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Abstract: The probability of gas escapes from steel pipelines due to different types of corrosion
is studied with real failure data from an urban gas distribution network. Both the design and
maintenance of the network are considered, identifying and estimating (in a Bayesian framework) an
elementary multinomial model in the first case, and a more sophisticated non-homogeneous Poisson
process in the second case. Special attention is paid to the elicitation of the experts’ opinions. We
conclude that the corrosion process behaves quite differently depending on the type of corrosion,
and that, in most cases, cathodically protected pipes should be installed.

Keywords: analytic hierarchy process; Poisson process; reliability of gas distribution networks

1. Introduction

This paper deals with the assessment of the probability of gas escape (hereinafter
referred to as “failure”) from the steel pipelines in a gas distribution network, in order to
support the estimation of its dependability and to the implementation of the maintenance
and renewal policy. The problem of the failure analysis of pipelines, especially due to
corrosion, has been the subject of several studies in the literature, especially in engineering.
For example, ref. [1] considered corrosion in offshore and onshore oil and gas pipelines, and
used a numerical analytical approach based on first-order reliability method and Monte
Carlo simulation to assess uncertainty. Ref. [2] used numerical and analytical methods
for limit state functions, with a particular interest in burst limit pressures, considering
their relevance for oil and gas standards. The assessment of burst pressure standards
for a pipeline was also considered in [3], using numerical analysis methods like finite
elements and applying them to Algerian data. Our approach differs from those, since
we are adopting a statistical approach based on stochastic models. Probabilistic methods,
including those based on the Bayesian approach, have been used in the field. Indeed,
stochastic modeling of consequences of corrosion of materials is an important aspect
of structural reliability analysis, which has attracted a significant interest, especially in
engineering. There are works on corrosion in reinforced concrete components, where our
approach might be adapted and applied. Ref. [4] studied the reliability over the design life
of a reinforced concrete beam, while ref. [5] was interested in corrosion-induced cracks,
and applied advanced Bayesian simulation techniques, based on Hamiltonian Markov
chain Monte Carlo methods. The importance of those studies is evident in [6], where the
authors addressed the issue of the behavior of the reinforced concrete when subject to
seismic events.

Furthermore, the corrosion process is a particular example of degradation, another
field of reliability with rich literature, including books like [7] and applications like the one
in [8] about the wear of cylinder liners in ships.
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We are considering a Bayesian approach to the problem, since we are able to combine
actual data with experts’ opinions. The Bayesian approach is widely used in reliability,
with early works including the very influential book [9], followed by many others like [10],
which strongly differs from the former not only because of the new areas of application but
also because of the simulation techniques, mostly known as Markov Chain Monte Carlo,
which were developed in the last 35 years.

In the paper a case study of a urban low pressure network laid in a metropolis of
1.5 million citizens is presented. Steel pipelines have very strong mechanical properties
(failures are very rare), but they are easy prey for corrosive agents unless they are cor-
rectly protected.

After a brief description of the technical problem in Section 2, a Bayesian analysis
based only on the observed number of failures during the period 1978–1997 is presented
in Section 3. There, we focus on the probability that a failure occurs in a certain location,
and that it is due to one among various types of corrosion processes. This information
can be used as a quick reference to decide the kind of protection needed by a pipe for
design purposes.

A more detailed analysis is carried out in Sections 4 and 5, where we relate the
corrosion process to the occurrence of failures, by taking into account both the times
of occurrence of failures and the evolution of the network over time. The result is the
possibility of following the temporal evolution of the reliability of a portion of network
subject to a given corrosive agent for maintenance purposes.

In all cases, information provided by the experts is incorporated into the models
according to the Bayesian paradigm.

2. Factors Related to the Probability of Failure

In the case under examination, the number of failures of the steel pipelines due to
corrosion is very small (33 failures in the period 1978–1997 over a network of 275 km
as of 1997). The scarceness of historical data has led us to use a methodology that takes
into account all possible kinds of information. The principal source of information is the
experts’ knowledge (grown inside the company that manages the gas distribution network),
and the Bayesian framework [11] offers the tools to combine the historical data with the
corporate memory.

From the available historical data inside the company and the interviews with experts,
three principal elements that may be related to the failures of steel pipelines have been
identified: the age of the pipe, the type of corrosion that led to the rupture of pipe, and the
lay location of the pipe.

2.1. Age of the Pipe

Since corrosion is a process that develops progressively, time is an important factor of
the corrosive phenomenon. Steel pipelines are subject to an electrolytic process that tends
to reduce in thickness the walls of the pipe. Then, the pipe weakens and breaks because of
the loss of its mechanical properties, with the consequent and extremely dangerous gas
leak. Therefore, the age of the pipe, which can be correctly approximated by the lay date, is
very important, because it represents the period of time the pipe has been exposed to this
electrolytic phenomenon.

2.2. Type of Corrosion

Three types of corrosion have been determined: natural, galvanic, and by interference.
Each of them is characterized by specific causes, and develops in fully different ways. This
relates to their different relationships with the failure of the pipe.
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2.2.1. Natural Corrosion (N)

It is principally caused by the aggressive properties of the ground. For example, very
wet ground is a good conductor and, as such, facilitates the development of the electrolytic
phenomenon on the steel.

2.2.2. Galvanic Corrosion (G)

A gas distribution network is very inhomogeneous because it is made up of very
different materials (treated cast iron, spheroid graphite, traditional cast iron, polyethylene
and so on). When a steel pipe is connected to a cast iron pipe, if the insulating material,
that constitutes the principal protection of the pipe, is not perfectly efficient, a galvanic
corrosion caused by the contact of the two materials can take place. In particular, there
is a potential difference between cast iron and steel, where the latter assumes the anodic
behavior and corrodes, while the former assumes the cathodic one.

2.2.3. Corrosion by Interference (I)

This is also called corrosion by stray current, because it is due to the presence of stray
currents in the ground coming from other badly isolated electrical plants (for example,
streetcar substations or train stations). These currents discharge themselves on the steel
pipe, increasing the corrosion rate by various orders of magnitude. In other cities, other
corrosive agents also hidden in the ground can be very important (especially near the sea),
but not in the present case.

2.3. Lay Location

The propensity to a particular type of corrosion is not the same all over the city, but
changes according to the place where the pipe is laid. In fact, in some places, stray currents
in the ground are significantly higher than in other places, which increases the propensity to
a failure due to corrosion by interference. Therefore, two different areas can be determined:
zone A, characterized by the presence of streetcar substations or rail stations, and zone B,
without them.

3. Bayesian Inference on the Probability of Failure by Zone and by Type of Corrosion
3.1. Comparing the Observed Number of Failures by Zone and by Type of Corrosion

The geometry of the failures across the city is not uniform. In Section 2.3, we have
argued that the probability of a failure is higher where stray currents are present, which
especially happens near streetcar substations, rail stations, and so on.

3.1.1. Closeness of Streetcar Substations

Near streetcar substations, the trunk of negative electric cables used to feed the street-
car line is hidden underground. The streetcar-feeding current is generated in the substation,
goes through the aerial line (positive cables), and is transformed into power by the street-
car; then, it goes through the steel streetcar tracks (negative cables) to close the circuit in
the substation.

The circuit is actually closed, in the last hundred meters, by underground cables
connected to the steel streetcar tracks and to the generator of the substation. These cables
generate stray currents because of the bad isolation.

3.1.2. Closeness of Rail Stations and Lines

In the case of rail stations, the stray currents derive not only by the bad isolation of the
tracks, but also by the strong electric field coming from the passage of the train. Therefore,
the train traffic is proportional to the mean intensity of the stray currents.

In conclusion, we determined two areas: zone A, where there is a trunk of negative
electric cables used to feed the streetcar line or near rail stations or rails, and zone B, which
is all other areas.
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In order to compare the number of failures by zone, the number of observed failures
must be divided by the lengths of the gas distribution networks in zone A and in zone B,
respectively. Since this datum is unavailable, we approximate it by the area (in squared
kilometers) of the two zones.

The observed number of failures by zone and by type of corrosion per kilometer and
per year (named here “failure rate”) is summarized in Table 1.

Table 1. Failure rate by zone and by type of corrosion.

Natural (N) Galvanic (G) By Interference (I)

Zone A (12 km2) 0.583 0.083 0.500
Zone B (88 km2) 0.068 0.057 0.091

It is reasonable to expect that the “failure rate” by natural corrosion in zone A is
comparable to that in zone B, but this is not the case for the observed failures, probably
because of incorrect classifications made by the repairing teams. This will not affect the
estimate of the marginal probability that a failure occurs in zone A, whereas it will bias
the estimates of the marginal probabilities that a corrosion occurs of a given type, as well
as the estimates of some conditional probabilities. Therefore, some care must be taken in
interpreting the result, even if the misclassification bias will be partially counterbalanced
by the prior opinion of the experts.

3.2. Prior Probability Assessment: The Analytic Hierarchy Process

Experts’ prior estimates of the zone probability (from now on, we will use the short-
hand “zone probability” to stand for “probability that a failure occurs in a given zone”) have
been achieved by means of the pairwise comparison technique of the Analytic Hierarchy
Process (AHP) [12,13]. AHP is, at the same time, a useful and widely used methodology, and
a controversial one, as recognized by many authors, including the proposer [14]. Ref. [15]
presented a non-exhaustive list of 150 papers using AHP up to that time, illustrating critical
and positive aspects of the methodology.

On the positive side, AHP helps in specifying prior probabilities when the experts
are able to provide only qualitative judgments and not quantitative ones, like mean and
variance of a prior distribution. Given a set of n events, the experts are asked to compare
them pairwise, making linguistic statements about the likelihood of occurrence of one
with respect to the other. Each judgment is transformed into a number, and a square
matrix of order n is obtained with all the comparisons. The eigenvector of dimension
n, corresponding to the largest eigenvalue of the matrix, is then normalized so that its
elements sum to 1, and they represent the probabilities of occurrence of each of the n events.
Mathematical details can be found in the books mentioned earlier.

As anticipated, there are some controversial aspects about AHP. First, of all, the scale of
linguistic judgments has to be clearly specified, especially regarding the increased order of
the possible sentences. For example, all of the experts should understand that “much more
likely” means that it is less likely than “clearly more likely”. Training with simple examples
is strongly suggested so that all of the experts agree on the scale and each statement,
like that “clearly more likely” has more-or-less the same meaning for all of them. The
assignment of numbers to statements is arbitrary, from their range to the value assigned
to each judgment. The matrix could also have some inconsistencies, like values aij and
ajk assigned to comparisons between events i and j and between j and k, respectively,
but aik ̸= aijajk when comparing events i and k. Measures of inconsistency have been
proposed, as well as methods to attenuate the problem. Ref. [16] considered propensity to
gas escape in cast iron pipelines laid under different conditions, like diameter, depth, and
location. They used AHP to obtain opinions from the experts about the propensity for each
condition (eight, given that each feature was taking two possible values). They considered a
homogeneous Poisson process for the failure times, since cast iron is not subject to corrosion,
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as steel pipes, and propensity to fail can be assumed constant over time. Following the
Bayesian approach, gamma priors were considered for the parameters of the different
conditions and their parameters were chosen so that their mean and variance were given
by the sample mean and variance of the opinions of the experts. Those priors were then
validated by the company’s experts. We are taking a similar approach here.

The team of experts was formed by two technicians and two engineers: the technicians
assess the conditions of the pipes after an excavation and decide what action to take;
the engineers have an overall knowledge of the technical and information management
problems that arise inside the company.

Two types of assessments were requested: the probability of a failure in the two zones,
and the probability of a type of corrosion conditioned to the zone. All questions were
phrased in terms of relative probabilities. For example, the first one was: “In your opinion
is a failure more likely to happen in zone A or in zone B? How much more likely?”.

In order to fully exploit the answers, a linguistic judgment scale has been referred to
the numerical scale {1, 3, 5, 7, 9}, and the judgments have been used to obtain the prior prob-
ability assessment. The five degrees of the linguistic judgment scale were: “equally likely”,
“a little more likely”, “much more likely”, “clearly more likely”, “definitely more likely”.

The experts answered considering the number of failures observed and that the areas
near streetcar substations or rail stations are under close control. In spite of this, the
subjective probability of failure in zone A was assessed as about four times greater than
that in zone B.

The second part of the questionnaire regarded the comparison among the three types
of corrosion by zone. The typical question was: “In an area with (without) streetcar
substations or rail stations is it more likely to have natural or galvanic corrosion? How
much more likely?”.

From the questionnaire, P(N|A), P(G|A), P(I|A), P(N|B), P(G|B), and P(I|B) were
obtained, while the zone probabilities conditioned to the type of corrosion were derived
as follows:

P(C) = P(C|A)P(A) + P(C|B)P(B)

P(A|C) =
P(C|A)P(A)

P(C)

where C ∈ {I, N, G} and the indicated probabilities have an obvious meaning.
The prior estimates and their standard deviations are shown in Table 2.

Table 2. Subjective assessments of zone probabilities and type of corrosion.

Mean Std. Dev.

P(A) 0.7938 0.1962
P(B) 0.2063 0.1962

P(A|N) 0.6133 0.2114
P(A|G) 0.6221 0.2168
P(A|I) 0.9581 0.0574
P(N) 0.1636 0.0403
P(G) 0.2767 0.1298

3.3. Posterior Probabilities Distinguishing the Zone

So far, from the expert judgments, it has emerged that the propensity to failure due to
different types of corrosion is not the same for the two zones (in particular for the corrosion
by interference). In the next two paragraphs, we derive the posterior zone probability, both
marginal and conditioned to the type of corrosion.
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3.3.1. Zone Probability

Let us denote by p the probability that a failure occurs in zone A, so P(A) = p.
Denoting by nA the number of failures in zone A, and conditioning upon the total number
of failures n, the phenomenon is described by a binomial distribution with n trials and
parameter p,

p(nA|n, p) =
(

n
nA

)
pnA(1 − p)n−nA (1)

The Beta distribution is conjugate to the binomial, so we take p ∼ Beta(a, b) a priori,
where a and b are chosen consistently with the prior assessments in Table 2. Then, p ∼
Beta(a′, b′) a posteriori, with a′ = a + nA and b′ = b + n − nA.

The expected loss, under quadratic loss function, is minimized by the posterior mean
of p,

E(p|n, nA) = a′/(a′ + b′) = 27.460/(27.460 + 29.866) = 0.4790.

The results are compared in Table 3.

Table 3. Comparison of historical, prior and posterior mean of p.

Historical (MLE) Prior Posterior

p (zone A, 12 km2) 0.4528 0.7938 0.4790
1 − p (zone B, 88 km2) 0.5472 0.2062 0.5210

The strong influence of the streetcar substations and rail stations on the probability of
failure of the steel pipelines is confirmed a posteriori. In fact, on average, around 48% of
the failures is concentrated on 12% of the city area. The small difference between posterior
means and MLEs gives us confidence that the failures have been classified correctly by zone.

3.3.2. The Zone Probability Conditioned to the Type of Corrosion

Since the way to obtain the zone probability conditioned to the type of corrosion is the
same as the previous paragraph, here, we report only the results in Table 4.

Table 4. Comparison of historical, prior and posterior mean of p conditioned to the type of corrosion.

Historical
(MLE) Prior Mean Prior Std.

Dev.
Posterior

Mean
Posterior Std.

Dev.

P(A|N) 0.5385 0.6133 0.2114 0.5662 0.1065
P(A|G) 0.1667 0.6221 0.2168 0.4125 0.0351
P(A|I) 0.4286 0.9581 0.0574 0.6700 0.0909

3.4. Type of Corrosion: Marginal Posterior Probabilities

The progress of the electrolytic phenomenon depends strictly on the type of corrosion,
thus it is necessary to study which type of corrosion is more frequent. A corrosion of a
given type occurs according to the probabilities pI ≡ P(I), pG ≡ P(G), and pN ≡ P(N).

As in Section 3.3.1, conditional upon n, the number of failures by type of corrosion
(nI , nG, nN) has a multinomial distribution with parameters pI , pG, and pN = 1 − pI − pG.
Then, we have

p(nN , nG|n, pN , pG) =

(
n

nN nG

)
pnN

N pnG
G (1 − pN − pG)

n−nN−nG

The generalization of the Bayesian procedure followed in Section 3.3.1 is obtained by
giving a Dirichlet prior distribution to (pN , pG) (which becomes a Beta distribution when
there are only two classes),

p(pN , pG; aN , aG, aI) =
Γ(atot)

Γ(aN)Γ(aG)Γ(aI)
paN−1

N paG−1
G (1 − pN − pG)

aI−1
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where atot = aN + aG + aI , and where the hyperparameters are determined by matching
the prior mean and variances in Table 2 to those given by the model as c varies within
{I, G, N},

E(pc) =
ac

atot

Var(pc) =
ac(atot − ac)

a2
tot(atot + 1)

The posterior distribution of (pN , pG) is again Dirichlet with parameters

a′c = ac + nc c ∈ {I, G, N}
a′tot = atot + n

The comparison of the various means is reported in Table 5.

Table 5. Comparison of the historical, prior and posterior mean of pc, c ∈ {I, G, N}.

Historical
(MLE) Prior Mean Prior Std.

Dev.
Posterior

Mean
Posterior Std.

Dev.

P(N) 0.3940 0.1636 0.0403 0.2290 0.0388
P(G) 0.1818 0.2767 0.1298 0.2498 0.0400
P(I) 0.4242 0.5597 0.1565 0.5212 0.0461

Here, the posterior means differ from the MLE’s much more markedly than those
in Table 3, showing that the experts’ opinions do not agree with the classification of the
failures by type of corrosion, which reinforces our suspects of misclassifications.

4. A Model for the Occurrence of Failures
4.1. Available Data and Notation

The introduction of the age of the pipes in the analysis requires considering additional
data: the times of occurrence of the failures, the installation dates, and the lengths of
subnetworks laid in different periods. Because the network existing in 1978–1997 (the
period for which the records are reliable) is also composed of subnetworks laid very early,
the periodic growth of the network since its outset must be considered. A yearly record of
the increments in kilometers of the network is available from the gas company, regardless
of the zone, because no systematic attempt to distinguish zone A from zone B was ever
made by the company.

We set out the mathematical notation at this point, in order not to interrupt the flow
of ideas in the following. Since we are examining a corrosion process, it makes sense
to partition the networks into subnetworks whose components have been laid in the
same period (e.g., in the same year). Suppose that there are r subnetworks. Denote these
subnetworks by their installation year {si, i = 1, . . . , r} and their lengths (in kilometers) by
li. When we refer to a generic subnetwork, we index it by s only without subscript, and we
denote its length by ls.

The time of the k-th observed failure in subnetwork si is denoted by tick, where
c ∈ {I, G, N} indicates the type of corrosion that caused the failure: by interference,
galvanic, or natural. The index k ranges from 1 to nic.

The observation interval for the subnetwork is denoted by [max{T0, si}, T1], where T0
is 1 January 1978 and T1 is 31 December 1997.

4.2. Modeling a Single Failure

We build a stochastic model for the observed failures in the whole network, starting
from the modeling of the time of occurrence of a single failure. A failure in a subnetwork s
occurs as the final result of a sequence of events: first, some external intervention causes a
damage to the protection of a pipe after a random time u since the installation of the pipe;



Entropy 2024, 26, 1111 8 of 14

second, because of the damage, a corrosion process of type c, according to the location,
takes place until the failure of the pipe after a random time v, independently of u. The
actual time of failure can then be written as t = s + u + v, so that the probability density
of t is the convolution of the probability densities of u and of v. Denote these densities by
h(·|λ, ls) and g(·|Mc, βc), respectively, where the subscript c indicates the dependence of
the distribution of the corrosion time v on the type of corrosion that has taken place. The
probability density of t is then

f (t|λ, Mc, βc, ls, s) =
∫ t−s

0
g(t − s − u|Mc, βc)h(u|λ, ls) du

=
∫ t

s
g(t − z|Mc, βc)h(z − s|λ, ls) dz (2)

where we have set z = s + u.
We chose h(·|λ, ls) to be negative exponential, because the absence of damages up

to a given time does not change the probability of occurrence, i.e., the hazard function is
constant. Then,

h(u|λ, ls) = lsλe−lsλu,

where the presence of the factor ls implies that the mean time to damage is shorter for
longer subnetworks. The density of v must belong to a family of densities that allow for
increasing hazard functions, because of the presence of the corrosion process. The Weibull
family is widely used in this kind of situation, so we set

g(v|Mc, βc) = Mcβcvβc−1e−Mcvβc .

The integral in (2) cannot be solved explicitly, so we will use numerical integration
when f (·|λ, Mc, βc, ls, s) is needed.

4.3. Combining the Single Failure Models

When corrosion has led to the rupture of a pipeline section having a certain lay date si,
it is replaced by a new section. Therefore, subnetwork si becomes shorter at every rupture
event until all of its parts are substituted, hence its life span is finite. During its life, a
random number Nic of failures due to corrosion of type c occur. Conditional upon Nic, we
can regard the failure times as independent random variables, all with density (2), because
the subnetworks are large and the failures occur at different locations. In our case, Nic is
unknown, and we have observed the failures only in the interval [max{T0, si}, T1], so the
joint density function of tic = {tick, k = 1, . . . , nic} and nic must be found by averaging the
conditional density over Nic, which takes the following form, as shown in Appendix A:

f (tic, nic|Nic, λ, Mc, βc, li, si) =
nic

∏
k=1

f (tick|λ, Mc, βc, li, si)

·[1 − Dic]
Nic−nic · Nic!

(Nic − nic)!
(3)

where

Dic =
∫ T1

max{T0,si}
f (t|λ, Mc, βc, li, si) dt. (4)

Suppose now that Nic is Poisson distributed with parameter liνc, where li accounts for
the different lengths of the subnetworks, then the marginal joint density of tic and nic is

f (tic, nic|λ, Mc, βc, li, si) =
nic

∏
k=1

f (tick|λ, Mc, βc, li, si) · e−liνcDic (liνc)
nic . (5)
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In a nutshell, Equation (5) is the probability density for what is observed in the
window [max{T0, si}, T1] from a Poisson process on [si,+∞) with intensity function given
by liνc f (·|λ, Mc, βc, li, si). The fact that the intensity function decays to zero as time goes on
is an approximation of the limited life span of the subnetwork si. Of course, the marginal
distribution of nic is Poisson with parameter liνcDic. For the theory of Poisson processes
and its applications see, e.g., [17], while [18] provide a thorough Bayesian analysis.

4.4. The Likelihood Function and the Bayesian Inference

The likelihood function for the unknown parameter vector θ = (λ, M, β, ν), where
M = (MI , MG, MN), and a similar definition holds for β and ν, is obtained from (5) by
taking the product over the indices i and c,

L(θ; tI , tG, tN) ∝ λn·· e−∑i ∑c liνcDic ∏
c

{
(Mcβc)

n·c
r

∏
i=1[

(l2
i νc)

nic
nic

∏
k=1

∫ tick

si

(tick − z)βc−1e−Mc(tick−z)βc e−liλ(z−si) dz

]}
(6)

The vectors tc, c ∈ {I, G, N}, appearing on the left-hand side of (6), contain the times
of observed failures after a corrosion of type c; the dot subscripts indicate that the subscript
in that position has been summed over; when nic = 0, the product with index k in the
second line is set to 1.

For the Bayesian inference, we assign prior distributions to all of the parameters in θ,
and assume they are a priori independent, since they describe phenomena of a different
nature. In particular, we take λ ∼ G(a(λ), b(λ)). As c varies inside {I, G, N}, we put
Mc ∼ G(a(M)

c , b(M)
c ), βc ∼ G(a(β)

c , b(β)
c ), and νc ∼ G(a(ν)c , b(ν)c ), where the superscripts

identify which parameter the hyperparameters are to be referred to.

4.5. The Probabilities of Zone and of Type of Corrosion

A formal connection between this section and Section 3 can be seen immediately. Let
us split νc into the sum of two parameters, for example νAc and νBc, c ∈ {G, I, N}, and
perform the same with the observed values of nic, and with li for all i = 1, . . . , r, supposing
for the moment that the lengths of the subnetworks laid in zones A and B are available.
From Section 4.3, nzic conditional on θ is Poisson with mean lziνzcDzic, with the subscript
z indicating the zone. Then, nz··· is Poisson with mean ∑i ∑c lziνzcDzic, so, conditioning
to n··· ≡ n, nz··· has a binomial distribution with number of trials n··· and probability
of “success”

p =
∑i ∑c lziνzcDzic

∑i ∑c lAiνAcDAic + ∑i ∑c lBiνBcDBic

where p is the same parameter that appears in Section 3.3.1. The same property, yielding a
multinomial distribution as in Section 3.4, holds for n···c conditional on n···.

5. Elicitation of the Experts’ Opinions and Results

Unlike the zone probability, the parameters λ, Mc, and βc (c ∈ {I, G, N}) are not
easily related to an observable event whose probability can be assessed by an expert
without difficulty.

As regards Mc and βc, following [19], the experts were asked to select an interval from
a given list for the duration of the corrosion until failure (that is, an interval for v as defined
in Section 4.2) and an attached degree of belief 100α% to be chosen among 95%, 85%, and
75%. From each interval, a pair (Mc, βc) was found by assigning a value of (1 − α)/2 to
the tail probabilities. The averages over the experts gave the prior means and standard
deviations of Mc and βc, as c varies within {I, G, N}, are presented in Table 6. The choice
of the size of the intervals and the probabilities to be attached was dictated by the need to
provide the experts, not acquainted with quantitative methods and prior elicitation, a time
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period sufficiently large to allow them to think about possible failures and three levels of
probabilities ranging from a good chance of event (75%) to a great one (95%).

Table 6. Prior assessment of Mc and βc, c ∈ {I, G, N}.

Type of Corrosion Parameter Prior Mean Prior Std. Dev.

Natural M 0.305 × 10 −3 0.209 × 10 −3

β 2.96 0.79

Galvanic M 0.229 × 10 −2 0.203 × 10 −2

β 2.79 0.95

By interference M 0.210 × 10 −1 0.381 × 10 −1

β 3.48 2.01

As for λ, where 1/λ is the mean time to damage of the protection of one kilometer of
pipeline, the experts were asked to provide the probability that the protection of 5 km of
pipeline is not damaged after 6, 15, 30, and 90 years. The value of λ for each expert was
then found as the one that gave the best fit of exp(−5λy), where y ∈ {6, 15, 30, 90}, to the
elicited probabilities. The average of λ over the experts is 0.621 × 10 −2, with a standard
deviation of 0.182 × 10 −2.

From the a priori means and variances, we can derive the hyperparameters of the
Gamma prior densities, so we have a(λ) = 11.6 and b(λ) = 1867, a(M)

I = 0.30 and

b(M)
I = 14.5, a(M)

G = 1.28 and b(M)
G = 556, a(M)

N = 2.13 and b(M)
N = 6982, a(β)

I = 3.00

and b(β)
I = 0.86, a(β)

G = 8.63 and b(β)
G = 3.09, and a(β)

N = 14.04 and b(β)
N = 4.74. The

distributions of the Mc’s are concentrated on different parts of the real line, whereas the
distributions of the βc’s have approximately the same location, but are not equally dis-
persed. In particular, the experts seem to less clearly perceive the duration of the corrosion
by interference.

The estimation of the posterior mean and standard deviation of the unknown pa-
rameters were carried out by Markov Chain Monte Carlo using the mcmc package [20],
with numerical integration by quadrature for the computation of the intractable factors
in the likelihood function (6), which are those involving Dic (see also Appendix A) and
the kernel of the lifetime density (2). Since parameters νc are nuisance parameters, they
were integrated out analytically in the actual calculations, which depend only on a(ν)c and
b(ν)c . We set both these parameters to 1 for all c, so that E(νc) = 1; other values had very
little influence on the results. The factors in the likelihood depending on parameters νc are
replaced by 1/(1 + ∑i liDic)

n·c+1.
The posterior means and standard deviations of the parameters appear in Table 7.

The main change with respect to the prior summaries of Table 6 is that galvanic corrosion
and corrosion by interference have swapped places, a result which we comment on at
the end of this section. Posterior standard deviations mostly show a small reduction in
uncertainty. A further reduction could be obtained using more specific corrosion models
and improving the method for type classification by the operators. We also remark that the
failure observation period is one third of the network-lifetime.

The advantage of using the lifetime distribution (2) can be appreciated when a mainte-
nance decision must be made. Suppose that priority for substitution must be assigned to
two parts of the network of equal length l laid in zone A and B, respectively, and let the
lay year of the two parts be s1 > s2. A decision based on the posterior zone probability
derived in Section 3.3.1 would be to substitute the part in zone A irrespective of s1 and s2.
Alternatively, one can consider the hazard functions associated with the mixture densities

∑
c

P(c|A) f (t|λ, Mc, βc, l, s1) and ∑
c

P(c|B) f (t|λ, Mc, βc, l, s2)
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where P(c|A) and P(c|B) are the probabilities of corrosion conditioned to the zone derived
in Section 3. These mixtures can be seen as an approximation to

∑
c

νAc
νA·

f (t|λ, Mc, βc, l, s1) and ∑
c

νBc
νB·

f (t|λ, Mc, βc, l, s2)

that is, the lifetime distributions of the time to failure of a part of network that fails exactly
once. In this way we avoid estimating the parameters νzc.

Table 7. Posterior means and standard deviations of λ, Mc, and βc, c ∈ {I, G, N}.

Type of Corrosion Parameter Posterior Mean Posterior Std. Dev.

All λ 0.619 × 10 −2 0.181 × 10 −2

Natural M 0.338 × 10 −3 0.202 × 10 −3

β 2.21 0.42

Galvanic M 0.235 × 10 −2 0.163 × 10 −2

β 3.44 0.70

By interference M 0.266 × 10 −2 0.417 × 10 −2

β 2.68 1.19

A posteriori estimates of the mixing coefficients P(c|z) are available from Section 3,
whereas the pointwise estimate of the density functions is obtained by averaging the
sequence f (t|λ(i), M(i)

c , β
(i)
c , l, s) across MCMC iterations, indexed by i. The comparison of

the hazard functions might result in the substitution of the part in zone B instead of that in
zone A.

The typical reliability profile of the network might be represented by the hazard
function associated with the mixture density

g(t) = ∑
c

P(c) f (t|λ, Mc, βc, l, 0) (7)

for some reference length l, where the unknown quantities are substituted by estimates as
before, and again P(c) approximates ν·c/ν··.

The plots of the hazard functions associated with f (t|λ, Mc, βc, 5, 0) for any c appear
in Figure 1. The difference between the two panels is mainly due to the asymmetry of
the posterior distributions of the Mc and βc parameters, which can be observed in the
histograms of the MCMC simulations. Because of asymmetry, the sample averages of
parameters used as plug-in estimators are larger than the medians and select hazard
functions that increase more rapidly.

The left panel of Figure 1 highlights that the tails of the lifetime distributions are
exponential, so that the hazard functions stay constant after some years; besides, the hazard
function of the natural corrosion increases less fast than the other two, as expected. This
tail behavior has a straightforward interpretation: if, after installing a 5 km pipeline, we do
not see any failure for a certain period (whose length depends on the type of corrosion), we
may assume that the protection has not been damaged, so the risk of a failure is equal to
that of damage. Another feature is that the hazard function of the corrosion by interference
is closer to that for galvanic corrosion than the hazard function of the natural corrosion,
so that the data confirm the experts’ opinions (see beginning of Section 5). The less steep
slope of the hazard function for the corrosion by interference with respect to the galvanic
one reflects a longer mean time to failure; again, this might be imputed to failures by
natural corrosion that happened in zone A and that were incorrectly classified as due
to interference.
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Figure 1. Hazard functions associated with f (t|λ, Mc, βc, 5, 0) for any c ∈ {N, G, I}. Left panel:
posterior means of hazard functions for each failure type obtained from the MCMC simulation; right
panel: computed by inserting the posterior means of parameters (plug-in estimate).

6. Concluding Remarks

A methodology for the assessment of the probability of gas escape from steel pipelines
has been presented to support the implementation of the maintenance and renewal policy
of a urban gas distribution network. We identified the factors that influence reliability, and
focused first on the type of corrosion and the lay location (for design purposes), and then
also included the age of the pipe in the analysis (for maintenance purposes).

The developed methodology answered the requirement to combine, according to
the Bayesian paradigm, scarce information derived from historical data with the experts’
knowledge grown inside the company during the last running periods.

At the design stage, a simple beta-binomial model proved sufficient, showing that
streetcar substations greatly increase the probability of a fast corrosion; therefore, consider-
ing that it is not easy to tell whether a corrosion by interference can take place in a given
location, newly installed pipelines should be cathodically protected.

At a maintenance stage, because of the presence of corrosion, we estimated a non-
homogeneous Poisson process that accounts for the age of the pipes. The type of corrosion
proved influential on the shape of the intensity function of the process, so that it is rea-
sonable to compare the hazard functions derived from it when a priority decision for
substitution must be made in presence of information on the most likely type of corrosion.
The computation required for the estimation of the parameters are intensive in this case,
but perfectly feasible thanks to modern computer power.

The real case study presented emphasized the relevance of the practical solution, to be
reused in other industrial cases.
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Appendix A. Derivation of Expressions

We derive (3), and other expressions, by omitting all quantities and notation that are
unnecessary for this purpose. Conditional on N, (3) represents the probability density of
n failures at t1, . . . , tn inside (max{T0, s}, T1), and of the remaining N − n failures outside.
This occurs if n failures are first assigned to the interval with binomial probability with
success probability D and N trials, where D is the probability that a failure falls inside
(max{T0, s}, T1), given by (4). Then, given n, the joint density of the failures is that of the
order statistics from f (t) restricted to the interval. Taking the product of these two factors,
we have (

N
n

)
Dn(1 − D)N−n × n!

n

∏
k=1

f (tk)

D

which coincides with (3) after simplifications.
We now consider D at (4). After writing f (t|λ, M, β, l, s) explicitly, we can interchange

the order of integration and obtain the following expression:∫ T1

s

[∫ T1

max{z,T0}
Mβ(t − z)β−1e−M(t−z)β

dt
]

lλe−lλ(z−s) dz

where the inside integral can be solved explicitly, since the integrand is a Weibull density,
so we have ∫ T1

s

[
e−M(max{z,T0}−z)β−1 − e−M(T1−z)β

]
lλe−lλ(z−s) dz

which we solve numerically by quadrature using the integrate routine from R [21].
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