELOE 2 1,584 10,000 3 3,440 10,000 5 2,665 10,000 5 3,130 10,000

5 Evaluation of the classification performance

Table 6: Metrics of the ontologies for the experiments on classification.

ontology # logical axioms # classes # object prop. # data prop. # individuals DL
Family-tree 1609 22 52 6 368 SROIF(D)
Hotel 749 89 3 1 88 ALCOF(D)
Moral 4869 46 0 0 202 ALC
SemanticBible 3329 51 29 9 723 SHOIN (D)
UBA 6847 44 26 8 1268 SHI(D)

In this section we report the results of the evaluation of Foil-DL as classifier over a test bed. To this
purpose, we have considered a number of OWL ontologies, the metrics of which can be found in Table 6.
For each ontology we have manually selected a target concept At. Then we have learned GCIs of the form
C v At with Foil-DL and measured how good these axioms are at classifying individuals as instances
of At. The evaluation methodology we have adopted is a 5-fold cross validation design. It is aimed at
determining the average performance of Foil-DL as classifier over the various folds by means of the Mean
Squared Error (MSE), defined as

MSE =
∑

a∈Ind+(A)∪Ind−(A)

(H(a)− E(a))2 ,

13

where

E(a) =

{
1 if a ∈ Ind+(A)

0 if a ∈ Ind−(A)
,

and H(a) = bed(K ∪H, a:At) is the degree of being a an instance of At.
13

In our tests, we have configured Foil-DL to work under CWA. Therefore, the set Ind+(A) ∪ Ind−(A)
of individuals occurring in positive and negative examples coincides with the set Ind(A) of all individuals
occurring in K. We have used top-5 backtracking, since Foil-DL performs generally better with the
backtracking mode than without it, and set θ = 0. Also, the maximal nesting depth and maximal number
of conjuncts have been set to 2 and 5, respectively. Parameters have been tuned manually and do not
necessarily maximise the performance. Table 7 summarises the results of the tests for each ontology. The
t column reports the average time (in seconds) to execute each fold. For illustrative purposes, example
GCIs induced by Foil-DL during the experiments are reported. Note that both in the Hotel and the
UBA ontology case a fuzzy GCI has been induced.

Table 7: Results for the experiments on classification.

ontology target pos/neg example of induced axioms MSE t
Family-tree Uncle 46/322 ∃brotherOf.(Person u (∃ancestorOf.>)) v Uncle 0.0 18.05
Hotel Good Hotel 12/76 Bed and Breakfast u (∃hasPrice.High) v Good Hotel 0.0626 1.00
Moral Guilty 102/100 blameworthy v Guilty 0.0 0.85
SemanticBible Woman 46/677 (∃spouseOf.Man) u (∃visitedPlace.Region) v Woman 0.0311 5.20
UBA Good Researcher 22/1246 ∃hasNumberOfPublications.VeryHigh v Good Researcher 0.0005 0.44

6 Conclusions

We have described a novel method, named Foil-DL, which addresses the problem of learning fuzzy EL(D)
GCI axioms from any crisp DL KB. The method extends Foil in a twofold direction: from crisp to fuzzy
and from rules to GCIs. Notably, vagueness is captured by the definition of confidence degree reported
in (12) and incompleteness is dealt with the OWA. Also, thanks to the variable-free syntax of DLs, the
learnable GCIs are highly understandable by humans and translate easily into natural language sentences.
In particular, Foil-DL present the learned axioms according to the user-friendly presentation style of the
Manchester OWL syntax 14 (the same used in Protégé).

The experimental results are quite promising and encourage the application of Foil-DL to more
challenging real-world problems. Notably, in spite of the low expressivity of EL, Foil-DL has turned out
to be robust mainly due to the refinement operator and to the fuzzification facilities. A distinguishing
feature of ρK is that it exploits the TBox, e.g. for concepts A2 @ A1, we reach A2 via > A1 A2. In
this way, we can stop the search if A1 is already too weak. The operator also uses the range of roles to
reduce the search space. This is similar to mode declarations widely used in ILP. However, in DL KBs,
domain and range are usually explicitly given, so there is no need to define them manually. Overall, ρK
supports more structures, i.e. concrete domains, than e.g. [16] and tries to smartly incorporate background
knowledge. Additionally, unlike CELOE, the fuzzification of concrete domains enables the invention of
new concepts during the learning process, which can be considered as a special case of predicate invention.

In the future, we intend to conduct a more extensive empirical evaluation of Foil-DL, which could
suggest directions of improvement of the method towards more effective formulations of, e.g., the infor-
mation gain function and the refinement operator as well as of the search strategy and the halt conditions
employed in Learn-One-Axiom. Also, it can be interesting to analyse the impact of the different fuzzy
logics on the learning process. Eventually, we shall investigate the problem of learning fuzzy GCI axioms

13We recall that concept descriptions may be fuzzy.
14http://www.w3.org/TR/owl2-manchester-syntax/

14

from FuzzyOWL 2 ontologies, by coupling the learning algorithm with the fuzzyDL reasoner, instead of
learning from crisp OWL 2 data by using a classical DL reasoner.

References

[1] Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite Family and Relations,
Journal of Artificial Intelligence Research, 36, 2009, 1–69.

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., Eds.: The Description
Logic Handbook: Theory, Implementation and Applications (2nd ed.), Cambridge University Press,
2007.

[3] Baader, F., Hanschke, P.: A Scheme for Integrating Concrete Domains into Concept Languages,
Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney, Australia,
August 24-30, 1991 (J. Mylopoulos, R. Reiter, Eds.), Morgan Kaufmann, 1991.

[4] Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner, FUZZ-IEEE 2008,
IEEE International Conference on Fuzzy Systems, Hong Kong, China, 1-6 June, 2008, Proceedings,
IEEE, 2008.

[5] Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate Logics, Artificial
Intelligence, 82(1–2), 1996, 353–367.

[6] Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under Lukasiewicz t-
norm, Information Sciences, 227, 2013, 1–21.

[7] Drobics, M., Bodenhofer, U., Klement, E.-P.: FS-FOIL: an inductive learning method for extracting
interpretable fuzzy descriptions, Int. J. Approximate Reasoning, 32(2-3), 2003, 131–152.

[8] Dubois, D., Prade, H.: Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clari-
fication, Annals of Mathematics and Artificial Intelligence, 32(1-4), 2001, 35–66.

[9] Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics, Inductive
Logic Programming, 18th International Conference, ILP 2008, Prague, Czech Republic, September
10-12, 2008, Proceedings (F. Zelezný, N. Lavrač, Eds.), 5194, Springer, 2008.

[10] Hájek, P.: Metamathematics of Fuzzy Logic, Kluwer, 1998.

[11] Iglesias, J., Lehmann, J.: Towards Integrating Fuzzy Logic Capabilities into an Ontology-based
Inductive Logic Programming Framework, Proc. of the 11th Int. Conf. on Intelligent Systems Design
and Applications, IEEE Press, 2011.

[12] Klir, G. J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications, Prentice-Hall, Inc., 1995.

[13] Konstantopoulos, S., Charalambidis, A.: Formulating description logic learning as an Inductive Logic
Programming task, Proc. of the 19th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, 2010.

[14] Lehmann, J.: DL-Learner: Learning Concepts in Description Logics, Journal of Machine Learning
Research, 10, 2009, 2639–2642.

[15] Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering,
Journal of Web Semantics, 9(1), 2011, 71–81.

[16] Lehmann, J., Haase, C.: Ideal Downward Refinement in the EL Description Logic, Inductive Logic
Programming, 19th International Conference, ILP 2009, Leuven, Belgium, July 02-04, 2009. Revised
Papers (L. De Raedt, Ed.), 5989, Springer, 2010.

15

[17] Lisi, F. A., Straccia, U.: Dealing with Incompleteness and Vagueness in Inductive Logic Programming,
Proceedings of the 28th Italian Conference on Computational Logic, Catania, Italy, September 25-27,
2013. (D. Cantone, M. Nicolosi Asmundo, Eds.), 1068, CEUR-WS.org, 2013.

[18] Lisi, F. A., Straccia, U.: A Logic-based Computational Method for the Automated Induction of Fuzzy
Ontology Axioms, Fundamenta Informaticae, 124(4), 2013, 503–519.

[19] Lisi, F. A., Straccia, U.: A System for Learning GCI Axioms in Fuzzy Description Logics, Informal
Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23-26,
2013 (T. Eiter, B. Glimm, Y. Kazakov, M. Kroetzsch, Eds.), 1014, CEUR-WS.org, 2013.

[20] Lisi, F. A., Straccia, U.: A FOIL-Like Method for Learning under Incompleteness and Vagueness,
Inductive Logic Programming - 23rd International Conference, ILP 2013, Rio de Janeiro, Brazil,
August 28-30, 2013, Revised Selected Papers (G. Zaverucha, V. Santos Costa, A. Paes, Eds.), 8812,
Springer, 2014.

[21] Lukasiewicz, T., Straccia, U.: Managing Uncertainty and Vagueness in Description Logics for the
Semantic Web, Journal of Web Semantics, 6, 2008, 291–308.

[22] Michalski, R.: Pattern recognition as a rule-guided inductive inference, IEEE transactions on Pattern
Analysis and Machine Intelligence, 2(4), 1980, 349–361.

[23] Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic Programming, IJCAI
2007, Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (M. Veloso, Ed.), 2007.

[24] Quinlan, J. R.: Learning Logical Definitions from Relations, Machine Learning, 5, 1990, 239–266.

[25] Reiter, R.: Equality and Domain Closure in First Order Databases, Journal of ACM, 27, 1980,
235–249.

[26] Schmidt-Schauss, M., Smolka, G.: Attributive Concept Descriptions with Complements, Artificial
Intelligence, 48(1), 1991, 1–26.

[27] Serrurier, M., Prade, H.: Improving Expressivity of Inductive Logic Programming by Learning Dif-
ferent Kinds of Fuzzy Rules, Soft Computing, 11(5), 2007, 459–466.

[28] Shibata, D., Inuzuka, N., Kato, S., Matsui, T., Itoh, H.: An Induction Algorithm Based on Fuzzy
Logic Programming, Methodologies for Knowledge Discovery and Data Mining, Third Pacific-Asia
Conference, PAKDD-99, Beijing, China, April 26-28, 1999, Proceedings (N. Zhong, L. Zhou, Eds.),
1574, Springer, 1999.

[29] Straccia, U.: Reasoning within Fuzzy Description Logics, Journal of Artificial Intelligence Research,
14, 2001, 137–166.

[30] Straccia, U.: Description Logics with Fuzzy Concrete Domains, UAI ’05, Proceedings of the 21st
Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 26-29, 2005, AUAI
Press, 2005.

[31] Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages, CRC Studies in Informatics
Series, Chapman & Hall, 2013.

[32] Zadeh, L. A.: Fuzzy Sets, Information and Control, 8(3), 1965, 338–353.

16

