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A B S T R A C T

Background: Acoustic challenges impose demands on cognitive resources, known as listening effort (LE),
which can substantially influence speech perception and communication. Standardized assessment protocols
for monitoring LE are lacking, hindering the development of adaptive hearing assistive technology.
New Method: We employed an adaptive protocol, including a speech-in-noise test and personalized definition
of task demand, to assess LE and its physiological correlates. Features extracted from electroencephalogram,
galvanic skin response, electrocardiogram, respiration, pupil dilation, and blood volume pulse responses were
analyzed as a function of task demand in 21 healthy participants with normal hearing.
Results: Heightened sympathetic response was observed with higher task demand, evidenced by increased
heart rate, blood pressure, and breath amplitude. Blood volume amplitude and breath amplitude exhibited
higher sensitivity to changes in task demand.
Comparison with Existing Methods: Notably, galvanic skin response showed higher amplitude during low
task demand phases, indicating increased attention and engagement, aligning with findings from electroen-
cephalogram signals and Lacey’s attention theory.
Conclusions: The analysis of a range of physiological signals, spanning cardiovascular, central, and autonomic
domains, demonstrated effectiveness in comprehensively examining LE. Future research should explore
additional levels and manipulations of task demand, as well as the influence of individual motivation and
hearing sensitivity, to further validate these outcomes and enhance the development of adaptive hearing
assistive technology.
1. Introduction

Everyday’s life activities may pose listening challenges when the
conditions are acoustically adverse (e.g., noisy environments, multiple
talkers) or when the hearing ability of the listener is decreased due
to elevated pure-tone thresholds or decline in suprathreshold auditory
processing abilities (Pichora-Fuller et al., 2016). Listening in challeng-
ing conditions requires the allocation of executive cognitive resources
that may vary as a function of the acoustic, linguistic, and cognitive
demand of the task, as well as with varying listeners’ abilities (Peelle,
2018). The recruitment of cognitive resources required in challenging
listening tasks is called listening effort (LE) (Pichora-Fuller et al., 2016).
To date, there are no standardized protocols to assess the individual LE
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required during real-world listening tasks. Since a wide range of factors
may affect LE measured in experimental settings, especially in terms of
speech stimuli (e.g., vowel consonant vowel (VCV), disyllabic words,
digits, sentences) and experimental protocols (e.g., noise levels, type of
signals recorded, type of task), the investigation of LE requires the ob-
servation of multiple and different domains. Moreover, the relationship
between LE and listener’s performance is complex. In LE conditions, a
semantic message can be understood with appropriate recruitment of
cognitive resources, but a constant increased cognitive load can lead
to stress and fatigue, influencing individual performance (Hétu et al.,
1988; Pichora-Fuller et al., 2016)
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LE can be quantified using self-report, behavioral and physiological
measures. The latter are particularly promising to monitor LE in real-
world settings and are investigated in this paper. Since the mental
effort is usually expressed as autonomic nervous system (ANS) ac-
tivation, some physiological signals such as skin conductance, pupil
iameter and heart-related features are commonly used to measure
ffort investment during listening. Also, some neuroanatomical markers
ssociated to LE have been addressed in literature. Higher activation of
he prefrontal cortex, premotor cortex and cingulo opercular network
as observed with degraded speech (Peelle, 2018). For example, in the

study reported in Seeman and Sims (2015) sentences were presented
at four different fixed signal-to-noise ratio (SNR) levels, resulting in
maller heart-rate variability for smaller SNRs and for increased task

complexity (diotic vs dichotic listening) during a key word recognition
speech-in-noise test (SNT), while galvanic skin response (GSR) was
levated for greater task complexity only. In Plain et al. (2020), it was
ound that cardiac pre-ejection period (PEP) reactivity varied linearly
ith poorer SNRs during a speech-in-noise task including short Dutch

entences, which was completed at six fixed SNRs between −1 and −21
dB SNR, distributed in 4 dB steps. In McMahon et al. (2016), sentences
spoken by a native Australian-English female were presented in the
presence of four-talker babble noise at 15 different levels between −7
nd +7 dB SNR, during two different sessions that used 16-channel
highly intelligible) an 6-channel (moderately intelligible) vocoded ma-
erial, respectively. Pupil size was measured while alpha band activity
rom three parietal electrodes was extracted from electroencephalo-

graphic (EEG) data, and both measures significantly decreased with
higher SNRs for the 16-channel vocoding, while this relationship was
not observed for the moderately intelligible condition.

While most studies analyzed the response of physiological signals
t pre-determined SNR levels, a tailored assessment of physiological
esponses in LE conditions would require the adoption of an adaptive
pproach to assess how LE changes depending on the individual audi-
ory performance. For example, in Petersen et al. (2015) two, four or six

monosyllabic Swedish digits spoken by a female talker were presented
at −4, 0 and +4 dB with respect to the speech reception threshold
of each subject, previously found through an adaptive tracking pro-
edure targeting 80% intelligibility. In the least intelligible condition,
verage alpha power across 31 centro-parietal electrodes resulted to

increase with hearing loss in the low and intermediate memory load
conditions, while for the high memory load it dropped for the mild
and moderate hearing loss subjects. In Zekveld et al. (2013), everyday
Dutch sentences were presented in background-interfering speech at
29% and 71% speech recognition thresholds (SRTs), after two adaptive
procedures were applied to find the SRTs. Peak and mean pupil dilation
compared to baseline were higher in the 29% condition than in the
71% condition, indicating higher processing load. While the overall
evidence summarized above suggests that physiological signals may
help assess LE associated with speech recognition tasks, inconsistent
relationships between and within subjective, behavioral and physiolog-
ical measures of LE during auditory tasks at different demands were
reported in literature (e.g., Strand et al., 2018; Alhanbali et al., 2019).
This phenomenon was explained in previous studies with the idea of a
‘multi-dimensional’’ model of LE (Shields et al., 2023), which indicates
that different measures (both between and within groups) may capture
different aspects of LE, spatially and temporally. First, the degree of
greement between measures and their sensitivity to detect LE are

dependent from the experimental conditions (Shields et al., 2023). Sec-
ond, different physiological measures can capture different aspects of
E and different processing stages, such as attending to, processing, or
dapting to auditory stimuli. The abovementioned temporal and spatial
tratification of LE measures would therefore explain the absence of
trong and consistent correlations between the examined measures and
he lack of an optimal measure of LE. These assumptions would require
o move towards more ecological studies outside the laboratory and try

ifferent approaches from the ones commonly adopted.

2 
The aim of this study is to investigate multi-domain physiologi-
cal indicators linked to task demand during an adaptive SNT, care-
fully designed to reduce task complexity, cognitive load, and testing
ime (Zanet et al., 2021; Paglialonga et al., 2020). The rationale of

the adaptive approach here used is to personalize the SNR of stim-
li around the individual SRT and reduce the likelihood of trials
ecoming overly challenging over time, thus minimizing the risk of

disengagement that may alter the physiological responses (Pichora-
Fuller et al., 2016), and at the same time enabling the assessment
of task demand as a function of the individual SRT. The prelim-
inary findings of this research, as outlined in Polo et al. (2022),
ertain solely to the cardiovascular aspect. In this study, to comprehen-

sively assess physiological indicators of LE, six physiological signals are
recorded, overall covering the cardiovascular, central, and autonomic
domains. The primary research questions are: (1) Is it possible to ob-
erve changes in physiological responses as a function of task demand
uring an adaptive speech-in-noise test? and (2) How do different
hysiological indicators—across cardiovascular, central, and autonomic
omains—correlate with task demand during the adaptive SNT?

2. Materials and methods

2.1. Speech-in-noise test

The adaptive SNT used in this study was recently developed and
validated on a population of 417 individuals with varying degrees of
hearing sensitivity (Paglialonga et al., 2020, 2023; Polo et al., 2023).

he test employs a corpus of 12 nonsense VCV stimuli containing
spoken consonants (/b, d, f, g, k, l, m, n, p, r, s, t/) in the context
of the vowel /a/ (e.g., aba, ada) recorded from a male professional
ative English speaker. A three-alternative forced-choice (3AFC) task is
mployed, with response options defined using a maximal opposition
riterion to maximize perceptual distinctions in manner, voicing, and

place of articulation (Paglialonga et al., 2013, 2014; Vaez et al., 2014).
he rationale behind this specific test design was to reduce reliance

on higher-level cognitive processing, mitigate the impact of factors like
subjects’ educational background, literacy, or native language on test
results, and limit possible state anxiety related to task execution (Mattys
et al., 2009; Cooke et al., 2010; Roup et al., 2020). VCVs were presented
in filtered speech-shaped noise (onset: 500 ms; offset: 100 ms). The
noise was computed by filtering a Gaussian white noise by using the
nternational long-term average speech spectrum (Byrne et al., 1994)

and a low-pass filter with a cut-off frequency of 1.4 kHz and a roll-off
slope of 100 dB/octave. This noise was then attenuated by 15 dB to
create a noise floor as suggested in Leensen et al. (2011).

The SNT uses a one-up/three-down (1U3D) adaptive procedure to
maximize effectiveness, precision, and convergence to the SRT tar-
get at 79.4% intelligibility (Schlauch and Rose, 1990; Shelton and
Scarrow, 1984; Leek, 2001). The test consists of a single block, and
at each trial one VCV from the whole corpus is randomly picked
and presented, while the order of the three alternatives displayed
on the screen is randomly determined. The test employs a recently
validated, optimized staircase procedure with varying upward and
downward steps in SNR computed from the predicted intelligibility of
each VCV in the set (Zanet et al., 2019; Paglialonga et al., 2020; Zanet
t al., 2021). This approach uses the Short-Time Objective Intelligibility

(STOI) values to predict VCV intelligibility (Taal et al., 2010) - a
computational metric highly correlated with, but distinct from, actual
speech intelligibility (Rocco et al., 2023). During each trial:

1. The adaptive algorithm selects a target STOI value (for the first
trial, a STOI close to 100% is used)

2. A VCV stimulus is randomly chosen and presented at the SNR
level corresponding to the current STOI value on its STOI-
derived psychometric function
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3. Following the 1U3D rule:
- After each incorrect response, the STOI value increases
- After three consecutive correct responses, the STOI value de-
creases

The obtained STOI value is used as the target STOI value defined in
1). The ratio between downward and upward steps in STOI values is

set in a way that the ratio between downward and upward steps in
NR is close to 0.7393 as recommended by García-Pérez (1998). This
esign is particularly efficient because, while the STOI value governs

the adaptive procedure, the actual SNR at which each stimulus is
resented may differ due to their individual psychometric functions.
he test continues until 12 reversals are achieved, with SRT calculated

as the mean SNR of the stimuli presented during the last four ascending
uns of STOI values, as recommended by García-Pérez (1998).

Participants had the option to fine-tune the stimulus volume at a
omfortable level during an initial training phase before starting the

test (Zanet et al., 2021; Paglialonga et al., 2020; Zanet et al., 2019).
The features extracted from the SNT include the SRT, the correctness
f the responses given at each trial and the reaction time for each trial,
easured as the time elapsed between the onset of the stimulus and

he subject’s click on one of the three alternative buttons displayed on
he screen.

2.2. Experimental protocol

Participants were 21 healthy young adults (13 female, 8 male;
mean age = 26.2 ±1.47 years) with normal hearing (pure-tone average
hresholds across 500, 1000, 2000, and 4000 Hz < 20 dB HL). To miti-
ate the potential influence of caffeine and nicotine on physiological
ignals, participants were instructed to abstain from drinking coffee
nd from smoking for a minimum of two hours before the experiment.
ensors for acquiring electrocardiographic (ECG), blood volume pulse
BVP), GSR, pupil dilation (PUPIL), EEG, and respiration (RESP) signals
ere affixed to the subjects. Initially, a two-minute monitoring period
as conducted while the subjects were instructed to fix their gaze
n a gray screen to establish baseline values for the physiological
ignals. Following the baseline measurement, the SNT described in
ection 2.1 was administered and signals were monitored throughout

the test execution.
In the adaptive staircase procedure, trials were categorized as either

ow or high demand based on their SNR relative to the subject’s SRT.
rials with an SNR higher than the SRT + 2 dB were labeled as low
emand, while trials with an SNR equal to or lower than SRT + 2 dB
ere labeled as high demand. The cut-off SNR of SRT + 2 dB was

hosen to balance two objectives: (i) Ensuring a sufficient number of
igh demand trials for the analysis, and (ii) Keeping the difference
etween the cut-off SNR and the SRT below 3 dB SNR, which is the
verage difference in SNR that leads to measurable changes in speech
ntelligibility (McShefferty et al., 2015). To ensure the stability and
omparability of physiological signal analysis between the two task

demand levels, we focused on time segments that contained consecutive
trials of the same difficulty level (i.e., low (L) or high (H) demand). We
onsidered all segments with consecutive trials at the same difficulty

level and identified the longest segment for each level of demand. Then,
we extracted the longest available segment at each of the two difficulty
levels and, by considering the lower duration between the two, we
truncated the longer segment to match the duration of the shorter one,
ensuring equal duration for the selected time segments at the two task
demand levels. In both demand phases, we prioritized time segments
from the later part of the phase. This choice was made to minimize the
influence of the initial familiarization period, as the staircase procedure
begins at an easy level for the subject. Most consecutive low demand
trials occur at the beginning of the test, during the initial descent before
the SNR settles near the SRT. By selecting the last consecutive low
emand trials before the subject’s performance reached the cut-off SNR

of SRT + 2 dB, we aimed to capture the most representative and stable
3 
low demand time segments for analysis. Moreover, we have likewise
chosen a duration equivalent to that of the test phases (i.e., L and H
ask demand) for the baseline, enabling a comparison across the three
omponents. During the experiment, two minutes of baseline data were
nitially acquired before the SNT. The baseline window was defined as
he segment of time immediately preceding the appearance of the test
creen and the duration of the baseline segment was chosen to match
he duration of the L and H phases in each subject. Fig. 1 illustrates
n example of an adaptive procedure from a single participant and
ighlights the identified low and high task demand windows. The solid
ray line depicts the target STOI value, whereas the red line represents

the SNR in dB used at each trial, as reported in Rocco et al. (2023).
egarding the task demand conditions, in the example four consecutive
indows for low (i.e., 1st L and 2nd L) and high task demand (i.e., 1st

H and 2nd H) are identified, and two windows of equal duration are
elected for the analysis (i.e., the final part of the 1st L window and the
nd H window).

2.3. Apparatus

Pure tone audiometry was measured using a clinical audiometer
(Amplaid 177+, Amplifon with TDH49 headphones). The SNT was
administered through a desktop computer using UXD CT887 head-
hones and participants responded using a mouse. The ECG, BVP, GSR,
nd RESP signals were acquired using the Procomp Infinity device.
EG data were collected using a DSI 24 headset equipped with 19
ry electrodes positioned according to the international 10–20 system.
he headset featured a 300 Hz sampling rate and integrated a 16-
it analog-to-digital (A/D) converter for precise signal conversion. For
UPIL data acquisition, a Tobii Pro X2 Compact eye-tracker, operat-
ng at a sampling frequency of 60 Hz, was employed. In relation to
isual aspects, particularly the pupillary signal, we followed established
uidelines (Laeng and Endestad, 2012). To minimize external light

interference, laboratory windows were darkened, and uniform artificial
lighting was maintained throughout the recording sessions. The screen
brightness was consistently maintained at 3/4 of the maximum bright-
ness for all subjects. The experiment was conducted at the SpinLab of
Politecnico di Milano, with all participants providing informed consent
prior to participation. The protocol was approved by the Politecnico di
Milano Research Ethics Committee (Opinion No. 29/2021).

2.4. Signal processing and feature extraction

The signal processing and feature extraction for each physiological
signal are reported here below.

2.4.1. ECG
The ECG signal, sampled at 2048 Hz, was pre-processed using a

ourth-order zero-phase low-pass Butterworth filter and down-sampled
o 250 Hz. The ECG signal was analyzed to extract HRV features,
hich provide information about the ANS activity. The R peaks, rep-

esenting the depolarization of the ventricles and the most prominent
eature of the ECG signal, were detected using the Pan–Tompkins
lgorithm (Sedghamiz, 2014). The RR interval, defined as the time

between two consecutive R peaks, was then calculated. Any errors in
R peak detection were manually corrected using an in-house software.
To ensure precise HRV measurements, we adopted the Point process
framework, which is especially suited for short time intervals such as
the task demand phases here defined, that are substantially shorter than
the conventional 5-minute windows typically used for HRV analysis, as
suggested by Sassi et al. (2015). The RR series served as input for the
oint process framework, which models heartbeats as a stochastic point

process. This approach allows continuous estimation of the average
inter-beat interval and the associated spectral indices, providing real-
ime assessments of various HRV parameters (Chen et al., 2009, 2010;

Barbieri et al., 2005).
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Fig. 1. Example of adaptive trial results and corresponding low and high task demand windows (in yellow) from one participant. The gray continuous line represents STOI
(Short-Time Objective Intelligibility) values. The continuous red line tracks the SNR values, with stars indicating correct responses and squares indicating errors. The solid markers
denote the values of SNRs in the last 4 ascending runs of the black continuous line. The SRT (horizontal dashed red line) is computed as the average of the SNRs of the solid
markers. The figure also highlights four consecutive trial windows for low (1st L and 2nd L) and high task demand (1st H and 2nd H). (color online; b/w in print).
From the modeled RR signal, the following features were extracted,
sampled at 10 Hz, and subsequently averaged within the temporal
windows of interest:

• 𝜇𝑅𝑅: Average of RR interval.
• 𝜎2𝑅𝑅: Variance of RR interval.
• RRTOT: Total power of the continuous RR interval spectrum.
• Very Low (<0.04 Hz), Low (0.04–0.15 Hz), and High (0.15–

0.4 Hz) frequency power of the continuous RR interval spectrum
(RRVLF, RRLF, RRHF), the normalized values RRLFn and RRHFn,
computed relative to total power, excluding very low-frequency
power, and the ratio RRLF/RRHF (RRLFtoRRHF).

These metrics were selected due to their capacity to provide com-
prehensive insights into ANS activity. Mean RR (𝜇𝑅𝑅) and variance
𝜎2𝑅𝑅 reflect overall HRV, while LF and HF powers are indicative of
sympathetic and parasympathetic influences, respectively. The LF/HF
ratio serves as a measure of sympathovagal balance (Sassi et al., 2015).

2.4.2. EEG
EEG signals were preprocessed using the EEGLAB toolbox in MAT-

LAB (Delorme and Makeig, 2004). This involved filtering the data
within the 1 Hz to 45 Hz range using a finite impulse response, zero-
phase filter, and applying a notch filter at 50 Hz to eliminate power
line interference. Data from the problematic Pz electrode were tem-
porarily excluded and later interpolated. Subsequently, Independent
Component Analysis (ICA) with the Extended Infomax algorithm was
employed (Delorme et al., 2012).

The quality of the extracted components was thoroughly evaluated
using the IClabel plugin (Pion-Tonachini et al., 2019), and any compo-
nents identified as artifacts were removed based on default threshold
values. The Common-Average Referencing (CAR) method was em-
ployed to reduce common noise in the recorded signals. The selection of
this EEG signal processing pipeline was based on comparisons detailed
in Cassani et al. (2022).

In this study, straightforward and easily interpretable features were
extracted:
4 
• The Power Spectral Density (PSD) in various frequency bands
(i.e., 𝛼, 𝛽 and 𝜃) for the frontal (F) and parietal (P) regions were
computed and normalized by the total power spectral density
(1–45 Hz).

• The attention index, computed as the ratio between the PSD in the
𝛽 frequency band and the PSD in the 𝜃 frequency band for the
frontal and parietal regions. This ratio tends to increase during
attentive states, providing a measure of attention throughout the
trials (Cómez et al., 1998; Farabbi and Mainardi, 2022).

• The engagement index, the ratio between the PSD in the 𝛽 fre-
quency band and the PSD in the 𝛼 frequency band for the frontal
and parietal regions. This ratio is useful to investigate whether
the change in task demand impacted not only attention but also
the degree of involvement (Coelli et al., 2017).

The EEG features selected, such as PSD in alpha, beta, and theta
bands, as well as attention and engagement indices, are widely used
to assess cognitive states during various tasks (Klimesch, 1999; Berka
et al., 2007). By focusing on frontal and parietal regions, we aimed to
capture the most relevant EEG correlates of LE (Clayton et al., 2015).

2.4.3. GSR
To isolate the Phasic Component of the GSR signal (sampled at

256 Hz), we applied a fourth order low-pass Butterworth filter with
a cutoff frequency of 2 Hz. The signal was then downsampled to 5 Hz.
We employed a median filter within a 4-second window around each
sample, following the methods outlined in Bakker et al. (2011) and
Greco et al. (2016). This process yielded a median signal, which we
subtracted from the filtered signal to obtain the Phasic Component.
GSR peaks, indicating spikes in eccrine gland activity, were identified
by locating local maxima in the filtered signal between the onset
(amplitude > 0.01 μS) and offset (amplitude < 0.01 μS) of the Phasic
Component, as reported in Braithwaite et al. (2013). The following
features were extracted from the GSR signal as suggested by Picard
et al. (2001), Kim and Andre (2008), Fleureau et al. (2012), Lisetti and
Nasoz (2004) and Frantzidis et al. (2010):

• Avg amplitude peaks: Average amplitude over identified peaks
and their standard deviation (Sd amplitude peaks).
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• Avg rise time: Average time between onsets and peaks.
• Avg recovery time: Average time between peaks and offsets.
• 𝑁 peaks: Number of identified peaks in the time window.
• Mean of the low-pass filtered GSR, considering both tonic and

phasic components (Avg GSR) and its standard deviation (Sd
GSR).

• Env: Mean of the envelope of the phasic component.

The GSR features, including amplitude, rise time, recovery time,
and number of peaks, as well as the mean and standard deviation of
he filtered GSR signal, are commonly used to assess sympathetic ner-
ous system activity and emotional arousal (Boucsein, 2012; Critchley,

2002). They were selected to investigate how sympathetic arousal
aries with task demand during the SNT. An increase in the amplitude
nd number of GSR peaks suggests a higher level of sympathetic

activation and emotional arousal. Shorter rise times and recovery times
indicate a more rapid and intense physiological response to stimuli,
which is often associated with increased stress and cognitive workload.
Additionally, an increase in the mean and standard deviation of the
filtered GSR signal reflects an overall increase in skin conductance level
and its variability, which can be indicative of heightened sympathetic
arousal and emotional reactivity.

2.4.4. BVP
The BVP signal (sampled at 2048 Hz) was filtered using a fourth-

order low-pass Butterworth filter with a 25 Hz cutoff frequency and
ownsampled to 250 Hz. By synchronizing the BVP signal with the ECG
ignal, we successfully extracted systolic, diastolic, and onset ampli-
udes. The systolic and diastolic values were discerned from the peaks
nd troughs between R-peaks, while the onset values were identified at
he inflection points. This analysis yielded two key features:

• Mean Volume Amplitude Index (VA)
• Mean Pulse Arrival Time (PAT), computed with respect to on-

sets relative to diastoles or systoles for enhanced reliability in
turbulent signal segments.

VA and PAT derived from the BVP signal are indicators of peripheral
blood flow and vascular tone, respectively. These parameters have been
correlated with various psychophysiological states, including emotional
arousal and mental stress (Parreira et al., 2023; Chakraborty et al.,
2024). An increase in VA suggests enhanced peripheral blood volume,
mplying reduced peripheral blood pressure, which may indicate ele-

vated parasympathetic activity and low arousal. Conversely, a decrease
in PAT signifies increased pulse wave velocity, often associated with
heightened vascular tone and sympathetic activation.

2.4.5. RESP
The respiration signal, sampled at 256 Hz, was processed using the

Parks–McClellan algorithm (Rabiner et al., 1978) by applying a zero-
hase digital low-pass filter with a 1 Hz cutoff frequency to isolate the
esired frequency components in the signal. After filtering, similar to
he univariate approach for the RR series of the ECG, we employed a
ivariate autoregressive point process model to estimate the autonomic
egulation of heartbeat influenced by respiratory changes (Chen et al.,

2009). This model separated the self-regulatory process from the effects
f Respiratory Sinus Arrhythmia (RSA) on the Autonomic Nervous
ystem’s (ANS) feedback branch. The modeling enabled us to create
ime and frequency representations of the RR and RESP series, along
ith their corresponding cross-spectrum. Additionally, we calculated

he Coherence in Time and Frequency (COH(t,f)) between the RR and
ESP series, serving as an indicator of the robustness of the coupling
etween these two time series.

The following features were computed from RESP signals through
he bivariate point process:

• 𝜇 : Average amplitude of the modeled resp series.
𝑅𝐸 𝑆 𝑃

5 
• 𝜎2𝑅𝐸 𝑆 𝑃 : Variance amplitude of the resp series.
• 𝑅𝐸 𝑆 𝑃 𝐻 𝐹 : High-frequency (0.15–0.4 Hz) power in the continu-

ous resp spectrum.
• 𝑅𝑆 𝐴𝐻 𝐹 : RSA gain in the high-frequency range.
• 𝐶 𝑂 𝐻𝐻 𝐹 : Coherence of the two time series calculated in the

high-frequency range.
• 𝑓 𝑚𝑎𝑥𝐻 𝐹 : RESP frequency computed at the point of maximum

coherence in the high-frequency band.

These features reflect the depth and variability of breathing, the
trength of RSA, and the degree of cardiorespiratory coupling. RSA, in
articular, has been extensively studied as an index of vagal tone and
as been shown to be sensitive to various types of stressors and mental
ffort (Houtveen et al., 2002).

2.4.6. PUPIL
In the initial data analysis, we identified blinks based on sample di-

meters (<2 mm or >8 mm) and artifacts (abrupt changes > 0.375 mm
ithin 20 ms intervals) in accordance with Partala and Surakka (2003)

and Pong and Fuchs (2000). We estimated missing data and/or blinks
sing cubic spline interpolation. To eliminate high-frequency noise, a
ourth-order zero-phase low-pass Butterworth anti-aliasing filter with
 5 Hz cutoff frequency was applied, preserving relevant signal in-
ormation. Subsequently, we downsampled the signal to 10 Hz, an

appropriate rate for pupillometric data analysis. Spectral analysis was
conducted by computing Welch’s periodogram on the detrended signal
using a 1.875-second Hamming window with a 50% overlap. After
processing the signals from each eye, we averaged the samples to obtain
a signal representing the mean diameter of both eyes, which was then
used to compute the following features:

• Mean diameter (AVD) and its standard deviation (SDD).
• PSD of diameter in low (0.05–0.15 Hz) (DLF), high (0.15–0.45 Hz)

(DHF), and very high (0.45–1.5 Hz) (DVHF) frequency ranges,
along with the balance index (DLF/DHF).

Pupillometric features, including mean diameter (AVD), its standard
deviation (SDD), and PSD in different frequency ranges, are widely
used as indicators of cognitive workload, attention, and arousal (Beatty,
1982; Zekveld et al., 2018; Duchowski et al., 2018). These features
were selected to characterize the pupillary response to changes in task
demand and gain insights into cognitive workload and arousal associ-
ated with LE. An increase in pupil diameter is generally associated with
increased cognitive workload, attentional allocation, and arousal. The
standard deviation of the pupil diameter reflects the variability in pupil
size, which can be indicative of changes in cognitive processing and
fluctuations in arousal. The PSD of the pupil diameter signal in different
frequency ranges provides information about the temporal dynamics of
the pupillary response.

2.5. Statistical analysis

The SNT performance variables, i.e., average reaction time and
percentage of correct responses, were analyzed within each task de-
mand window. The average reaction time was computed as the mean
value of the reaction time of all trials in each task demand window.
The Shapiro–Wilk test was employed to assess the normality of data
distributions for the low and high task demand phases. The Wilcoxon
signed-rank test was then applied since the distributions were not
normal.

Concerning the physiological features, as they needed to accommo-
ate not only the two high and low task demand windows but also the

baseline, the Shapiro–Wilk test was used to assess normality of data. For
normal distributions, an ANOVA test was employed, while for not nor-
mal distributions, the Friedman’s test was performed. Specifically, if a
comparison yielded statistical significance, multiple comparisons were
conducted to evaluate possible pairwise differences. Tukey’s correction
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Fig. 2. Boxplots of the average reaction time and percentage of correct responses in the low (L) and high (H) task demand phases. In each plot, the average values for the L
and H windows are also reported. Dotted lines connect data points from individual subjects. The up and down arrows next to the boxplots indicate whether the trend for each
feature is increasing or decreasing in either of the task demands. Expected trends highlighted in black and opposite trends shown in red for the minority of subjects. Statistically
significant differences are marked with * (p < 0.05) and ** (p < 0.01) (color online; b/w in print).
was applied to all comparisons.
Furthermore, to provide an intuitive visualization of how physio-

logical variables change across different task demand levels, 3D boxes
were generated using the most informative features in terms of physio-
logical patterns, by considering both the features showing statistically
significant differences and features extracted from the three domains
here considered, cardiovascular, central, and autonomic. 3D boxes are
constructed with the feature median as the center of each box, where
the box’s sides represent the median absolute deviation.

3. Results

Fig. 2 displays the distributions of the SNT features (i.e., average
reaction time and percentage of correct responses) observed in the
low and high task demand (mean window duration: 64.41 ± 17.49 s)
windows. In the low task demand phase, a lower average reaction time
and a higher percentage of correct responses are observed compared
to the high task demand window. All the observed differences were
statistically significant (average reaction time:p = 0.011; percentage
of correct responses:p = 5.88e−5). These trends are consistent with
an increased task difficulty in the high task demand window (lower
SNR) that is associated with longer reaction times (in 15/21 subjects)
and lower speech recognition performance, as reflected by a lower
percentage of correct responses (in 21/21 subjects). Table A.1 in the
Appendix provides detailed information for each subject, including the
number of trials, mean SNR, mean STOI values for the low and high
task demand windows as well as individual SRT.

Table 1 shows the distributions (median values and median absolute
deviations) of the features extracted from all the physiological signals
at the baseline (B) and in the low (L) and high (H) task demand phases.

Fig. 3 shows the boxplots of the six features that exhibit statistically
significant differences between the low and high task demand phases,
as reported in the right-most column in Table 1 (i.e., 𝜇RR, Env, PAT,
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Avg GSR, VA and 𝜇RESP), along with the trends observed for each sub-
ject. The results observed for each physiological signal are summarized
here below:

• ECG: By assessing the cardiac characteristics obtained through
point process, we observed that the mean RR interval (𝜇𝑅𝑅)
emerges as a significant metric as it effectively distinguishes
between the low and high task demand phases (Fig. 3, Table 1).
Notably, in the high task demand phase an increase in heart rate
(lower 𝜇𝑅𝑅) is observed, even when compared with the initial
baseline phase, although statistical significance is not reached.
Similar trends are observed for 𝜎2𝑅𝑅, although the observed differ-
ences are not statistically significant. Nonetheless, this describes
a more consistent and stable pattern of RR interval distribution
during phases of increased task demand, as indicated by the
narrower range depicted in the boxplots in Fig. 3. Furthermore,
the RR spectral power in the whole band (RRTOT) and in the
very low frequency range (RRVLF) demonstrate a statistically
significant decrease in the high demand phase compared to the
baseline (Table 1). No statistically significant differences were
observed in the other ECG spectral features.

• EEG: As shown in Table 1, the spectral power of the more relevant
frequency bands (i.e., 𝛼, 𝛽, 𝜃) demonstrates a pronounced increase
during the two task demand phases compared to the baseline,
within both parietal (P) and frontal (F) regions. The attention
index 𝛽/𝜃 displays a significant increase during the low task de-
mand phase compared to the baseline in both regions, whereas it
significantly increases in the high task demand phase compared to
the baseline only in the parietal region. Furthermore, the measure
of cognitive engagement 𝛽/𝛼 experiences a substantial increase in
both low and high task demand phases compared to the baseline
(Table 1). However, no statistically significant differences in EEG
features between the two task demand phases are observed.
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Table 1
Median and median absolute deviation of the features extracted from physiological signals in the Baseline (B), low (L), and high (H) task
demand windows. Statistically significant differences are reported in the last column. Further details on the statistical analysis are reported in
Table A.2 in the Appendix.

B L H *

ECG

𝜇𝑅𝑅 [s]10−2 84.60 (9.44) 83.60 (8.81) 81.80 (8.53) L-H
𝜎2
𝑅𝑅 [s2] * 10−3 0.88 (0.79) 0.80 (0.63) 0.62 (0.61) –

RRTOT [s2] * 10−2 0.46 (0.63) 0.36 (0.19) 0.21 (0.17) B-H
RRVLF [s2] * 10−2 0.13 (0.56) 0.15 (0.14) 0.07 (0.09) B-H
RRLF [s2] * 10−3 0.90 (1.40) 0.62 (0.97) 0.79 (0.78) –
RRHF [s2] * 10−3 0.41 (0.60) 0.42 (0.32) 0.31 (0.37) –
RRLFn 0.63 (0.15) 0.57 (0.12) 0.54 (0.17) –
RRHFn 0.37 (0.15) 0.43 (0.12) 0.34 (0.13) –
RRLFtoHF 2.45 (3.31) 1.71 (1.62) 2.67 (2.06) –

EEG

PSD 𝛼 F * 10−2 2.07 (2.35) 4.97 (3.21) 4.25 (2.81) B-L,B-H
PSD 𝛽 F * 10−2 2.03 (3.45) 14.07 (7.92) 7.55 (7.84) B-L,B-H
PSD 𝜃 F * 10−2 7.80 (3.32) 11.40 (2.84) 11.04 (3.57) B-L
PSD 𝛼 P * 10−2 2.48 (3.27) 6.41 (4.28) 4.84 (4.09) B-L,B-H
PSD 𝛽 P * 10−2 2.48 (4.39) 11.98 (7.54) 10.99 (7.53) B-L,B-H
PSD 𝜃 P * 10−2 8.89 (3.55) 11.97 (3.21) 11.18 (3.72) –
𝛽/𝜃 F 0.11 (0.74) 1.01 (0.81) 0.97 (1.51) B-L
𝛽/𝜃 P 0.20 (0.48) 0.94 (0.60) 0.50 (0.69) B-L,B-H
𝛽/𝛼 F 0.59 (1.79) 1.75 (1.24) 1.56 (2.70) B-L,B-H
𝛽/𝛼 P 0.56 (0.88) 1.56 (0.56) 1.41 (0.86) B-L,B-H

GSR

Avg amplitude peaks [μS] * 10−2 1.73 (4.85) 2.51 (5.41) 0.36 (5.69) –
Sd Amplitude peaks [μS] * 10−2 1.50 (5.83) 2.21 (6.79) 0 (8.61) –
Avg rise time [s] 0.82 (0.57) 0.82 (0.44) 0.63 (0.59) –
Avg recovery time [s] 2.38 (3.13) 3.17 (5.27) 1.95 (2.43) –
N peaks 2 (2.60) 2 (3.30) 1 (2.77) –
Avg GSR [μS] 1.81 (2.13) 2.12 (2.22) 1.40 (2.32) B-L,L-H
Env [μS] * 10−2 1.88 (3.78) 2.27 (4.25) 0.67 (4.97) L-H

BVP

VA [a.u.] 4.88 (1.89) 5.82 (2.11) 3.99 (1.73) B-H,L-H
PAT [s] * 10−2 29.96 (1.93) 30.21 (1.95) 29.13 (1.93) L-H

RESP

𝜇𝑅𝐸 𝑆 𝑃 [a.u.] 31.07 (3.25) 31.30 (3.39) 31.39 (3.54) B-H,L-H
𝑅𝑆 𝐴𝐻 𝐹 [a.u./ms] 1.85 (2.60) 4.25 (3.03) 2.78 (2.03) –
𝑅𝐸 𝑆 𝑃𝐻 𝐹 [a.u.2] * 10−3 0.35 (1.65) 0.48 (12.20) 0.45 (0.93) –
𝐶 𝑂 𝐻𝐻 𝐹 0.55 (0.11) 0.60 (0.11) 0.68 (0.10) –
𝑓 𝑚𝑎𝑥𝐻 𝐹 [Hz] 0.31 (0.05) 0.30 (0.04) 0.32 (0.04) –

PUPIL

AVD [mm] 2.94 (0.36) 2.99 (0.30) 3.04 (0.26) –
SDD [mm] 0.22 (0.10) 0.17 (0.03) 0.17 (0.07) B-L,B-H
DLF [mm2] 0.92 (3.33) 0.41 (0.23) 0.28 (0.10) B-L,B-H
DHF [mm2] 0.78 (1.25) 0.55 (0.37) 0.50 (0.38) –
DVHF [mm2] 0.49 (0.50) 0.28 (0.18) 0.29 (0.34) B-L
DLFtoHF 0.98 (1.20) 0.63 (0.48) 0.58 (0.29) B-L,B-H
• GSR: For most of the features extracted from the GSR signal, no
statistically significant differences are observed across the three
phases. A noteworthy exception lies in the mean value of the
signal (Avg GSR) within the three time windows. Specifically,
this value is markedly higher during the low task demand phase
compared to the other two phases, and lower in the high task
demand phase compared to the baseline. A similar pattern is
observed in the Env feature, portraying the envelope of the phasic
component of the signal. In general, more conventional GSR
features, such as the number and amplitude of peaks (e.g., 𝑁
peaks and Avg amplitude peaks) show trends that are aligned with
those of Avg GSR and Env, collectively indicating an increased
GSR during the low task demand phase compared to the high task
demand phase.

• BVP: Notably, the two features (i.e., VA and PAT) extracted from
the BVP signal show statistically significant differences between
the low and high task demand phases. Specifically, lower values
of VA and PAT during the high task demand phase are observed
compared to the baseline and to the low task demand phase. VA
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is especially noteworthy, as the majority of subjects (18 out of 21)
exhibit a consistent trend between the low and high task demand
phases, as illustrated in Fig. 3.

• RESP: The average breath amplitude (𝜇RESP) exhibits a signif-
icant increase during the high task demand phase. Specifically,
this feature, following VA and Avg GSR (3 out of 21 subjects
each), stands out as having one of the smallest numbers of sub-
jects (4 out of 21) displaying a trend opposite to the average
pattern. This emphasizes its ability to discriminate physiologi-
cal responses across different task demand phases. Specifically,
at high task demand, subjects tend to engage in more intense
and more closely spaced breaths. However, the observed inter-
individual changes are very small (Fig. 3). The remaining RESP
features (i.e., 𝑅𝐸 𝑆 𝑃𝐻 𝐹 , 𝐶 𝑂 𝐻𝐻 𝐹 and 𝑓 𝑚𝑎𝑥𝐻 𝐹 ) do not demon-
strate remarkable differences across all three phases, except for
𝑅𝑆 𝐴𝐻 𝐹 . This parameter, representing an estimate of the vagal
tone (i.e., respiratory sinus arrhythmia), displays a higher median
value during the low and high task demand phases, although the
observed differences are not statistically significant.
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Fig. 3. Boxplots of the features that showed statistically significant differences between low task demand (L) and high task demand (H) phases (𝜇RR, Env, PAT, Avg GSR, VA and
𝜇RESP). In each plot above, the means for the features divided by L and H are reported. Dotted lines connect data points from the same subjects. The up and down arrows next
to the boxplots indicate whether the trend for each feature is increasing or decreasing in either of the task demands. The expected trends are highlighted in black, while opposite
trends are shown in red. In the bottom right, the number of subjects out of a total of 21 who follow the trend is indicated. Statistically significant differences are marked with *
(p < 0.05) and ** (p < 0.01) (color online; b/w in print).
• PUPIL: The PUPIL-amplitude related metrics (i.e.,AVD and SDD)
seem to be related to no significant distinction between the two
task demand phases (Table 1), with SDD showing a trend towards
lower values during SNT execution compared to the baseline.
Regarding frequency-related metrics (i.e., 𝐷 𝐿𝐹 , 𝐷 𝐻 𝐹 , 𝐷 𝑉 𝐻 𝐹
and 𝐷 𝐿𝐹 𝑡𝑜𝐻 𝐹 ), spectral power consistently shows lower levels
during the two test phases compared to the baseline, with no
significant differences between the two task demand phases.

Fig. 4 panel (a) depicts the features that demonstrate statistically
significant differences between high and low task demand phases, with
the fewest number of subjects exhibiting opposite trends, using 3D
boxes. These features include one cardiovascular measure (VA) and
two autonomic measures (𝜇RESP and AVG GSR). In panel (b), 3D
boxes are presented to illustrate one representative feature from each
domain: cardiovascular (VA) and autonomic (AVG GSR), and central
(𝛽/𝜃 P). VA and AVG GSR showed statistically significant differences
between low and high task demand. Regarding the central domain,
𝛽/𝜃 P was selected because it showed significant differences between
baseline and each of the two task demand conditions and because it is
an interpretable measure of attention. Fig. 4 clearly shows that the two
examined test phases exhibit distinct physiological patterns in all the
three domains. Specifically, during the low task demand phase, several
distinct physiological changes can be observed compared to the high
task demand phase. Firstly, heightened attention in the parietal region
is evident, as indicated by the increased 𝛽/𝜃 P ratio in the parietal EEG
signal (panel (b)). Secondly, elevated autonomic arousal is observed, as
measured by the increased average galvanic skin response (AVG GSR)
feature (panels (a) and (b)). Finally, an increase in peripheral blood
volume amplitude is observed, as evidenced by the higher VA value
(panels (a) and (b)).
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4. Discussion

This study aimed at developing a novel adaptive, multi-domain pro-
tocol to assess physiological variables associated with LE as a function
of task demand in the context of a speech-in-noise recognition task.
Specifically, a validated adaptive SNT was employed and two levels of
task demand (i.e., low and high) were defined based on the individual
SRT. A large set of physiological variables reflecting the cardiovascular,
autonomic, and central domains were extracted from the ECG, EEG,
GSR, BVP, RESP, and PUPIL signals and used to address differences in
physiological responses during high and low task demand phases in a
sample of healthy normal-hearing participants.

4.1. Protocol design

The literature extensively discusses LE, defined as the conscious al-
location of mental resources to overcome challenges and achieve goals
during auditory tasks (Pichora-Fuller et al., 2016). As task demand in-
creases, the corresponding LE is expected to increase, reaching a certain
upper limit that is determined by different factors, including the indi-
vidual’s capability and the perceived importance of the task (Brehm and
Self, 1989). Moreover, LE is influenced by various aspects including,
but not limited to psychosocial considerations (Pichora-Fuller et al.,
2016) and fatigue (Hornsby et al., 2016), that is a result of sustained
effort during challenging listening tasks. Our protocol design is focused
on task demand and is inherently kept short to limit the effects of
possible fatigue and task complexity. The stimuli used in the SNT
(i.e., VCVs) consist of nonsense words and are presented in alternative-
choice task, minimizing the involvement of cognitive processes, as
opposed to more complex stimuli and tasks, e.g. open set sentence
recognition (Zekveld et al., 2013). Furthermore, the adaptive nature
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Fig. 4. 3D boxes display features associated with low task demand (L, in yellow) and high task demand (H, in red) phases. Panel (a) presents the features showing the most
consistent trends across subjects: cardiovascular (VA) and autonomic (𝜇RESP and AVG GSR), which demonstrated significant differences between demand levels with minimal
individual variability. Panel (b) illustrates one representative feature from each physiological domain: cardiovascular (VA), central (𝛽/𝜃 P), and autonomic (AVG GSR). The boxes
are constructed by centering the rectangles around the coordinates of the corresponding median values, with the length of the sides of the rectangles set equal to the median
absolute deviation. (color online; b/w in print).
of the protocol, including both SNT execution based on individual
responses and task demand definition based on the individual SRT,
ensures that it aligns with the subject’s speech recognition performance,
preventing it from becoming overly challenging and prone to errors,
which may be observed when the task becomes too demanding in
relation to the individual’s motivation to engage in the test. The distri-
butions in Fig. 1 are consistent with the increase in task difficulty in the
high task demand window compared to the low task demand window
as the individual performance is substantially worse (lower percentage
of correct responses observed in all participants) and that participants
need more time to execute the task (higher reaction times in most of the
participants, which may be considered an indirect indicator of possibly
increased LE).

4.2. Physiological responses

The outcomes presented in Section 3 reveal a consistent pattern
across signals and features indicating a substantial rise in sympathetic
activation (heightened physiological arousal) during the high task de-
mand phase as shown, e.g., by an increase in GSR amplitude-related
features and heart acceleration and demonstrate distinct physiologi-
cal responses that can be differentiated based on each subject’s SRT,
even across a range of SNRs within both low and high demand time
windows. While the previous observation answers to the first research
question of this study, the analysis of the indicators that can help
better discriminate LE in different task demand windows, as measured
through the proposed protocol, are discussed in detail in the following
sections.

4.2.1. ECG and RESP
Looking at the cardiovascular assessment, time-domain features

such as 𝜇RR, VA, and PAT were effective in distinguishing high from
low task demand. Specifically, 𝜇RR, representing the average interval
of the modeled RR series, significantly decreased during the high task
demand phase, indicating an acceleration in heartbeat during the most
challenging phase of the test. A similar trend is evident in the PAT
feature, representing the time between an R-peak and the onset of the
corresponding BVP signal, signifying an acceleration of the pressure
wave from the heart to the periphery—a reflection of sympathetic
activation related to high task demand. The VA feature showed a
similar pattern and decreased in 18 out of 21 participants in the high
task demand phase, highlighting its role as a robust physiological
variable describing task demand in auditory tasks. VA denotes the
amplitude modulation of the BVP signal, representing the volume
9 
of blood on the periphery. A lower BVP amplitude value is linked
to greater arterial blood pressure (Tusman et al., 2018), associated
with vasoconstriction. The frequency-domain features extracted from
the ECG signals show trends that are overall aligned with the in-
creased sympathetic activation suggested by the time-domain features
(e.g., lower RRVLF, lower RRTOT, and higher RRLFtoHF), although,
no statistically significant differences were observed. Specifically, total
spectral power (RRTOT) can be considered indicative of heart rate
variability, generally associated with healthy parasympathetic driven
activation, and RRLFtoHF is related to the sympathovagal cardiac
balance whereas the interpretation of RR VLF remains a subject of
debate, requiring further clarification. As seen in our study, certain
research connects RR VLF power with parasympathetic activity (Taylor
et al., 1998). Interestingly, here we observe a decrease in RR VLF power
during the high task demand phase, akin to RRTOT. Overall, from a
cardiovascular standpoint, these findings consistently suggest that the
high task demand phase is characterized by heightened sympathetic
activation compared to the low task demand phase.

A peculiar aspect of this study is the introduction of the point
process paradigm, a novel approach in the field of LE research. The
point process enables real-time tracking of HRV indices, overcoming the
usual limitations associated with their calculation using conventional
algorithms in windows shorter than 5 min (Sassi et al., 2015). Prior
studies have demonstrated that time- and frequency-domain charac-
teristics derived from ECG and BVP signals through point process
analysis can proficiently differentiate physiological reactions during
brief auditory and auditory/visual tasks based on arousal and va-
lence (Polo et al., 2024b), within time frames shorter than those
investigated in this study (e.g., 45 s). Granting the opportunity to
devise shorter protocols is essential to avoid conflating effort with
fatigue and to ensure real-time assessment of physiological responses,
for example using the adaptive SNT here used. Citing existing literature,
the use of HRV measures in investigating LE is commonly limited
and frequently falls short in distinguishing between HRV variables
and levels of task demand (Mackersie and Cones, 2011; Francis et al.,
2021; Cvijanović et al., 2017). In literature, the predominant feature
often employed is the average heart rate of a small number of beats.
The cardiovascular analysis conducted in our study emphasizes the
significance of addressing features that are typically not addressed in
literature. For example, the VA is sensitive to changes in task demand
and requires straightforward instrumentation (a photoplethysmograph)
and, as such, it can be used as a plausible alternative to the more
extensively validated Pre-Ejection Period (Slade et al., 2021; Richter,
2016), a measure well-documented in literature but more intrusive
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in terms of instrumentation. Moreover, features related to respiratory
nd cardiorespiratory coupling indicated a trend towards a slight in-
rease in breath amplitude (as indicated by 𝜇RESP) and an increase
n respiratory frequency (as indicated by 𝑓 𝑚𝑎𝑥𝐻 𝐹 ) with increased task
emand, suggesting that participants demonstrated a tendency to take
arger and more closely spaced breaths in high task demand scenarios.
n addition, the analysis of RSA using the bivariate point process
ramework indicated a trend towards a higher median value in the low
ask demand phase suggesting an augmented vagal activation (Bernston

et al., 1997). Respiration is commonly overlooked as a biomarker for
assessing listening effort. Among the few studies that do investigate the
influence of breathing, significant outcomes are seldom achieved (Slade
et al., 2021). Furthermore, the respiratory signal itself is frequently
not directly examined. Instead, attention is directed towards the power
f respiration within the RR signal spectrum, which has been demon-

strated to be a pertinent feature reflecting parasympathetic nervous
system withdrawal during increased speaking rates, albeit exclusively
in subjects with hearing impairment (Mackersie et al., 2015; Mackersie
nd Calderon-Moultrie, 2016). Through the bivariate point process here
sed, it became feasible to sample the respiratory signal alongside the

cardiac rhythm and perform real-time tracking of its amplitude and
requency in short time windows, highlighting the ability of the related
eatures to assess LE as a function of task demand.

4.2.2. GSR and EEG
Concerning GSR, the literature suggests its utility as a measure of

arousal, even at the auditory level, as features related to GSR amplitude
tend to exhibit an increase with increasing task demand (Mackersie and

ones, 2011; Mackersie and Calderon-Moultrie, 2016). Nonetheless,
nconsistent findings were reported in literature, for example variability
n the behavior of GSR between sessions and limited sensitivity to
hanges in task demand were observed (Giuliani et al., 2020; Holube

et al., 2016). In our study, the findings observed by analyzing the
SR signal diverge from those observed from the analysis of other

ignals, indicating less consistency in defining heightened sympathetic
ctivation during high task demand phases. Interestingly, both Avg GSR
nd Env, (representing the average amplitude of the GSR signal and the
nvelope of the GSR phasic component, respectively), are significantly
igher during the low task demand phase. This observation gains
lucidation through the analysis of features derived from EEG. Despite
he reported association of the alpha band with heightened LE (Obleser
t al., 2012; Seifi Ala et al., 2020), EEG features proved unable to distin-
uish between the two test phases in this study. However, the spectral
ower of the more relevant frequency bands (i.e., 𝛼, 𝛽, 𝜃) demon-
trates a pronounced increase during the two task demand phases

compared to the baseline, suggesting higher activation during the SNT
task compared to the baseline. Nevertheless, as shown in Table 1
and Fig. 4, higher attention and engagement indices are observed
during the low task demand phase. This physiological response pattern
aligns with attention theory, particularly Lacey’s theory (Lacey et al.,
1963). According to this theory, tasks demanding focused attention
typically result in a decrease in heart rate (as indicated by 𝜇RR in
Table 1), often accompanied by an increase in GSR, as consistently
observed in Table 1. This is evident, for instance, in features such as

vg Amplitude peaks, Avg GSR, and ENV, which exhibit higher values
uring periods of low task demand. This heart rate deceleration is a
esponse to environmental stimuli demanding attention, such as the
erception of visual or auditory stimuli (Lacey and Lacey, 1970). The
levated attention and engagement indices observed during the low
ask demand phase indicate heightened attentiveness and involvement.
his may be related to a superior comprehension of stimuli compared
o the high task demand phase, where understanding stimuli in noise
ecomes more challenging.
10 
4.2.3. PUPIL
The pupillary signal stands out as one of the most accepted mea-

ures for studying LE, with pupillary dilation associated with task
emand (Koelewijn et al., 2012; Haro et al., 2022). In this case our

study did not yield statistically significant changes in features derived
from the PUPIL signal, but revealed a gradual increase in median
values with increasing task demand as shown in Table 1. Compared
to the literature, this unexpected result can be explained considering
that the pupillary data analysis employed a window-based approach,
which included both the listening and response phases, rather than
the trial-by-trial analysis commonly used in pupillary studies. Also,
espite task-evoked changes in pupil size for intermediate tonic levels

are independent of baseline pupil size, it remains standard practice
to use a baseline-subtracted absolute pupil size as effort indicator,
choosing as baseline a time period that goes from 100 ms to 2 s
efore the stimulus onset (Winn et al., 2018). These choices were made
ecause the duration of SNT trials is insufficient to observe both a
upillary peak and a return to baseline, and to maintain consistency
ith the analysis of other physiological signals. However, this approach
ay limit the direct comparability of our pupillary findings with some
revious studies.

In this particular context, the observation becomes relevant as we
elve into the efficacy of less intrusive variables derived from BVP and
SR signals, which have contributed significantly to a more nuanced
ssessment of LE and can be measured with simpler sensors than more
idely used measures found in literature, such as EEG and pupillary

ignals. Unfortunately, the intricate nature of LE in complex auditory
asks likely contributes to the absence of consensus in literature re-
arding the optimal selection of physiological measures. What sets this
tudy apart is the exploration of two distinct levels of task demand,
ystematically monitoring a diverse array of physiological signals to dis-
ern their patterns. Nevertheless, the complex interplay between task
emand, physiological responses, and cognitive engagement introduces
n additional layer of complexity. While heightened task demand is
onventionally associated with increased sympathetic activation, it may
imultaneously lead to diminished attention and engagement, initiating
 trade-off phase as delineated by motivation theory (Pichora-Fuller

et al., 2016). Subjects in this phase strategically evaluate their cognitive
esources to determine whether to escalate effort or concede due to
he perceived demand of the task. This dynamic process may, in turn,
esult in reduced attention when subjects do not fully comprehend all
resented stimuli.

4.3. Implications, limitations, and future research

BVP and GSR are recorded in continuous time and non invasively,
therefore any setup using features extracted from these signals can
e easily translated into simple setups (using, for example, wearable
ensors) that assess and monitor LE as a function of task demand. The
se of an adaptive protocol such as the one introduced here allows for
E monitoring in real time, so that task demand can be defined quickly
nd in a personalized way as a function of individual auditory ability.
s such, the adaptive protocol here employed can help limiting the
umber of stimuli that become too easy or too difficult to recognize
nd ensures that the task remains challenging but not overly diffi-

cult, reducing the likelihood of participants becoming overwhelmed
or disengaged. This can be particularly helpful when individuals with
varying speech recognition performance are tested including, for exam-
le, individuals with hearing loss. Anchoring the physiological analysis

windows to each subject’s individual SRT allows for a fair comparison
of low vs. high demand listening across conditions and individuals. This
approach can be applied to compare different acoustic backgrounds
or other experimental manipulations in future studies, as long as an
adaptive procedure is used to estimate SRT in each condition. By
comparing the physiological effects of high vs. low demand listening

relative to the condition-specific SRT, researchers can investigate how
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Table A.1
The Table reports for each subject, from 1 to 21, the number of trials in the low task demand window (trials𝐿) and high task demand window
(trials𝐻 ), the mean dB SNR in the two windows (snr𝐿 and snr𝐻 , respectively), the average STOI value [%] of the stimuli in the two windows
(STOI𝐿 and STOI𝐻 , respectively), and the individual SRT measured by the adaptive speech-in-noise test.

Subject trials𝐿 (n.) trials𝐻 (n.) snr𝐿 (dB) snr𝐻 (dB) STOI𝐿 (%) STOI𝐻 (%) SRT (dB)

1 24 28 −4.18 (6.43) −17.16 (1.68) 78.24 (11.29) 49.87 (3.02) −17.25
2 17 17 −10.26 (1.55) −16.09 (1.73) 65.09 (3.98) 53.12 (3.29) −15.25
3 21 18 −2.99 (5.98) −12.31 (1.88) 80.48 (10.22) 60.99 (5.18) −11.25
4 24 24 −4.18 (6.43) −18.72 (2.11) 78.24 (11.29) 47.42 (3.74) −16.00
5 17 17 −2.57 (5.49) −11.29 (0.92) 81.56 (9.06) 63.75 (3.69) −11.00
6 25 24 −11.19 (2.50) −19.02 (1.19) 64.28 (5.34) 46.86 (2.59) −18.75
7 24 18 −4.18 (6.43) −19.28 (2.80) 78.24 (11.29) 46.88 (5.42) −17.25
8 12 12 0.83 (5.16) −8.48 (1.58) 87.60 (7.33) 73.36 (3.92) −8.00
9 31 28 −5.64 (6.29) −17.56 (2.23) 75.28 (11.61) 50.03 (4.04) −14.75
10 15 15 −9.03 (1.99) −16.27 (1.13) 68.68 (5.15) 53.00 (2.80) −14.75
11 24 23 −4.18 (6.43) −16.52 (1.08) 78.24 (11.29) 51.56 (2.75) −16.25
12 21 20 −2.99 (5.98) −15.79 (1.64) 80.48 (10.22) 54.39 (4.16) −14.50
13 24 20 −4.18 (6.43) −18.31 (2.05) 78.24 (11.29) 47.46 (3.86) −15.25
14 24 23 −4.18 (6.43) −19.49 (2.03) 78.24 (11.29) 46.18 (3.56) −18.00
15 24 24 −4.18 (6.43) −17.39 (1.24) 78.24 (11.29) 50.61 (2.80) −16.50
16 13 12 −3.63 (2.43) −10.90 (1.49) 81.59 (5.43) 67.06 (3.92) −9.50
17 20 19 −6.46 (4.05) −17.09 (1.66) 74.67 (8.40) 50.93 (3.22) −16.50
18 18 17 −12.50 (3.49) −21.90 (2.24) 59.75 (7.86) 42.70 (3.54) −19.25
19 21 20 −9.18 (2.59) −16.55 (1.47) 68.79 (6.37) 51.96 (3.43) −14.75
20 33 33 −7.11 (3.52) −17.31 (0.98) 74.34 (7.11) 50.58 (3.08) −17.25
21 24 22 −4.18 (6.43) −19.00 (1.56) 78.24 (11.29) 47.07 (3.46) −17.75
p
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different conditions influence physiological processes associated with
E while accounting for individual differences in performance. How-
ver, it is important to acknowledge that the observed physiological
esponses may vary depending on the specific manipulations employed,
nd future research should explore the generalizability of this protocol
cross different experimental contexts.

Notwithstanding the encouraging results, this study has some limi-
tations. For example, in this study the slope of the speech recognition
unction was not considered when defining task demand conditions

due to difficulties in estimating slope from short adaptive procedures
such as the one here used. However, slope is a factor that potentially
influences LE. While this likely does not impact comparisons among
normal-hearing participants, it limits our ability to generalize findings
across studies and prevents a full assessment of how auditory stimuli
located different points along the psychometric curve may affect LE.
This gap could be explored in future studies through the analysis
f physiological responses on multiple SNR levels that could allow
 reliable computation of slope and a deeper investigation on its
nfluence on the relationship between task demand and LE. Moreover,
nly individuals with normal hearing were involved. Further research

involving a larger sample of participants, including both individuals
with normal hearing and with varying degrees of hearing impairment,
would be important to address more specifically the ability of the
proposed protocol to capture different levels of task demand on an
ndividual basis, further validating the features here identified. More-

over, in this study LE was assessed only during an adaptive SNT using
CV stimuli, and task demand was defined based on SNR criteria only,

hus lacking to simulate an ecological condition e.g., conversational
stimuli, real-world LE conditions that would be more appropriate for
LE characterization. Specifically, other strategies for manipulating LE,
including both task demand manipulation (e.g., speech distortions,
competing speech, simulated three-dimensional challenging listening
conditions) and motivation (e.g., inclusion of reward mechanisms) need
to be further investigated in order to more accurately assess the ability
of features extracted from physiological signals to characterize LE in
arying listening conditions and in individuals with varying hearing

abilities. Also, different kinds of stimuli, such as sentences or words,
should be used in future studies to acquire responses that better reflect
cological, real-world speech processing. In addition, in this study the
EG signal was analyzed only using spectral features summarizing brain
ctivity in the whole temporal window. Further investigation of the
EG signal, using features able to capture the time-varying nature and

he spatial distribution of cortical responses, may help define further,

11 
more specific, real-time measures of LE, potentially reaching a lower
temporal resolution and thus potentially addressing the responses to
single stimulus presentation trials. Regarding pupillary response, future
research could explore alternative analysis approaches that combine
trial-by-trial pupillary analysis with window-based analysis of slower
physiological signals to further refine our understanding of listening
effort.

Moreover, the current protocol involves a degree of ‘‘a posteriori’’
processing, as the physiological comparison windows are selected after
the individual’s SRT is measured and the adaptive procedure is com-
leted. This introduces a slight delay compared to a fully real-time sys-
em. Future work should strive towards developing real-time processing
ethods that can assess listening effort on a moment-by-moment basis,
ithout the need for post-hoc analysis. Such advancements would
nable researchers and clinicians to monitor and respond to changes

in listening effort more quickly and effectively. Nevertheless, the key
principles demonstrated in this study, such as using individualized
performance metrics and strategic window selection, provide valuable
nsights that could inform the development of real-time systems in the
ear future. In addition, the ability of exploring physiological responses
n short time windows, aided by smart advanced algorithms like point
rocess modeling, enables the application of adaptive machine learning
odels that can differentiate LE levels, aligning with other assessments
sed to investigate stress (Xu et al., 2015), emotions (Polo et al.,

2024a), and cognitive load (Liu et al., 2023). Overall, this fusion of
signals from wearable sensors with machine learning holds signifi-
cant promise for scientific advancements in practical applications, for
example for future real-time optimization of human–machine inter-
action or for devising novel strategies for adapting the hearing aid
to the individual LE, in addition to the individual auditory profile.
Towards the development of systems for physiologically-driven con-
trol of human–machine interfaces, further analysis of rapid responses
(e.g., EEG, pupillary response) on a trial-by-trial basis will be important
to identify measures able to monitor LE in real time.

Another peculiar aspect of the study lies in the non-randomized
ature of the task demand phases due to the adaptive SNT design, with
he low task demand phase typically preceding the high task demand

phase. This choice was aimed at limiting the possible influence of
increased arousal in the high difficulty phase on physiological responses
in low difficulty phases . The adaptive and continuous nature of the
test, designed to be as short as possible, does not include a baseline
phase separating the two difficulty windows and the same baseline

was used to identify changes in physiological features in the low and
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Table A.2
Median and median absolute deviation of the statistically significant features extracted from physiological signals in the Baseline (B), low (L),
and high (H) task demand windows. Statistical significance is determined at the 0.05 level. Statistically significant differences are reported in
the third column. The fourth column shows the p-values related to the comparisons, and the fifth describes the test performed: 0 if ANOVA
and 1 if the Friedman’s test.

B L H * p ANOVA/Friedman

ECG

𝜇𝑅𝑅 [s]10−2 84.60 (9.44) 83.60 (8.81) 81.80 (8.53) L-H 0.03 0
RRTOT [s2] * 10−2 0.46 (0.63) 0.36 (0.19) 0.21 (0.17) B-H 0.01 1
RRVLF [s2] * 10−2 0.13 (0.56) 0.15 (0.14) 0.07 (0.09) B-H 0.02 1

EEG

PSD 𝛼 F * 10−2 2.07 (2.35) 4.97 (3.21) 4.25 (2.81) B-L,B-H e–4,0.04 1
PSD 𝛽 F * 10−2 2.03 (3.45) 14.07 (7.92) 7.55 (7.84) B-L,B-H e–4,0.001 1
PSD 𝜃 F * 10−2 7.80 (3.32) 11.40 (2.84) 11.04 (3.57) B-L 0.03 0
PSD 𝛼 P * 10−2 2.48 (3.27) 6.41 (4.28) 4.84 (4.09) B-L,B-H 0.002,0.02 0
PSD 𝛽 P * 10−2 2.48 (4.39) 11.98 (7.54) 10.99 (7.53) B-L,B-H 0.001,0.03 1
𝛽/𝜃 F 0.11 (0.74) 1.01 (0.81) 0.97 (1.51) B-L 0.01 1
𝛽/𝜃 P 0.20 (0.48) 0.94 (0.60) 0.50 (0.69) B-L,B-H 0.002,0.006 1
𝛽/𝛼 F 0.59 (1.79) 1.75 (1.24) 1.56 (2.70) B-L,B-H 0.03,0.01 1
𝛽/𝛼 P 0.56 (0.88) 1.56 (0.56) 1.41 (0.86) B-L,B-H 0.01,0.04 0

GSR

Avg GSR [μS] 1.81 (2.13) 2.12 (2.22) 1.40 (2.32) B-L,L-H 0.01,0.003 1
Env [μS] * 10−2 1.88 (3.78) 2.27 (4.25) 0.67 (4.97) L-H 0.009 1

BVP

VA [a.u.] 4.88 (1.89) 5.82 (2.11) 3.99 (1.73) B-H,L-H 0.01,e–4 0
PAT [s] * 10−2 29.96 (1.93) 30.21 (1.95) 29.13 (1.93) L-H 0.003 0

RESP

𝜇𝑅𝐸 𝑆 𝑃 [a.u.] 31.07 (3.25) 31.30 (3.39) 31.39 (3.54) B-H,L-H e–5,0.01 1

PUPIL

SDD [mm] 0.22 (0.10) 0.17 (0.03) 0.17 (0.07) B-L,B-H e–4,0.02 0
DLF [mm2] 0.92 (3.33) 0.41 (0.23) 0.28 (0.10) B-L,B-H 0.003,0.003 1
DVHF [mm2] 0.49 (0.50) 0.28 (0.18) 0.29 (0.34) B-L 0.03 0
DLFtoHF 0.98 (1.20) 0.63 (0.48) 0.58 (0.29) B-L,B-H 0.003,e–4 0
a
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high task demand windows. As such, the current design helped limit
he effect of the test sequence on physiological responses by presenting
he low task demand phase first, as the experience of struggling with
peech understanding is undoubtedly stimulating and would likely
nfluence the subsequent low demand phase if presented in reverse
rder. Future investigations should explore randomized task demand
onditions, including baseline phases between the two difficulty lev-
ls, and assess the potential impact of the fixed sequence on specific
hysiological features to ensure the robustness and generalizability of
he results. It should be clarified that the protocol’s design, specifically
ts focus on task demands and VCV stimuli, resulted in the exclusion
f certain factors from the experimental evaluation, such as cognitive
oad and motivation. These factors are important for a comprehensive
nderstanding of listening effort responses and should be addressed in
uture research.

5. Conclusion

The present study delves into six distinct autonomous and central
hysiological responses whose information is carried by specific signals
uch as EEG, GSR, ECG, RESP, PUPIL, and BVP. The objective is to
onstruct a physiological framework tied to variations in task demand
ithin an adaptive speech-in-noise test. The fast execution and simplic-

ty of the test sought to alleviate the onset of fatigue and focus solely on
he examination of the task demand component. Notably, there was a
arked consistency among physiological signals indicating an increase

n sympathetic response during the high task demand phase evident,
or example, in heightened heart rate, blood pressure, and breath
mplitude. In summary, BVP volume amplitude and point process-
erived breath amplitude, emerge as the most discriminative features
etween the two test phases, whereas the GSR signal, typically linked
o arousal, points at heightened attention during the low task demand
hase, complemented by increased engagement, also supported by the
12 
analysis of spectral features extracted from EEG signals. As a final over-
rching message, this investigation highlights the centrality of having
o assess a person’s attentive state in order to understand physiological
esponses, particularly when exploring effort exertion during listening.
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Appendix

See Tables A.1 and A.2.
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