
1.  Introduction
Reliable estimates of the magnitude and frequency of river floods are crucial for societal activities such as 
engineering design, urban planning and risk management (Barth et al., 2017; Smith et al., 2018). In particular, 
flood magnitude-frequency analyses establish a functional relation between the magnitude of floods and their 
exceedance probability, and represent a basic tool for quantifying flood hazard (e.g., Cunnane, 1973; Gotvald 
et al., 2012). However, river floods remain common perils that cause fatalities and damages worldwide (Bevere 
& Remondi, 2021; François et al., 2019).

Accurate estimation of flood magnitude and frequency is especially challenging when a few events are signif-
icantly larger in magnitude than the rest of the observed floods (Smith et al., 2018). These unexpectedly high 
floods can result in large socio-economic impacts (Davenport et al., 2021; Kreibich et al., 2022; Merz et al., 2021). 
This phenomenon, displayed in flood-frequency curves as a marked increase in the magnitude of rare events, was 
recently termed as flood divide (Basso et al., 2023). This behavior is pervasive, although difficult to detect due to 
limited data availability. Past studies show that the number of flood divides increases with the length of the data 
series (e.g., Miniussi et al., 2023; Smith et al., 2018). The appearance of flood divides has been often related to 
data scarcity preventing a good characterization of the tail of flood distributions (e.g., Miniussi et al., 2023), an 
issue possibly exacerbated by non-stationarity of hydrologic processes caused by climate change (Yu et al., 2022). 
However, previous studies also linked them to non-linearities in the catchment response (Rogger et al., 2012) aris-
ing from distinct physioclimatic characteristics of river basins (Basso et al., 2023) and to the existence of different 
runoff-generation processes in a catchment (Merz et al., 2022). Runoff events and floods may indeed be triggered 
by different processes (e.g., rainfall on wet or dry soils, snowmelt, a combination of both; Hirschboeck, 1987b; 
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Villarini & Smith, 2010; Sikorska et al., 2015) and thus be categorized into different types based on the inducing 
mechanisms (Stein et al., 2020; Tarasova, Basso, & Merz, 2020).

Traditional flood magnitude-frequency analyses (e.g., Sivapalan & Samuel,  2009) are unsuitable to handle 
heterogeneous flood records (Hirschboeck,  1987a), especially when floods differ among each others to the 
point that flood divides are observed. Mixed extreme value distributions have been proposed for these cases, 
but the limited availability of large flood observations introduces considerable estimation uncertainty (Alila & 
Mtiraoui, 2002; Barth et al., 2019; Waylen & Woo, 1982). To tackle this issue, past studies (e.g., Fischer, 2018; 
Hirschboeck,  1987b) proposed a mixed distribution approach using peaks over a threshold (i.e., by using all 
observed peaks above a threshold).

These approaches improved hazard estimation compared to methods which assume homogeneity of the flood 
record. However, peaks over threshold may not be a representative sample of the processes that generate extraor-
dinary events in catchments where the generation processes of the largest and most common floods are strik-
ingly different (Tarasova, Basso, & Merz, 2020). In these cases, using ordinary peaks (i.e., all the independent 
streamflow peaks) may allow for sampling the full variety of generation processes while constraining prediction 
uncertainty. Recently, Miniussi et al. (2020) adopted such an approach to model floods occurring during different 
ENSO phases. However, studies that consider specific runoff-generation processes which produced ordinary 
peaks to estimate flood frequencies and magnitudes are lacking.

In this study, we aim to fill this gap by addressing the issue of reliably estimating flood frequencies and magni-
tudes in basins with a flood divide in the empirical flood magnitude-frequency curve. To do so, we rely on the 
analysis of ordinary peaks by explicitly considering the presence of multiple runoff-generation processes in a 
mixed non-asymptotic extreme value model. The advantage of this approach over traditional methods lies in the 
extension of information obtained by using a larger sample of ordinary peaks and accounting for the underlying 
physical processes leading to runoff generation in flood frequency analysis.

2.  Methodology
2.1.  Study Area and Data

This study uses daily streamflow records of 169 mesoscale river basins in Germany with drainage area between 
30 and 23,000 km 2 (median: 581 km 2; Figure S1 in Supporting Information S1). The analyzed data series range 
from 1951 to 2013, encompassing 36–62 (median: 59) hydrological years per basin (November to October). From 
this data set, we identified river basins exhibiting a sharp increase in the magnitude of rare floods (i.e., a flood 
divide in their empirical flood magnitude-frequency curve, sensu Miniussi et al., 2023; Basso et al., 2023) by 
visually examining empirical flood-frequency curves. In order to facilitate their identification from a large data 
set, we calculated the L-skewness of the annual maxima sample (Hosking, 1990), which is a general and universal 
index for tail heaviness and robust to the presence of outliers (Vogel & Fennessey, 1993), we noticed that, for 
Germany, all the cases with L-skewness exceeding 0.3 were also presenting this issue (Figure S2 in Supporting 
Information S1). Notably, the threshold of 0.3 is selected for German basins and may vary for other regions. 
Visual inspection of the empirical flood-frequency curves remains the main tool to, confirm the presence of flood 
divides in a general case. In fact, flood frequency analyses are typically performed case by case by practitioners, 
who realize the presence of a flood divide in their data without relying on quantitative metrics, sometimes just 
because traditional approaches seem not to fit the data in any way. The selection yields 11 river basins with a clear 
flood divide in the empirical flood magnitude-frequency curve (Figure S1 in Supporting Information S1). All the 
following analyses are performed individually for each single basin.

2.2.  Simplified Metastatistical Value Approach Applied to Heterogeneous Processes

We adopt the Simplified Metastatistical Extreme Value (SMEV) approach (Marani & Ignaccolo, 2015; Marra 
et al., 2019) to model the magnitude and frequency of extreme floods emerging from different runoff-generating 
processes (e.g., rain-on-wet or dry soils, snowmelt) in each single basin. The SMEV approach enables us to 
account for the presence of events triggered by multiple runoff-generation mechanisms (also termed event types 
in the following) through a parsimonious parametrization and to derive the compound extreme value distribution 
emerging from these types (Marra et al., 2019). Indicating with i = 1…S the event type in any of the basins, the 
mixed-SMEV cumulative distribution function ζSMEV can be written as
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𝜁𝜁SMEV(𝑥𝑥) =
∏𝑆𝑆

𝑖𝑖=1
[𝐹𝐹𝑖𝑖(𝑥𝑥; 𝜃𝜃𝑖𝑖)]

𝑛𝑛𝑖𝑖� (1)

where θi are the parameters of the cumulative distribution Fi of ordinary events of the ith type and ni is the average 
yearly number of ordinary events of type i. Notice that only two event types are considered in each basin.

We compared estimates obtained through the mixed-SMEV approach against those of a single- SMEV and 
Generalized Extreme Value (GEV) distributions, a widely used approach for flood magnitude-frequency anal-
yses (Katz et al., 2002; Petrow et al., 2007). To this end, we estimate the GEV distribution parameters from 
the sample of annual maxima of each basin using the L-moments method (Hosking,  1990). For the single-
SMEV approach, we used a log-normal distribution to describe all ordinary events in each basin. The choice of a 
log-normal distribution is supported by previous study on the same data set of river basins in Germany (Mushtaq 
et al., 2022). We performed resampling with replacement (i.e., bootstrap) across years (1,000 realizations of all 
available years; Overeem et al., 2008) to assess the estimation uncertainty of all the methods. We finally quan-
tified the model accuracy by means of non-dimensional error, computed as 𝐴𝐴 𝐴𝐴 =

𝑥𝑥est−𝑥𝑥obs

𝑥𝑥obs

 between estimated (xest) 
and observed maxima (xobs) (Zorzetto et al., 2016). Notice that such an error metric favors the GEV distribution, 
which is explicitly parameterized to match the observed maxima, as opposed to mixed-SMEV and single-SMEV 
approaches, whose parameter estimation is performed on a larger sample, of which just a subset belongs to the 
annual maxima.

2.3.  Process-Based Classification of Ordinary Events

We employed the method of Lang et  al.  (1999) to identify the independent ordinary peaks from the stream-
flow record required to apply the SMEV approach, as previously done by Miniussi et al. (2020) and Mushtaq 
et al. (2022). The number of independent ordinary peaks obtained for each catchment ranges from 370 to 933 
(median value: 796).

We further classified the ordinary peaks into process-based types by using the classification of Tarasova, Basso, 
Wendi, et al. (2020), which labels streamflow events corresponding to the identified ordinary peaks according 
to their runoff-generation processes, which are assessed based on the nature of the inducing events (i.e., rainfall 
vs. snowmelt) and the catchment wetness states (i.e., wet or dry). This process-based approach uses observed 
daily precipitation (Rauthe et  al.,  2013) as well as daily snow water equivalent and soil moisture simulated 
by the mesoscale Hydrological Model (Kumar et al., 2013; Samaniego et al., 2010). Tarasova, Basso, Wendi, 
et al. (2020) employed dimensionless indicators to differentiate between inducing events and catchment wetness 
states and observed the small uncertainties associated with model structure and parametric uncertainty (Figure 
4 in Tarasova, Basso, Wendi, et al., 2020). However, it is worth noting that employing different indicators or 
classification frameworks could lead to substantial differences in event classification (Tarasova et  al.,  2019), 
consequently affecting the accuracy of flood estimates.

In order to efficiently incorporate distinct event types in flood magnitude-frequency analyses and to ensure 
sufficient sample sizes for each of them, we aggregate the event types by Tarasova, Basso, Wendi, et al. (2020) 
into two major groups (S  =  2): processes related to dry antecedent conditions (rain-on-dry events—Type-1) 
and wet antecedent conditions (rain-on-wet and snowmelt events—Type-2). The probability distributions of the 
magnitude of these event types are significantly different (p < 0.05), as evaluated through a pairwise two-sided 
Kolmogorov-Smirnov test (Massey Jr, 1951).

2.4.  Selection of Ordinary Distributions

For each event type, we choose a suitable ordinary distribution. The presence of a clear flood divide in the empir-
ical flood magnitude-frequency distribution suggests that one of the event types is characterized by a heavy-tailed 
distribution (Merz et  al.,  2022). We used Weibull plotting positions (Weibull,  1939) to derive the empirical 
cumulative distributions of ordinary events of each type and distinguish between those either exhibiting or not a 
heavy-tailed behavior, here intended as a power-law tail (i.e., a linear behavior in double-logarithmic coordinates; 
Newman, 2005). This process can in principle be automated, for example, by using tests like the one applied by 
Marra et al. (2023). However, since the number of basins considered in this study is limited, it is preferred here 
to proceed with the accuracy of human supervision. Visual inspection of the empirical cumulative distribution 
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functions of ordinary events of the two types showed that, for each of the 11 study catchments, either Type-1 or 
Type-2 events clearly exhibit power-law behavior (see respectively Figures 2a and 2e), as manifested by the linear 
form of the distribution in a log-log probability plot.

If the empirical distribution of ordinary events of the examined type has a heavy tail, we use a power-law distribu-
tion (Malamud & Turcotte, 2003, 2006). The cumulative distribution function of the power-law is 𝐴𝐴 𝐴𝐴 (𝑥𝑥) = (

𝑥𝑥
∕𝑥𝑥

min
)
1−𝛼𝛼 , 

where, x is the analyzed variable, xmin is a left-censoring threshold (i.e., the threshold above which the power-law 
behavior is manifest) and α is the scaling parameter. We estimated the parameters α and xmin through the method 
of Clauset et al. (2009). If the empirical cumulative distribution function of the ordinary events of the examined 
type is not heavy-tailed (i.e., it does not show a linear behavior in double-logarithmic coordinates), we model it 
using a two parameter log-normal distribution (Bobee et al., 1993). The cumulative distribution function of the 
log-normal distribution is expressed as F(x;μ,σ) = Ф(log(x)−μ)/σ, where σ and μ are respectively its shape and 
scale parameters and Ф is the standard normal distribution function. We fit the log-normal distribution using the 
method of L-moments (Hosking, 1990) by left-censoring the lower portion of the ordinary events for the mixed-
SMEV (i.e., considering Type-1 and Type-2) and single-SMEV (i.e., by considering all ordinary events without 
types). The left-censoring method enables us to characterize the tail of the distribution with few parameters, by 
ignoring the magnitudes of the censored part while retaining their probability (Marra et al., 2019). For both the 
power-law and log-normal distributions, we selected the left-censoring threshold by minimizing the root mean 
square error between predicted and observed magnitudes of ordinary events in the upper twentieth percentile 
(Ritter & Munoz-Carpena, 2013).

3.  Results and Discussion
In this study, we investigate river basins that experienced extraordinarily high floods with much larger magni-
tudes than the bulk of recorded annual maxima. To better illustrate the properties of these rare floods we focus 
on two exemplary case studies, the Müglitz and Este River basins (Figure 1), which exhibit marked flood divides 
in their empirical flood magnitude-frequency curves. In fact, the largest annual maxima (roughly those with a 
return period exceeding 10 years) grow to considerably larger magnitudes than the smaller ones (e.g., the largest 
observed annual maxima are 3–8 times and 2–4 times larger than their mean values for the Müglitz and Este River 
basins, respectively).

In Figure 1, annual maxima are color-coded based on the type of processes that generated the events. We observe 
that floods with runoff-generation processes, different from those mostly observed for common floods (i.e., those 
on the left hand sides of panels a, b) may strongly affect the upper tail behavior, as also highlighted by Tarasova, 
Basso, and Merz (2020). For instance, extraordinarily high floods in the Müglitz River (Figure 1a) mainly belong 
to the rain-on-dry type (4 out of 6 maxima with a return period greater than 10 years are characterized as Type-1), 
while this type is hardly present in lower flood peaks. Conversely, extraordinarily high floods in the Este basin 

Figure 1.  Empirical flood magnitude-frequency curves for two exemplary case studies exhibiting a flood divide: (a) the Müglitz River at Dohn (Gauge-ID: 550940, 
area = 196 km 2) and (b) the Este River at Emmen (Gauge-ID: 6338260, area = 171 km 2). Floods are classified into two major event types: rain-on-dry (red dots—
Type-1) and combination of rain-on-wet and snow processes (blue dots—Type-2).
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(Figure 1b) are caused by rain-on-wet conditions and snowmelt processes (5 maxima with a return period greater 
than 10 years are characterized as Type-2).

As described in Section 2.4, we examine the empirical cumulative distribution functions of the different types 
of ordinary events (gray dots in Figures 2a, 2b, 2d, and 2e). We notice that in all cases in which a flood divide is 
present one event type displays heavy-tailed behavior (Figures 2a and 2e). Hence, we fit the empirical ordinary 
distribution of these events with a power-law distribution (see red lines in Figures 2a and 2e), and use a log-normal 
distribution for the other type (blue lines in Figures 2b and 2d). While previous studies identified both heavy-tailed 
and light-tailed behaviors in flood records (Bernardara et al., 2008; Mushtaq et al., 2022), here we move a step 
further and show that different tail behaviors may be associated with distinct runoff-generation processes (Yu 
et al., 2022).

The mixed-SMEV flood magnitude-frequency curves obtained for the two exemplary case studies are displayed in 
Figures 2c and 2f (green solid lines). Gray dots in Figures 2c and 2f represent the empirical frequencies of the sample 
of annual maxima. Our analysis reveals that mixing different types of ordinary events with distinct tail behavior 
through the mixed-SMEV framework allows for capturing the upper tail of the distribution of annual maxima. This 
is opposed to standard methods that rely on identical distribution assumptions, which tend to underestimate the 
largest floods (results for the single-SMEV and GEV are shown for comparison in Figures 2c and 2f). It is relevant 
to mention that the mixed-SMEV approach ensures improved estimation of upper tail quantiles compared to single-
SMEV and GEV, as the latter generally fail to capture the upper tail behavior (Figures 2c and 2f; Figures S3–S11 in 
Supporting Information S1). The shaded areas in Figures 2c and 2f depict the 95% confidence intervals calculated via 
bootstrap with replacement across years for mixed-SMEV, single-SMEV and GEV distributions. The single-SMEV 
has lower uncertainty than both the mixed-SMEV and GEV distributions (Miniussi & Marra, 2021). Despite the use 
of a larger portion of the data, the uncertainty of mixed-SMEV and GEV are instead similar. The underlying reason 
is twofold: by using a mixed-SMEV we estimate a larger number of parameters than with a single-SMEV approach, 
and often one of the event types is markedly less populated than the other, leading to an increase in uncertainty.

Figure 2.  Exceedance cumulative distributions of ordinary peaks (a, b, d, e) and flood magnitude-frequency curves resulting from a mixed-SMEV, single-SMEV and 
a standard Generalized Extreme Value (GEV) approach (c, f) for the Müglitz River at Dohn (a–c) and the Este River at Emmen (d–f). Panels (a, d) show the ordinary 
distributions for Type-1 events, and panels (b, e) show the ordinary distributions for Type-2 events. Blue (log-normal) and red (power-law) lines in panels (a, b, d, e) 
display the probability distributions describing ordinary events of Type-1 and Type-2. Green, orange and pink curves in panels c and f show the median values for the 
corresponding quantiles of 1,000 resample values with replacement for mixed-SMEV, single-SMEV and GEV estimates, respectively. Green, orange and pink shaded 
areas indicate the related confidence intervals (5th–95th percentiles).
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These results demonstrate that relying solely on a pre-defined statistical distribution and disregarding the heter-
ogeneity of the sample arising from different underlying physical processes may lead to an erroneous estimation 
of extreme floods. The proposed approach could thus improve the estimation of upper tail quantiles in basins 
where a flood divide is observed in the flood magnitude-frequency curves. These results confirm that heavy tails 
(i.e., flood divides) can originate from a mixture of flood-generating processes (Merz et al., 2022). It is worth 
noting that rain-on-dry events dominate the upper tail in the Müglitz River basin (Figure 2a), while rain-on-wet 
and snowmelt events dominate the upper tail in the Este River basin (Figure 2e). Past studies indicate that vari-
ous runoff-generation processes might be associated with heavier tails of the distribution of floods in different 
regions (Tarasova et al., 2023), as we observe in our set of case studies. The flood divide arises from the fact that 
the mixture contains a heavy-tailed process, whose upper tail tends to dominate the mixture distribution at  large 
quantiles (Figures 2c and 2f). These results are coherent with previous studies, which show that the tail of a 
mixture distribution is influenced by the component with the most pronounced tail (e.g., Cavanaugh et al., 2015). 
Results for all other case studies are reported in Figures S3–S11 in Supporting Information S1. These results are 
broadly consistent with what was found for the exemplary case studies discussed in Figures 1 and 2, despite a few 
cases showing a less clear distinction among event types. As expected, this leads to comparable performances of 
the three methods in these catchments.

Figure 3 summarizes the findings obtained for all 11 cases which exhibit flood divides in the set of 169 German 
river basins. Observed versus estimated annual maxima resulting from the proposed mixed-SMEV, the single-
SMEV and the GEV approaches are evaluated in a bootstrap fashion (see Methods) and respectively displayed 
in panels a, b and c. This overall comparison confirms the results discussed above for the two exemplary case 
studies and highlights the capability of the mixed-SMEV approach to provide reliable estimates of floods for a 
wide range of quantiles in all river basins with a flood divide (Figure 3a). The comparison with the single-SMEV 
(Figure 3b) and the GEV (Figure 3c) distribution reveals that mixed-SMEV estimates (Figure 3a) are character-
ized by a considerably smaller bias, especially for the upper tail quantiles.

To summarize the performance of the mixed-SMEV approach to estimate flood magnitude- frequency in catch-
ments with a flood divide, we computed the non-dimensional errors (see Section 2.2) between observed annual 
maxima and estimates of the corresponding empirical quantiles (Figures 3d and 3e). Figure 3d displays a boxplot 
of non-dimensional errors for all observed maxima in the 11 case studies. Here, the mixed-SMEV approach tends 
to overestimate the bulk of floods, mainly due to small floods with a return period less than 10 years, whereas 
single-SMEV and GEV distributions show the same degrees of over and underestimation. However, when we 
focus our analysis on quantiles with return period greater than 10 years (Figure 3e), which are the most rele-
vant for flood hazard assessment, the non-dimensional errors provided by the mixed-SMEV approach are lower 
compared to single-SMEV and GEV distributions.

Separately fitting different probability distributions to samples of ordinary peaks with distinct tail behaviors 
increases the physical basis of flood magnitude-frequency analyses. In fact, the proposed method allows for 
accounting for different statistical properties of events triggered by various runoff-generation processes. It is, 

Figure 3.  Estimated versus observed normalized (i.e., divided by their median value) annual maxima for (a) mixed-SMEV (green dots) (b) single-SMEV (orange 
dots) and (c) Generalized Extreme Value (pink dots) for 11 river basins in the data set which exhibit flood divides. Light and dark colors indicate results for 1,000 
realizations of the bootstrap and their median values, respectively. Insets of panels (a–c) show the same results plotted on a double-logarithmic scale. Panels d and e 
show non-dimensional error between observed and estimated maxima of the analyzed statistical distributions computed for the median of 1,000 bootstrap values (i.e., 
dark green, orange and pink dots in a–c respectively) with the same return period: (d) all quantiles; (e) the quantiles corresponding to return periods >10 years.
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however, worth noting that separating the processes yields significant improvements only if event types are 
characterized by markedly different tail behaviors (e.g., Marra et al., 2019). If the different processes have simi-
lar tail behaviors, the mixed distribution will not be distinguishable from the one obtained by using all the data 
together, since uncertainty will be predominant due to the need to estimate a larger number of parameters on a 
smaller amount of data. The practice of classifying event types evolved in recent years (Tarasova, Basso, Wendi, 
et al., 2020; Turkington et al., 2016; Vormoor et al., 2016) and is deemed to grow (Merz et al., 2022; Tarasova 
et al., 2019), increasing the availability of information required to apply the proposed approach.

A substantial difference among runoff-generation processes was suggested as a possible cause of flood divides by 
past studies. Rogger et al. (2012, 2013) showed, by means of extensive field surveys and modelling analyses, that 
flood divides may emerge from strong non-linearities in runoff-generation processes resulting from progressive 
saturation of the catchment (i.e., a shift from dry to wet conditions). Basso et al. (2016) provided a mechanistic 
explanation of this phenomenon and the resulting appearance of flood divides in flood magnitude-frequency 
curves by linking it to the catchment water balance. Catchments in wetter climates experience sustained water 
supply which determines unvaried runoff-generation processes. Conversely, river basins in drier areas, where 
longer lag times between rainfall events allow for the catchment to dry, undergo transient conditions leading to 
varied runoff-generation processes (Basso et al., 2023). Our results confirm that explicitly accounting for the 
existence of different runoff-generation processes enables us to adequately model the tail of flood distributions 
in catchments exhibiting flood divides.

The above discussion hints at the interplay between various hydro-meteorological drivers and the hydroclimatic 
settings leading to the occurrence of extraordinarily high floods in a region. In fact, river basins exhibiting 
flood divides (i.e., the exemplary Müglitz River and other eight case studies in our data set) are mostly located 
in the Central-Alpine region of Europe (Blöschl et al., 2017). In this region, the distributions of precipitation 
volumes for rain-on-wet and snowmelt floods have slightly heavier tails than for rain-on-dry events, leading to 
the possible occurrence of high floods of Type-2 (as exemplified by one river basin in our data set, see Figure S7 
in Supporting Information S1). However, the distribution of precipitation intensity of rain-on-dry events in this 
area is remarkably heavier than for the other event types (Tarasova et al., 2023), mostly due to the occurrence of 
Vb-cyclones (Hofstätter et al., 2016). This feature likely underlies the occurrence of heavy-tailed distributions of 
rain-on-dry ordinary events and extraordinarily high floods of Type-1, which are mostly responsible (8 case stud-
ies) for the appearance of flood divides in flood-magnitude frequency curves. In contrast, the Este River and one 
additional catchment among the 11 showing a flood divide are located in the Atlantic region, where rain-on-wet 
flood events exhibit heavier tails than rain-on-dry events (Tarasova et al., 2023).

Variable distributions of key factors contributing to runoff generation, such as rainfall intensity, volume, soil 
moisture, snow accumulation and release are mirrored by differences in the tail behavior of ordinary distribu-
tions across regions, which can be leveraged by means of the proposed approach to improve the estimation of 
the hazard posed by extraordinarily high floods. However, climate change induces shifts in the mixture of flood 
generation processes, such as a decrease in snowmelt events and an increase in intense rainfall events (Hall 
et al., 2014; Huo et al., 2022). These changes inevitably influence the flood probabilities. Our method explicitly 
incorporates the presence of diverse flow-generating processes, and can therefore be used to predict changes in 
flood frequency based on the projected changes in the frequency of the runoff-generation processes.

4.  Conclusions
We provide a framework to derive accurate estimates of flood magnitude and frequency for basins where 
extraordinarily high floods occur. The approach leverages knowledge of the heterogeneity of runoff-generation 
processes by means of a process-informed mixed non-asymptotic statistical method, the SMEV framework. We 
employ the mixed-SMEV to estimate flood magnitude and frequency for 11 river basins in Germany featuring a 
flood divide. In these cases, at least one runoff-generation process is characterized by a heavy-tailed empirical 
distribution. Thanks to the explicit consideration of various runoff-generation processes, the proposed approach 
enables us to accurately predict the magnitude of rare floods, outweighing the performance of single-SMEV and 
GEV distributions. The approach relies on a classification of event types and is only worth using when runoff 
events generated by different hydrologic processes are characterized by distributions with distinct tail behaviors. 
These requirements may constrain the use of the approach in practice. Nonetheless, classifications of event types 
are becoming more common, and the method provides a process-based solution to estimate large flood quantiles 
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in contexts for which current methods fail. As climate change may alter the frequency of different event types, 
our approach also offers a way to account for climate change impacts on flood hazards in a physically sound 
manner.

Data Availability Statement
For providing the discharge data for Germany, we are grateful to the Bavarian State Office of Environment (LfU, 
https://www.gkd.bayern.de/de/fluesse/abfluss/tabellen). Readers can directly access to river discharge data used 
in this study by clicking on the provided link. We are also thankful to the Global Runoff Data Centre (GRDC) 
prepared by the Federal Institute for Hydrology(BfG, https://portal.grdc.bafg.de/applications/public.html?publi-
cuser=PublicUser#dataDownload/Home) for their valuable data resources. To access the data repository, please 
use the provided link and click on “Download by Station” option, select Germany as the country of interest, and 
locate the table in the top-left corner to access discharge gauges for Germany.
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