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Abstract: Life expectancy has increased, so the number of people in need of intensive care and
attention is also growing. Falls are a major problem for older adult health, mainly because of the
consequences they entail. Falls are indeed the second leading cause of unintentional death in the
world. The impact on privacy, the cost, low performance, or the need to wear uncomfortable devices
are the main causes for the lack of widespread solutions for fall detection and prevention. This work
present a solution focused on bedtime that addresses all these causes. Bed exit is one of the most
critical moments, especially when the person suffers from a cognitive impairment or has mobility
problems. For this reason, this work proposes a system that monitors the position in bed in order
to identify risk situations as soon as possible. This system is also combined with an automatic fall
detection system. Both systems work together, in real time, offering a comprehensive solution to
automatic fall detection and prevention, which is low cost and guarantees user privacy. The proposed
system was experimentally validated with young adults. Results show that falls can be detected, in
real time, with an accuracy of 93.51%, sensitivity of 92.04% and specificity of 95.45%. Furthermore,
risk situations, such as transiting from lying on the bed to sitting on the bed side, are recognized with
a 96.60% accuracy, and those where the user exits the bed are recognized with a 100% accuracy.

Keywords: fall detection; fall prevention; wearable sensors; bedtime monitoring; assisted living

1. Introduction

Life expectancy has been increasing over the years [1], mainly due to various scien-
tific and technological achievements. This fact poses a series of challenges that can be
addressed from scientific and technological development, improving the lives of the aging
population, either by preventive techniques that encourage active aging, or by monitoring
methods that inform about the state of health at all times, in order to provide them with
the necessary care.

According to [2], older adults may develop various health problems, including somatic
diseases and chronic conditions, physical function problems, psychological and cognitive
problems, and even various social difficulties. Among these conditions, physical difficulties,
such as motor impairment, and difficulty in performing activities of daily living (ADL) are
very widespread, with more than 70% of older adults (>85 years) suffering such problems.
These mobility impairments, along with other problems that may appear with age, such as
dementia, become factors that might increase the likelihood of falling and the consequences
that this may entail.
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Falls in Spain, as in the vast majority of countries, are a public health problem affecting
the older adult population. According to [3,4], it can be estimated that in Spain, 28.4% of
older adults over 65 suffer one or more falls per year, and 9.9% of these people have two or
more falls per year. It is worth mentioning that those most prone to fall are people with a
disability or those who live alone. Injuries and superficial contusions, fractures and, in very
extreme, cases of craniocephalic traumatism can be observed as the main consequences
after suffering a fall. Moreover, falls can also produce psychological sequelae, such as the
fear of falling again, also known as the fear of falling syndrome [3].

Despite the advances in technology and communications, still there is not a commercial
solution that successfully addresses the problem of falls in older adults. The balance
between provided or perceived functionality and privacy issues, as well as direct and
indirect costs, are major barriers for the success of technological solutions for fall detection
and prevention [5].

The aim of this work is to present a system that can overcome these limitations,
offering a fall detection and fall prevention system that can satisfy the user’s require-
ments. This system is privacy aware and runs in real time in an unobtrusive way with
adequate performance.

2. Related Work

The analysis of the state of the art for fall detection and prevention systems brings into
light the use of three different type of hardware solutions: those based on wearable sensors,
those based on ambient sensors and the ones based on computer vision systems [6]:

• Wearable sensors: This type of solution is based on sensors placed on the user’s
body. IMUs, consisting of accelerometers and gyroscopes that measure the user’s
movements, are the most common ones. Within this type of sensor, smartphones have
gained special relevance, as they have a powerful processing unit and at the same
time they have accelerometers and gyroscopes.

• Ambient sensors: Sensors of this type are usually stationary, being located in a specific
location of the user’s house. These types of sensors can be very different, ranging
from pressure sensors, vibration sensors, presence sensors, etc. The main limitation of
such sensors is that they are easily affected by external environmental factors, thus
producing false alarms.

• Vision-based systems: These systems employ a variety of computer vision techniques
to detect person fall or to perform gait analysis to determine the risk of falling of a
certain individual. Vision-based systems can make use of different types of cameras,
ranging from a single RGB camera, multiple cameras and depth cameras, such as a
Kinect. However, the major problem faced by these solutions is the lack of privacy for
the user.

More specifically, the works using wearable sensors can be organized into three main
subcategories: those that use bracelets or bands, either for the wrist, the waist or the ankle;
those that embed the sensor into some kind of smart clothing; and those that rely on smart
phones. Table 1 summarizes in which category falls in each of the works reviewed here.
The work in [7] presents a device based on a wristband that combines a threshold-based
method with machine learning approaches. This work also considers user acceptance as
a factor for the success of the proposed solution. The use of a wristband is appointed as
being an asset because the fall detection hardware can go unnoticed. The solution in [8]
proposes the use of an accelerometer sensor located in the user ankle, capable of identifying
three different states—fall, falling risk and activity of daily living—using a recurrent neural
network algorithm. In the same line, the use of the threshold-based method is proposed
in [9] but rather than in a wristband, it resorts to a footwear-based device. Although no user
acceptance is evaluated in this work, the requirement of being as unobtrusive as possible
led the design of this solution. Similarly, the work in [10] combines electromyography and
plantar pressure signals. Four surface electromyography (sEMG) sensors are employed to
capture the signals of four body muscles. Then, a machine learning classifier is employed
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to detect movements as gait or falls. The work in [11] also tracks the foot movements using
a inertial measurement unit (IMU) with 3D accelerometers, gyroscope and magnetometers.
The information collected by this sensor is intended to categorize a falling person or a not
falling person. The solution in [12] is more versatile, as it does not require the sensor to be
placed in a specific location. On the contrary, the proposed IMU sensor can be located in
any part of the body. Although the obtained accuracy for fall detection is promising, the
system is not yet ready to work in real time. The work in [13] uses the sensors provided
by an OPAL sensor to collect the acceleration generated by the body movement and, from
that information and using a machine learning classifier, detect a fall. The work in [14]
presents a solution based on smart clothing that collects gravitational acceleration to detect
a fall using a hidden Markov model [15]. This work differs among four different states:
balanced, imbalanced, falling, and normal state. This study also analyzes user acceptance
from the point of view of end users but also caregivers, yielding high rates of acceptance.
The work in [16] proposes the use of the accelerometer sensor to collect acceleration data
that are is first processed by a threshold-based method and then, those over the threshold,
are processed by a classifier. The work in [17] is similar, although only a threshold-based
method is employed. This work considers three thresholds and, depending on the threshold
that it is exceeding, the system identifies a movement (first threshold), a fall (the second
threshold) or an activity of the daily living (third threshold). The work in [18] employs
the accelerometer and gyroscope from the iPhone 8 to classify the collected data as fall or
non-fall. The work in [19] proposes a method that combines a convolutional neural network
(CNN) [20] with a long short-term memory (LSTM) network [21]. The main limitation of
the approach based on a mobile phone is that, despite being very convenient when the
users are outdoors, it is not very natural for individuals to carry their phone in their pockets
while being indoors. There is also a line of research that detect falls based on heart rate and
body temperature [22].

Table 1. Summary of data collection methods for fall detection.

Wearable

Smart Bands [7,8]

Clothing [9–11,14]

Smart Phone [18,19,21]

Ambient Sensors

Doppler [23,24]

UWB [25]

Infrared [26]

WiFi [27,28]

Vision
Depth Camera [29–32]

RGB Camera [33–37]

The second category encompasses different solutions in which the sensor is not carried
by the person being monitored but, on the contrary, it is part of the environment. The work
in [25] proposes the use of a non-wearable ultra-wide-band (UWB) sensor, installed in the
ceiling to monitor activities underneath its area of action. Although this line of research is
very promising, there are important limitations that yet prevent this solution from working
in real time and under real scenarios. Thermal sensors are also proposed in [26] using
infrared sensor arrays to collect data that are then processed by a recurrent neural network
(RNN) model to detect when a fall has occurred. It is also worth noticing the line of research
that employs the WiFi signal for fall detection. The work in [27] proposes a system for fall
detection that implements a threshold-based method applied to the change in acceleration
and speed of the moving object, calculated using the statistical theory of electromagnetic
waves. One of the main strengths of this approach is that no special hardware is required
apart from the WiFi transceiver and receiver. Although this work does not specifically
evaluate user acceptance, the fact that it does not require any specific sensor or hardware
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is pointed out as a factor to increase acceptance. Similarly, the work in [28] also employs
the 2.4 GHz WiFi band. The transmitter Tx emits electromagnetic waves that propagate
in the indoor environment. These waves are reflected by the objects located in the room
before arriving at the receiver Rx. A Doppler shift of the transmitted signal is caused by the
person’s movement, which affects the received RF signal. Statistical features are extracted
from the person’s activity, and then a machine learning classifier is employed to detect the
occurrence of a fall. The works in [23,24] propose the use of a microwave Doppler sensor
placed in the ceiling, emitting the microwave signal toward the floor. Falls can be detected
on the basis of the pattern of the analog signal that contains the Doppler frequency.

Finally, the set of solutions based on video analysis claims, as its major asset, the
avoidance of external sensors. Nonetheless, there are other drawbacks, such as the existence
of blind spots, distance from the camera, especially when using Kinect, or the impact that
illumination has on the performance of such video-based systems. In this sense, the use
of Kinect, as a depth camera, is very common. The work in [29] presents the use of a
walk-assistance robot with a built-in Kinect camera capable of detecting falls in the context
of performing rehabilitation exercises. The knee angles are used for a threshold-based
method to detect abnormal gait. When this happens, the system activates the robot brakes
so that a fall can be prevented from happening. The use of distances to the floor, calculated
using depth information, is also common. The work in [38] detects falls based on the
distance between the center of the body ellipsis and the floor. A threshold-based method
is implemented to detect the fall. This solution does not need to store images, so this is
an important aspect when it comes to ensuring user privacy. Moreover, for being based
on video, there is no need to wear or carry any sensor. The works in [33,39,40] propose
the use of the distance from the head joint to the floor. The use of Kinect cameras to
detect the imbalance state as a determinant of a fall is very common [30,31]. The work
in [41] combines the imbalance detection approach with a sharp change in the heights of
joints, as the result of a fall. In the same line, the work in [32] monitors sharp changes
in any of the body-joint points. The work in [42] implements an approach based on the
calculation of the body-joint speed between frames. A threshold-based approach is then
employed to detect the occurrence of a fall. Similarly, the work in [43] calculates the body
shape and then, the speed of movements is obtained from the variation over the frames.
A machine learning classifier is employed to determine when a fall has taken place. The
works in [44,45] propose the use of machine learning techniques to detect a fall from a
feature vector comprised from the body-joint information. There are other approaches
solely based on RGB-video analysis, in contrast to the aforementioned ones, which use the
depth information provided by Kinect. The work in [34] employs computer-vision analysis
to calculate the position of the user with respect to the ground to detect a fall. The works
in [35,36] combine the use of environmental sensors and a RGB camera embedded in a
mobile robot. The human shape is proposed in [33], as the shape orientation can also be
used to determine the occurrence of a fall. The work in [37] detects a fall based on the
differences of the body joints over the video frames.

Although most of the works reviewed from the state of the art focus on detecting falls
independently of the factors (both intrinsic and extrinsic) that have caused the fall, there are
also works that focus on factors identified as leading causes of falls. In this sense, the work
in [29] points out to the rehabilitation exercises performed by people already suffering
from walking disabilities. The drag-to-drop gait is identified as a major factor for falls.
Similarly, the work in [46] focuses on rehabilitation exercises and, more specifically, those
exercises performed with the lower limb. In this sense, the work in [47] points to any task
involving gait as a major cause for falls. The works in [30,31,48,49] focus on the intrinsic
factors that cause imbalances, such as muscle strength or the ability to posture control.
Age is also a very common factor pointed out by many works of the state of the art, such
as [14,16,23,24,33,36,41,45,50–52] or frailty [10], which is also related to age. Regarding the
extrinsic factors, the presence of obstacles [44,53], bedtime [39,54], stair architecture design,



Int. J. Environ. Res. Public Health 2022, 19, 7139 5 of 32

and stair obstacles, such as the absence of a handrail, irregular riser height and an object
left on stairs [49], are more commonly mentioned.

The work in [55] identifies the main post-implementation acceptance factors. The
analysis of such factors can be very relevant, as they might determine the acceptance of
a technological solution for fall detection. These factors are categorized into six themes:
(1) concerns such as system malfunctions, false alarms, high cost, stigmatization, and
lack of training; (2) experienced positive characteristics of technology, such as privacy,
increased safety or unobtrusiveness; (3) experienced benefits of technology such as in-
creased communication, increased capabilities to perform ADL, reduced burden on family
or perceived need to use; (4) willingness to use technology, such as increased willing-
ness to use or time of using (testing) technology; (5) social influence, such as influence of
family or influence of organizations; and (6) characteristics of seniors, such as previous
technological experience or physical environment. The analysis of the state of the art
for fall detection systems shows that some works pay attention to such factors. In this
sense, unobtrusiveness or being comfortable are pursued as a relevant factor for acceptance
in [9,12,23–25,27,28,30,37,38,44,46,50,56]. Privacy and increased safety is pointed out as a
user acceptance factor and pursued in [8,25,26,30,36,38–40,43,57]. The works in [13,48,58]
concentrate on achieving a high rate of accuracy to avoid system malfunction as a cause
for users’ lack of acceptance. For the authors in [29], user acceptance is determined by not
having to use any external sensors, as all the required equipment is provided by the robot.
Experiencing positive characteristics, such as satisfaction, is pointed out in [14]. In addition,
the fact that most older adults are familiar with cell phones is stated as a factor for user
acceptance as having previous technological experience [16–19]. In the overall, privacy and
unobtrusiveness are the two major user acceptance factor studied by the state-of-the-art
literature, although familiarity with technology is also relevant.

The analysis of the literature revision also provides relevant insights about the main
limitations found by the proposed solutions for fall detection. Most of the systems have
been tested with users that are not older adults or with simulated datasets, which might
have biased the real accuracy of the system [9,31,46,51,57]. The expensive price of the
solution is also mentioned in [25] or, related to the price, the demand of high computational
resources, as stated in [40]. The technological readiness level of the solution is also a
common limitation of the revised works, as some of them are not yet ready to perform
fall detection in real time [12] or work in the wild [13,17,37]. The number of false positive
can be an important issue, especially when actions are taken to prevent consequences
after a fall has been detected [26,27,44,54]. There are a common set of limitations for
approaches based on video analysis, such as blind spots, sunlight, occlusions, illumination,
etc., [34,36,38,41,42,52]. The difficulty in detecting backward falls is also mentioned in [30].
The incapability of performing well when there is more than one individual in the scene or
there are other moving objects is pointed out in [27,39]. The low accuracy achieved in falls
occurring from beds or sofas is also mentioned in [35,38,39]. For those approaches based on
mobile phones, the fact that the user has to carry the phone while being at home is pointed
out as a limitation in [16]. To summarize, the major limitations found in the literature are
related to the mechanisms employed to train and test, the number of false positive, the
limitations intrinsic to the use of video sources, or the low accuracy when the fall occurs
from a sofa or a bed.

The limitations identified in the previous work explain the lack of generalized solutions
for fall detection and prevention. This research works on the hypothesis that by tackling
these limitations (i.e., lack of privacy, no real-time system, the need to wear uncomfortable
devices, or the cost), a solution will be achieved that potentially meets the requirements
to be widely accepted by potential users: both older adults and individuals. To validate
the working hypothesis, a system for fall prevention and fall detection is constructed that
meets the requirements of being privacy aware, running in real time, being able to be worn
in an unnoticeable manner and being low cost. Furthermore, the achieve performance
should be similar or improve the state-of-the-art system performance. In this sense, this
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work presents a solution that comprehensively addresses falls by tackling some of the
major limitations found in previous work. On the one hand, this work addresses the major
factors for user acceptance as they are unobtrusiveness and privacy. It has to be noticed that,
whereas video-based approaches cater for unobtrusiveness, they fail to do so for privacy,
even when only depth information is used, as with Kinect cameras. Nonetheless, the use of
wearable devices has also been considered as an unobtrusive solution, especially when the
wearable sensor is light, small and elegant. This work therefore proposes a solution based
on a wearable sensor, using the Puck.js sensor, embedded in a comfortable waist hanger
design. On the other hand, this proposed approach addresses one of the major causes of
falls, the bed-exit action. This operation is, at the same time, one of the major limitations
of state-of-the-art works. In order to do so, the proposed approach combines information
from the wearable sensor with information obtained from an environmental sensor located
underneath the mattress that determines the presence and location of the individual on the
bed, based on pressure information. The main advantages of this solution, compared to the
state-of-the-art solutions, is that it works in real time and, more importantly, it caters to the
unobtrusiveness and privacy levels required for ensuring user acceptance.

This article is structured as follows. First, the materials and methods used for this
research are described, paying special attention to the proposed architecture that enables
the system to run in real time and at low cost. Then, the experimental validation and
the obtained results are described in Section 5. The obtained results are discussed in the
next Section 6, and the main conclusions drawn from this experiment and future work are
summarized in Section 7.

3. Proposed System

Falls in older adults are a public health concern worldwide. As the population ages,
this problem is set to increase. In order to prevent or alleviate the problems associated with
falls, technological systems based on sensors are emerging as a way to process information
in real time to determine the occurrence of a fall. These systems can be divided into two
major categories [59]:

• Fall detection systems: These systems are intended to use one or more sensors to
detect, in real time, whether a person has suffered a fall. In general, inertial sensors
are usually employed, consisting of accelerometers and gyroscopes that can measure
abrupt movements. However, there are also other types of sensors that are capable of
detecting impacts. These systems are the most common ones and the ones that have
received most attention from the scientific community. However, it is important to
note that these systems cannot prevent the fall, but rather their main responsibility is
to mitigate the negative effects of the fall.

• Fall prevention systems: These types of systems are used less frequently and they do
not give immediate results like the previous ones. The sensor technology involved is
similar to that used in fall detection systems, except that these systems focus more on
analyzing and extracting features about the user’s gait, posture or behavior.

This work addresses the fall problem in older adults from these two perspectives.
From the perspective of fall detection, the aim is to automatically detect falls in real time, as
this reduces the negative consequences, both physical (abrasions, dislocations, and broken
hips) and psychological (fear of falling syndrome). From the perspective of fall prevention,
this work aims to enable mechanisms prior the fall occurrence. In the context of a nursing
home or a person with a caregiver at home, the individual will generally be supervised
and accompanied at all times during the day. The most problematic time is at night, when
there is less supervision to guarantee a good night rest. This time of day is particularly
sensitive for people suffering from conditions such as dementia or reduced mobility, as
bed exit increases the risk of falls. Traditionally, restraints have been used to prevent these
unattended bed-exit attempts to prevent falls in individuals that suffer a severe condition.
These restraints, beside being uncomfortable for individuals, represent a loss of freedom,
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which is why significant efforts are being aimed at finding alternative mechanisms to
avoid them.

This work also contributes to the elimination of restraints by providing an unobtrusive
mechanism to monitor individuals so that whenever an intention to exit is detected, the
caregiver can be automatically notified and act in a timely manner.

Sensors, both environmental and wearable, are proposed to address both of the
above perspectives. These sensors collect information about the individual that will help
caregivers and therapists to provide the best possible care, preventing falls from occurring.
This solution mainly consists of a processing node, which in our case is a Raspberry Pi
4, and two different types of sensors that are used to monitor the older adult: an inertial
measurement unit (IMU) and three pressure sensors. The following subsections provide
the details of fall detection and prevention systems proposed here.

3.1. Fall Detection

The purpose of the fall detection system is to detect a fall as early as possible such that
help and assistance can be requested in order to minimize the negative consequences of the
fall. The system proposed here improves an earlier version presented in [60], based on the
MetamotionR inertial sensor manufactured by Mbientlab. This sensor gathers measures
from an accelerometer, a gyroscope and a magnetometer unit. Both the previous and
current systems follow the same approach of extracting various features to conclude, based
on a previously trained model, whether the individual has suffered a fall or not (video
illustrating the use of the fall detector: https://youtu.be/8Zn43OqBd1w (accessed on
5 April 2022)).

The following subsections describe both the hardware and employed method proposed
for fall detection.

3.1.1. Hardware

The proposed solution for fall detection implements a wearable-sensor-based approach.
More specifically, it employs a Puck.js sensor, which is an inertial sensor with a set of
components as listed underneath:

• Magnetometer: This sensor is used to measure magnetic forces. It can also measure
variations in magnetic fields.

• Accelerometer and gyroscope: These two sensors provide inertial measurements,
such as acceleration and rotation, measured in g and degrees per second, respectively.
These measurements are essential for fall detection, as they are a strong indicator of
abrupt movements. This sensor has some advanced features built upon the raw data
obtained from these two sensors, such as step counting or sensor tilt.

• Light sensor: This simple light sensor gives a value between 0 and 1, indicating the
presence or absence of light.

• Temperature: It provides the ambient temperature measured in Celsius degrees.

In addition to these components, advanced functionalities are constructed upon the
information provided by these sensors, such as step counting or tilt detection. Nonetheless,
the most attractive feature is the possibility it offers to modify the behavior of the sensor
itself. Despite the wide variety of IMUs that can be found on the market, they generally
offer a closed solution, with data only being accessible through close APIs. On the contrary,
the Puck.js sensor offers a firmware that provides an extra layer with a Javascript interpreter
for microcontrollers called espruino. This enables the customization of the sensor behavior,
as well as, for example, disabling components that are not needed in order to save battery
life. However, despite all these positive points, the inclusion of this extra layer entails an
overload due to the use of the interpreter, which has an impact on the sensor sampling
frequency, reducing it to a peak frequency of 50 Hz. This would be, however, sufficient
according to the work of [61], given that the human body movements are considered to
occur in the range of 0 to 15 Hz. In fact, according to the Nyquist’s theorem [62], the
sampling rate could be reduced to around 30 Hz. Furthermore, the data collected from the

https://youtu.be/8Zn43OqBd1w
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sensor are then sent to a processing node, which in this case is hosted on a Raspberry Pi
4. This node consists of a SoC with four Cortex A-72 processing cores, with up to 8 GB of
RAM, 2.4 and 5 GHz IEEE 802.11ac wireless connectivity, as well as both Bluetooth and
BLE connectivity.

3.1.2. Architecture

The Puck.js sensor is therefore proposed to obtain the data related to the person
movement and, consequently, to be able to determine when a fall has occurred. In order to
do so, it is necessary to provide a service that supports Bluetooth communication at the
processing node, since the sensor communicates its information via Bluetooth low energy
(BLE). The main challenge to be addressed is the short range of Bluetooth communication
in this kind of device. To maximize battery life, these devices are quite power constrained,
and therefore, Bluetooth class 2 is used, which limits the power to 2.5 mW and the range
to around 5–10 m. It is difficult to maintain a continuous communication with the sensor
due to these limitations, and there may be data loss when streaming data to the processing
node. A possible solution would be to use a class 1 device, increasing the range to 100 m,
although this is unfeasible, as it would increase the power to 100 mW, raising the power
consumption and therefore reducing the battery life of the sensor.

This work avoids continuous communication, both because of the possible loss of
information and because of the increase in energy consumption that this implies. Thus, the
use of BLE announcements is exploited.

The possibility offered to modify the firmware of the Puck.js sensor has made it
possible to deploy a threshold-based algorithm (TBA) along with a state machine devised
to determine the movements that are likely to be a fall. When this happens, the sensor
stores in its internal memory the data of the 1 s time window corresponding to such
event. A certain movement is considered a fall when the signal vector magnitude (SVM)

(SVM =
√
(|Ax|2 + |Ay|2 + |Az|2) ) of the acceleration is greater than 2.5 G. For further

details of the state machine, please refer to [60]. The sensor publishes an announce alerting
about the possibility of a fall event. This announce is received by a processing node
(Raspberry Pi). Whenever such a notification is received, the processing node connects to
the sensor and downloads the data stored in the sensor internal memory.

Upon receiving the event and downloading the data, the feature extraction service
that runs outside the sensor performs a data pre-processing so that the movement data are
represented in a more appropriate way, and their dimensionality is reduced. The features
yielded by this service are the following:

• Acceleration SVM mean;
• Acceleration SVM variance;
• Acceleration Y mean;
• Acceleration Z mean
• Angular velocity Y mean;
• Angular velocity Z mean
• Fall time;
• Acceleration Y standard deviation;
• Acceleration Z standard deviation;
• Angular velocity Y standard deviation;
• Angular velocity Z standard deviation;
• Fourier coefficient in acceleration SVM;
• Fourier coefficient in angular velocity SVM.

These features will be sent, along with the MAC of the sensor that has captured the
data, to a multicast group to which the fall detection service is listening. This service consists
of a previously trained model that, based on the features, will classify the movements into
a fall or an ADL. In the event of detecting a fall, this service will alert a designated person
so that he/she can assist the victim immediately. Listing 1 shows the pseudocode for the
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state machine implemented in the firmware of the IMU itself, where, after detecting an
acceleration higher than the threshold, the obtained measurements are stored in a window
of one second. If, once this window is saved, a peak is detected again, this may mean
that the user may be doing some kind of physical activity (for example, running), so the
stored window is removed. Otherwise, if after storing the window the acceleration remains
constant and no acceleration higher than the threshold is obtained, it may mean that the
user has suffered a fall, so a fall event is sent. Listing 2 shows the pseudocode of the
intermediate and final services that receive the data collected from the sensor, where once
a fall event is received, the data are downloaded, its features are extracted, the data are
normalized, and the previously trained model is used to classify the activity as a fall or
ADL. If a fall is detected, an alarm is triggered, alerting a caregiver.

Listing 1. IMU firmware pseudocode for fall detection.

s t a t e = SAMPLING;

while ( 1 ) {

acc = readAccelerometer ( ) ;
a n g u l a r _ v e l o c i t y = readGyro ( ) ;

acc_svm = s q r t (pow( acc . x , 2 ) , pow( acc . y , 2 ) , pow( acc . z , 2 ) ) ;

switch ( s t a t e ) {
case SAMPLING:
i f ( acc_svm > 2 . 5 ) {
s t a t e = POST_PEAK ;
t ime_re ference = time . now ( ) + 1000 ;
}
case POST_PEAK :
log . save ( acc ) ;
log . save ( a n g u l a r _ v e l o c i t y )

i f ( time . now ( ) > t ime_re ference ) {
s t a t e = POST_FALL
t ime_re ference = time . now ( ) + 1500 ;
}

case POST_FALL :
i f ( acc_svm > 2 . 5 ) {
log . c l e a r ( ) ;
s t a t e = POST_PEAK ;
}

i f ( time . now ( ) > t ime_re ference ) {
s t a t e = SAMPLING;
send_event (FALL_EVENT) ;
}
}

}

One of the main advantages of the proposed architecture is that, as the services that
obtain the sensor data via BLE communicate with the fall detection service using multicast
groups, these services can either be on the same processing node or on a separate one
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connected to the same network. Figure 1 depicts the different elements that comprise the
proposed solution for fall detection as well as the workflow from the user fall until the
alert is triggered. The IMU2MCAST service is the one listening for the sensor events. Upon
receiving an event, the data are downloaded by the Download Service, which is provided
with the MAC of the sensor that sent the event. These data are then sent to the Feature
Extractor. The extractor obtains from the raw data, a set of features that represent the user
movement, which are sent back to the IMU2MCAST service. Finally, IMU2MCAST forwards
the features to a multicast group to which the Fall Detector is subscribed, processing the
features and taking actions depending on whether the set of features is classified as a fall or
an ADL.

Listing 2. Gateway pseudocode for fall detection.

// Intermediary s e r v i c e s
event , mac = imu2mcast . wai t_ for_event ( ) ;
i f ( event == FALL_EVENT) {
data = download_service . download_data ( mac ) ;
f e a t u r e s = f e a t u r e _ e x t r a c t o r . e x t r a c t _ f e a t u r e s ( data ) ;
imu2mcast . send ( f e a t u r e s , FALL__DETECTION_MCAST_GROUP) ;
}

// F a l l d e t e c t o r
f e a t u r e s = w a i t _ f o r _ f e a t u r e s ( ) ;
features_norm = normal ize_fea tures ( f e a t u r e s ) ;
f a l l = model . p r e d i c t ( f e a t u r e s ) ;

i f ( f a l l ) {
ra i se_a larm ( ) ;
}

Figure 1. Proposed system architecture.
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3.2. Fall Prevention

Far more important than detecting falls is preventing them from occurring in the first
place. To this end, a wide variety of systems have been devised to address such a complex
topic. The system presented here focuses on monitoring people at night, as this is when they
tend to be less attended and more vulnerable. The proposed system provides information
when an older adult, being monitored, has to exit the bed or is about to do so, thus alerting
the caregiver about this situation. This system is very useful for people suffering from
dementia or any other cognitive impairment as well as with reduced mobility. For people
suffering such conditions, just transiting with no supervision entails a high probability of
suffering a fall. It is, therefore, especially important to be able to detect when these people
exit the bed by their own means and without help (video illustrating the use of the fall
prevention system: https://youtu.be/--QLtgktoDw (accessed on 5 April 2022).

The following subsections provides the details, both in terms of hardware and methods,
that comprise the proposed solution for fall prevention.

3.2.1. Hardware

There are two different sources of information that are employed in order to detect if
the person is on the move. In the first place, we take advantage of the IMU already in use for
fall detection, the Puck.js. Recall that the behavior of this sensor is completely modifiable,
i.e., we can modify the sensor firmware to send, in addition to the fall event previously
discussed, a movement event that indicates that the user has stood up or is walking.

On the other hand, the system focuses on bedtime monitoring, so pressure sensors are
used to determine whether the user is in bed or not. More specifically, three 600 mm film
pressure sensors are used, which change their electrical resistance when force or bending
is applied to the sensor membrane. These sensor strips will be placed under the mattress,
indicating whether someone is lying on the mattress based on the value provided by the
sensors. Even the movements of the user on the bed are taken into account. The processing
node for this system is the ESP32-DevKitC board, which is equipped with both WiFi and
Bluetooth, with 4 MB flash memory and an ESP32 SoC. This board was mainly chosen
because of its good results for IoT solutions, its low cost, having both Bluetooth and WiFi
connections and the possibility to use several analog inputs.

The prevention system therefore consists of the IMU Puck.js previously explained and
an ESP32 node which will have the pressure sensors connected to three analog inputs, also
using a voltage divider with a 1 kΩ resistor. The connection between the ESP32 node and
the sensors is to obtain a higher value from the inputs as more pressure is exerted on the
sensors (which are nothing more than a variable resistor). Figure 2 shows the schematic
diagram for each analog input. The three sensors had to be placed across the bed width,
as a sleeping person will mostly move horizontally across the mattress, and it is these
movements that can give significant clues as to whether the user is going to exit the bed.
Given the bed size used as a test bed for this system, which is 90 cm wide and 190 cm high,
the three sensors were placed as follows: one sensor in the center at 45 cm from both side
edges, and the other two sensors at the ends of the bed, each at a different edge and more
precisely at 20 cm from the edge of the bed. Regarding the bed height, using the headboard
as a reference, the beginning of the strips was placed at 57 cm from the headboard so that
the strips were placed just under the torso of the subject, as this is the area that exerts the
most pressure on the bed when resting on it. The sensors with their respective location on
the underside of the mattress can be seen in Figure 3. The ESP32 processing node with its
required set-up can be seen in Figure 4.

https://youtu.be/--QLtgktoDw
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Figure 2. Connection circuit for analog sensors.

Figure 3. Location of sensors under the bed.

Figure 4. Processing node used for in-bed monitoring.
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3.2.2. Architecture

The proposed system architecture follows a twofold approach. On the one hand,
motion detection is used to determine the user’s intention to exit bed and, on the other
hand, the information provided by the pressure sensors is used to detect when the person
has actually exited the bed.

The motion detection logic is implemented using the accelerometer unit provided by
the IMU sensor. For this purpose, the value of the X and Z components of the accelerometer
are continuously monitored. These components provide information about the acceleration
of the body. Based on the tests carried out, it was concluded that the standing up action can
be considered when the X component of the accelerometer exceeds the value of 0.9, and
the Z component is between the range of 0.4 and −0.4. The use of these two components
prevents false positives from occurring when the user lies down. Whenever these values
are reached, the sensor triggers a motion event using the BLE announcements in the same
way that fall events are triggered. Considering there is already a software service for fall
detection in place that receives events via BLE and forwards them to multicast groups
(IMU2MCAST), this is reused for this purpose as well. However, in this particular case, the
service directly forwards the event to the corresponding multicast group, obviating the step
of downloading the data from the sensor as in the case of fall detection. In Listings 3 and 4,
the pseudocode for the IMU’s firmware and the gateway’s software for fall prevention can
be observed.

Listing 3. IMU firmware pseudocode for fall prevention.

while ( 1 ) {
acc = readAccelerometer ( ) ;

i f ( acc . x > 0 . 9 and ( acc . z > −0.4 and acc . z < 0 . 4 ) {
send_event (MOVEMENT_EVENT) ;
}
}

Listing 4. Gateway pseudocode for fall prevention.

event = imu2mcast . wai t_ for_event ( ) ;
i f ( event == MOVEMENT_EVENT) {
imu2mcast . send ( event , FALL_PREVENTION_MCAST_GROUP) ;
}

On the other hand, the logic that determines whether an individual is in bed is based on
the use of three pressure sensors located under the bed mattress and connected to the ESP32
board. These sensors have the advantage over the IMU that they can be connected directly
to a WiFi network, and can communicate data using a client/server paradigm via sockets.
Although it was initially considered to add a calibration period so that the sensors would
not consider the pressure of the mattress, first tests yielded that pressure exerted by the
mattress is negligible and it is not even detected. The proposed module therefore processes
the information from these three sensors located underneath the mattress, generating
information in the form of events, as described below:

• NO_PRESENCE: Whenever there is no pressure exerted in any of the sensors. In
general, this situation occurs whenever all pressure sensor reads are 0 or close to 0.

• SITTING_IN_LEFT_EDGE and SITTING_IN_RIGHT_EDGE: This represents a person
sitting on one of the bed sides, which may be a strong indication that the user is about
to exit the bed. This event is considered whenever the sensor on one of the sides yields
a value of 0, and the value of the opposite sensor is significantly greater than that of
the sensor in the middle.
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• LYING_IN_RIGHT_EDGE and LYING_IN_LEFT_EDGE: This occurs when the person
is lying close to one of the two bed sides. In this case, the sensor placed in the middle
yields the highest value among the three sensors. The difference between the middle
sensor with respect to one of sides is less than the difference between the two sensors
placed in both bed sides.

• LYING_IN_MIDDLE: The person rests in the middle of the bed. In this case, the
middle sensor has the highest value among the three sensors, and the differences
between the middle sensor and the bed-side sensors are greater than the difference
between the values yielded by the two bed-side sensors.

Listing 5 shows the pseudocode for the algorithm devised to detect the user position
on the bed.

Listing 5. Bed presence algorithm pseudocode.

middle = readSensor (MID) ;
l e f t = readSensor ( LEFT ) ;
r i g h t = readSensor (RIGHT) ;

i f ( middle near 0 and l e f t near 0 and r i g h t near 0 ) {
presence = NO_PRESENCE
} e l s e i f ( middle > r i g h t and middle > l e f t and d i f f ( r ight ,

middle ) > d i f f ( l e f t , r i g h t ) and d i f f ( l e f t , middle ) > d i f f (
l e f t , r i g h t ) ) {

presence = LYING_IN_MIDDLE
} e l s e i f ( l e f t > r i g h t and l e f t > middle and r i g h t near 0 and

d i f f ( l e f t , middle ) i s l a r g e ) {
presence = SITTING_IN_LEFT_EDGE
} e l s e i f ( l e f t > r i g h t and middle > l e f t and d i f f ( l e f t , middle )

< d i f f ( r ight , l e f t ) {
presence = LYING_IN_LEFT_EDGE
} e l s e i f ( r i g h t > l e f t and r i g h t > middle and l e f t near 0 and

d i f f ( r ight , middle ) i s l a r g e ) {
presence = SITTING_IN_RIGHT_EDGE
} e l s e i f ( r i g h t > l e f t and middle > r i g h t and d i f f ( r ight ,

middle ) < d i f f ( r ight , l e f t ) {
presence = LYING_IN_RIGHT_EDGE
} e l s e {
presence not recognized
}

send_event ( presence ) ;

It should be noted that when the user changes position in bed, the detection process
becomes more complicated. This is because the data produced in the transitions do not
follow clear patterns. To alleviate this problem, two actions are implemented. On the
one hand, if a detected position does not follow any known pattern, it is discarded, and
no change of position is considered to have occurred. On the other hand, to avoid a
position change from being identified as an actual posture, it is stated that the recognized
pattern should last longer than one second. In either case, the events are sent via a TCP
socket to a server that can either be hosted on the same processing node (Raspberry Pi)
that communicates with the Puck.js sensor or on a completely different node, as long as
the sensor and the node are in the same network. The server, named BedPresenceService,
receives the event from the sensor, and in turn forwards it to a multicast group in which
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those services that want to obtain information about the bed presence status are listening.
Listing 6 shows the pseudocode of this service.

Listing 6. BedPresenceService pseudocode.

presence_event = wai t_for_event ( ) ;
send_event ( presence_event , BED_PRESENCE_MCAST) ;

Finally, there is a third service, named ActivityDetector, whose responsibility is to
subscribe to the multicast groups in which announcements are published about motion
and bed position events. Thus, the ActivityDetector combines both sources of information
to conclude whether there is a real risk of a fall, in which case the caregiver is alerted.
There are therefore two sources of data that provide independent information; one tells
whether the user is on the move and the other one tells the user position on the bed. The
two sources of information can be combined to conclude whether the user is trying to
get up. The scenarios considered risk situations that this service will inform about are
the following ones: (1) no presence has been detected on the bed, and (2) the user has
been detected sitting on the bed side and there is movement. In the second scenario, two
different information sources are combined to reduce false positives. Listing 7 shows the
pseudocode for the ActivityDetector.

Listing 7. ActivityDetector pseudocode.

presence = recv_presence_event ( ) ;
movement = recv_movement_event ( ) ;

i f ( presence == NO_PRESENCE) {
ra i se_a larm ( ) ;
} e l s e i f ( ( presence == SITTING_IN_RIGHT_EDGE || presence ==

SITTING_IN_LEFT_EDGE ) && movement == True ) {
ra i se_a larm ( ) ;
}

Figure 5 summarizes the fall-prevention system workflow. When the IMU detects a
movement with an acceleration in the X component greater than 0.9 and an acceleration in
the Z one between 0.4 and −0.4, it triggers a movement event to the IMU2MCAST service,
which forwards the data to the corresponding multicast group. Meanwhile, the sensor that
continuously monitors the bed sends the current state of bed presence to a server, named
BedPresenceService, which forwards the information received to another multicast group.
Finally, the ActivityDetector service is in charge of processing the information from both
sensors. This service subscribes to the multicast groups for movement and bed position
detection in order to receive the required information and to process it. When the system
detects one of the two scenarios explained before, the service considers that the person is
trying to exit bed.
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Figure 5. Overview of the fall-prevention system.

3.3. A Comprehensive Solution for Fall Detection and Fall Prevention

Both the fall detector and the fall prevention system have been so far described
separately. Nonetheless, the main objective of this work is to present a comprehensive
system that can monitor an individual for an entire night so as to alert a caregiver when
circumstances arise that pose a risk to the individual, such as falling or exiting the bed.
Figure 6 provides an overview of how the system works and how the various components
of the system interact.

The processing can be clearly divided into three stages. The first stage involves the
sensor system in charge of processing the data on the edge, following an edge computing
approach. In this case, the sensors used are the IMU Puck.js to obtain the inertial mea-
surements of the individual and the ESP32 connected to the three pressure sensors that
detect the user position on bed. Then, there are a set of intermediate services in charge of
communicating with the sensors and receiving the information they process. Their function
is to forward the data to the upper services that will make the decision, as well as, in some
cases, performing some processing on the data. The information received and processed is
sent to multicast groups to which the services that require them are subscribed to. Finally,
we have the set of services that, thanks to the intermediate services, perform additional
processing to determine whether it is necessary to alert the caregiver about a risk situation.
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Figure 6. Diagram showing how the system works in a general way.

4. Method

This work seeks answering the research question of how to prevent and detect falls
in older adults, using a solution that is widely accepted and adopted by older adults
and their caregivers. The proposed solutions need to, therefore, address the aspects that
impact user acceptance, as justified in the previous work section, and are as follows: being
privacy aware, working in real time, avoiding the need to carry uncomfortable devices,
and having a constrained price. In this sense, this work proposes to build a solution
that caters to these aforementioned requirements plus minimizes the false negative rate
and achieves similar performance as the best solutions found in previous works. Based
on the proposed system described in the previous section, two methods are proposed
for fall detection and fall prevention that, when combined, comprehensively address the
goal of preventing and detecting falls in older adults. This section describes how these
two methods were constructed, whereas the following section describes how these were
experimentally validated.

4.1. Fall Detection

There are several aspects that were considered in the methodology proposed. The literature
is very diverse with regard to where to locate the sensor in order to detect falls. According
to [63], the most popular location, which has been proven to be most effective one for fall
detection, is the waist, although the use of the head and chest may also be feasible. Based on
this premise, it was decided to place the sensor at the waist, as shown in Figure 7. Moreover, the
sensor is placed with the orientation shown in Figure 8 such that the X-axis is perpendicular to
the ground and upwards, the Y-axis is perpendicular to the user’s body and to the left, and the
Z-axis is parallel to the ground pointing to the user’s body.
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Figure 7. Location of the sensor in the user’s body.

Figure 8. IMU sensor used for this work with its respective axis.

The main challenge of fall detection systems is to differentiate whether a movement
corresponds to a fall or an activity of daily living (ADL). In order to do so, the proposed
method relies on a trained model, and from a set of user movement features is able to
recognize whether the movement corresponds to a fall or an ADL. ADLs are those everyday
movements of the user that, in some cases, produce fall-like data, such as running or sitting.

This model was trained on data captured from a set of users performing both ADLs
and different types of falls. More specifically, five ADLs (hit the sensor, jump, run and stop,
sit on a chair, and pull the sensor) and four different types of falls (forward fall, backward
fall, fall on the right side, and fall on the left side) were performed.

These data were collected in a lab context (in the Institute of Information Technologies
and Systems, University of Castilla-La Mancha). Seventeen different people performed
the exercises, comprising four women and thirteen men, with an average age of 30± 8.02
years, an average height of 174.18± 7.85 cm and an average weight of 74.35± 9.71 kg. To
perform falls, a mat was employed to soften falls but it still let them simulate reality as
closely as possible.

The support vector machine (SVM) classifier, one of the most widely used in fall
detection [64–66], was chosen, yielding better results than the KNN classifiers [67].

The training phase of the model was followed by the testing phase, for which two
different sets of tests were conducted. During the first set of tests, the dataset collected from
the 17 people were split into a training and a testing set. The testing set is used to predict
the type of event (either fall or ADL) and calculate, afterwards and based on the obtained
results, the accuracy of the system and make improvements to the model. In this sense,
a subject was monitored during a full night while sleeping. Throughout the night, data
were captured on those movements that are likely to be falls, and the prediction yielded by
the model was stored. In cases of incorrect prediction, the data were used to retrofit the
model. This was done only once to avoid overfitting. Once this information was added
to the model, the second test set was carried out, which consisted of a series of exercises
performed by a new set of users. These exercises comprised the following:
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1. Jump;
2. Run and stop;
3. Sitting on a chair;
4. Forward fall;
5. Left side fall;
6. Right side fall;
7. Backward fall.

4.2. Fall Prevention

A series of tests were carried out in order to observe the behavior of the different
sensors when the user performs different actions and to obtain a measure of the system
performance. These tests were split into two groups: those involving the IMU and those
involving the bed presence sensors. The tests were carried out by a user performing
common activities.

A threshold-based algorithm (TBA) was proposed for movement detection based on
the inertial information provided by each of the axes of the IMU. This algorithm will analyze
the sensor inertial measurements when the user attempts to exit the bed. To evaluate the
proposed TBA, a person simulated a set of activities, as known: exit the bed from the
left and right side of the bed, and then, in both cases, also walk away. The data obtained
from the inertial sensors and, more specifically the data from the different components
of the accelerometer, were analyzed while performing these activities. Figures 9 and 10
show the accelerations of the components when performing a bed exit from the left and
from the right sides, respectively. For both actions, a common factor can be observed, in
which X starts close to 0 and Z close to 1. Then, as the user gets up, it can be observed
how this situation is reversed. When the user is standing up completely, the value of the
X component oscillates around 1 and 0.9, and the value of the Z component is between
0.4 and −0.4. These values are to be expected since the X component corresponds to the
axis perpendicular to the ground and the Z component is the parallel to the ground. The
value of the Y component is ignored, as it does not provide much more information beyond
what is already provided by the X and Z components. The Y component would be relevant
to identify whether the user exits from the right or left side, which, for our purposes, is
irrelevant.

Figure 9. Accelerations of the users getting out of bed from left.

Furthermore, the study conducted to determine the presence in bed using the pressure
sensors was mainly based on the data collected from static positions in the bed. An analysis
of the pressure readings was carried out on the basis of the user position, in order to learn
a behavior pattern for these readings, according to the posture adopted in the bed. A
summary of the activities and the results obtained for each of the sensors can be seen in
Figure 11.
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Figure 10. Accelerations of the users getting out of bed from right.

(a) Lying Middle (b) Lying Left

(c) Lying Right (d Sitting Middle

(e) Sitting Left (f) Sitting Right

(g) Sitting Middle with bed up

Figure 11. Sensor value depiction according to the position of the user on the bed. Each color is
associated with a sensor, red with the left sensor, green with the central sensor and blue with the
right sensor.
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Expected results were obtained depending on the position, which indicates that the
placement of the sensors is optimal for recognizing the user actions. Those positions in
which the user is lying in the middle yield measurements in which the central sensor
obtains much higher values than the value of the other two sensors, both of which report
similar values. Those positions in which the user is lying on one side of the bed produce
values that are high and almost equal for both the central sensor and the sensor positioned
at the bed side where the patient is lying, with the measures of the central sensor being
higher. The sensor at the opposite side of the bed produces negligible measures. Finally,
when the user is sitting on the bed, very high values can be observed only in the sensor
located at the side of the bed where the user is sitting, while the value of the other two
sensors are very low. This facilitates the recognition of this activity, and the fact that the
user is sitting on the bed side is a strong indication that he/she is about to exit the bed.

5. Results

The system proposed here was experimentally validated. For this purpose, a set of
experiments was designed to validate the fall detection system, on the one hand, and the
fall prevention system, on the other. The following sections will describe and analyze both
the proposed experiments and the obtained results.

5.1. Experiments and Results Validating the Fall Detection System

The validation of the fall detection system faces a major limitation in that it is not
feasible to test the proposed approach with the target user group (i.e., older adults). Sim-
ulating falls is a high risk activity and for this reason, it is discarded to record a testing
dataset involving older adults. In addition to this limitation, falling is not a natural activity
for people, like walking or exiting the bed. Thus, testing the system with a simulated-fall
dataset does not ensure that the system performs equally well in a real environment with
real falls. Simulated falls may not include instances of real falls, and that might bias the
system performance. Given these baseline conditions, it was decided to experimentally
validate the system with 11 users, 6 of whom took part in the exercises carried out to train
the system, whereas the other 5 had not previously performed the exercises.

The testing dataset consisted of each subject performing seven different exercises,
three of which were ADLS (jumping on site, running and sitting on a chair) and four of
them were different types of falls (front fall, right-side fall, left-side fall and back fall). The
exercises were performed twice by each subject. The testing dataset was provided to the
classifier to determine which of them were falls. The results obtained are shown in Table 2.

Table 2. Table with the results of the tests grouped by exercise.

Activity TP TN FP FN

Backward Fall 17 5

Forwad fall 22

Left fall 21 1

Right fall 21 1

Run 20 2

Jump 22

Sitting Down 21 1

The obtained results show that, in the overall, the majority of the tests were correctly
classified. Nonetheless, it is worth noting that the classifier fails to recognize the back-
wards fall up until five times. The literature revision already pointed out the difficulty of
recognizing this type of falls, which is consistent with the obtained results. This results
are also explained because of the difficulty of performing such a type of fall as well as its
possible resemblance to the sitting activity. Regarding the rest of the exercises, the results
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are adequate, with the left and right falls failing to classify one exercise each. Three false
positives are obtained, one for the sitting activity and two for the running activity.

The system performance is calculated from the results obtained from the testing dataset.
To this end, we calculated the accuracy (Accuracy = (TP + FP)/(TP + FP + TN + FN),
the specificity (Speci f icity = TN/(TN + FP)) and the sensitivity (Sensitivity = TP/(TP +
FN)), obtaining the following results:

• Accuracy: 93.51%
• Sensitivity: 92.04%
• Specificity: 95.45%

In general, accuracy is usually the most intuitive metric for testing the performance of
a system, but in many cases, it can be misleading, for example, if there were few positive
cases in the tests, and the system classified all cases as negative. The accuracy would
be acceptable, despite not having classified the positives correctly. In order to avoid this
problem, the use of other metrics, such as sensitivity and specificity, can be quite useful, as
both metrics represent, respectively, the number of positives and the number of negatives
correctly classified. The high specificity obtained by the system is worth mentioning because
it means that most activities that are not falls are correctly detected. The main drawback is
the high rate of false negatives, caused by backwards falls. In geriatric care, high sensitivity
is more important than specificity since it is preferable to have false positives for falls than
to have unreported falls.

It is important to note that the system training, in addition to the predefined exercises,
also include a period in which a user was monitored and data were collected at night. This
ultimately resulted in the system having more information on those movements that are
not falls, and therefore contributed to a better specificity. Future work is still needed to
improve the sensitivity, key for fall detection, by collecting more fall data.

5.2. Experiments and Results Validating the Fall Prevention System

The fall prevention system was tested in two parts, as it is comprised of two subsys-
tems: the motion system and the bed presence system. Future work remains to be done on
testing the prevention system as a whole.

5.2.1. Validating the Bed Presence Detection System

In order to test the bed presence system as well as the algorithm that determines the
position in bed, whenever presence is detected, two different tests were conducted. The
first tests consist of performing various movements in bed during which the individual
changes from one position to another, for example, from lying in the middle to sitting on
the right side of the bed. Sequences are also added in which the individual performs the
complete task of exit bed and lying down on bed. The second tests are more challenging
for the system, with a sequence of actions in which users go through all possible positions
in the bed. This second tests are therefore more relevant in terms of the obtained results,
and they are the ones to which we will refer to when discussing the results.

The first set of tests shows, first of all, different movements performed by a user
without any mobility problems. The results of this test can be seen in Table 3, which
compares the expected result with the obtained one. In green, correctly classified postures
are indicated. In red are those that were not correctly detected, and in yellow, those
intermediate positions that were not fully detected but obtained results similar to those
expected. It is worth noting that the majority of both initial and final positions are correctly
detected, and there are only deviations in the results of two intermediate positions and
one final position. As for the intermediate positions, it can be observed that both errors
are similar, not detecting a posture of lying on the side when the individual lies down.
This may be due to the fact that user moves faster than expected and does not actually
reach that position. This results in the system not being able to detect this position, thus
detecting lying middle instead. As for the misclassified position, it can be observed that
it confuses the lying middle position with lying right, this may be due to the fact that the
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lying right, lying middle and lying left positions are very similar and tend to be confused
by the system. Furthermore, in addition to the tests with the aforementioned user, two
sequences were carried out with a real user, an older adult living in the El Salvador nursing
home, located in Pedroche Córdoba, Spain. This was done so that the system could be
tested with the target audience for which this type of system is intended. It is expected that
the movements of this group of users will be slower. The results can be seen in Table 4,
which shows that all changes of the user positions are correctly detected. It is expected
that the system performance improves with older adults, who generally have mobility
problems and will make slower movements where pressure changes are easier to observe.

Table 3. Results for the first battery of tests.

Movement in Bed Type Starting Position Intermediate Positions End Position
Result Expected Lying Middle Lying Right Sitting RightLying middle to sitting right edge Result Achieved Lying Middle Lying Right Sitting Right
Result Expected Lying Middle Lying Left Sitting LeftLying middle to sitting left edge Result Achieved Lying Middle Lying Left Sitting Left
Result Expected Lying Middle - Lying LeftLying middle to lying left border Result Achieved Lying Middle - Lying Left
Result Expected Lying Left - Lying MiddleLying left to lying middle Result Achieved Lying Middle - Lying Middle
Result Expected Lying Middle - Lying RightLying middle to lying right Result Achieved Lying Middle - Lying Right
Result Expected Lying Right - Lying MiddleLying right to lying middle Result Achieved Lying Right - Lying Middle
Result Expected Lying Middle Lying Left-Sitting Left No presenceGetting out of bed from the left side Result Achieved Lying Middle Lying Left-Sitting Left No presence
Result Expected No presence Sitting Left-Lying Left Lying MiddleLying on the bed from the left side Result Achieved No presence Sitting Left Lying Middle
Result Expected Lying Middle Lying Right-Sitting Right No presenceGetting out of bed from the right side Result Achieved Lying Middle Lying Right-Sitting Right No presence
Result Expected No presence Sitting Right-Lying Right Lying MiddleLying on the bed from the right side Result Achieved No presence Sitting Right Lying Right

Table 4. Results for a real end user from the El Salvador nursing home.

Movement in Bed Type Starting Position Intermediate Positions End Position
Result Expected Lying Middle Lying Right-Sitting Right No Presence

Exit bed from the right side Result Achieved Lying Middle Lying Right-Sitting Right No Presence
Result Expected No presence Sitting Right-Lying Right Lying Middle

Lying on the bed from the right side Result Achieved No presence Sitting Right-Lying Right Lying Middle

The second set of tests consists of 11 different people, most of them young people,
performing all possible positions on a bed. This set of test is intended to better detect
the shortcomings of the system, as these users will move faster than the target audience.
This set of tests consists of a sequence of actions in which the following positions were
performed in this order: exit bed, sitting right, lying middle, lying right, lying left and
sitting left. In order to evaluate the classification performed by the algorithm, a confusion
matrix was created. In this, it is possible to observe how many of the 11 users have their
positions well classified, and in the case of failure, to know which position they were
confused with. This confusion matrix can be seen in Table 5.

The analysis of the matrix shows that, in general, almost all the positions are correctly
detected for all the users. Only two of them are erroneous. The first error affects the
lying right position, which in one occasion is detected as lying middle. This error can be
explained, as the first tests concluded that these positions were very similar and, therefore,
easy to confuse. There is not a reasonable explanation for detected errors with the sitting
left posture, which was detected erroneously in 45% of the cases, which is unexpected, as
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the algorithm detects the sitting right position correctly in all situations. There could be two
explanations for this fact: either the algorithm does not detect sitting positions correctly
when the user exits the bed, or the left sensor for some reason did not perform properly or
was misplaced the day of the tests. The data collected generally show that the readings of
the left sensor are much lower than those of the right sensor in symmetrical positions such
as sitting right and sitting left, where both sensors should give similar values, respectively.
This may be an indication that in positions in which the left sensor is supposed to give
higher values, smaller values are obtained, causing the system to confuse the sitting left and
lying left positions since the higher values enable these two postures to be differentiated.

Table 5. Confusion matrix with the results of the second battery of tests.

Actual Class

No Presence Sitting Right Lying Middle Lying Right Lying Left Sitting Left
No Presence 11 0 0 0 0 0
Sitting Right 0 11 0 0 0 0
Lying Middle 0 0 11 1 0 0
Lying Right 0 0 0 10 0 0
Lying Left 0 0 0 0 11 5

Pr
ed

ic
te

d
C

la
ss

Sitting Left 0 0 0 0 0 6

Considering that a multi-class classification is being performed, it is difficult to analyze
accuracy, sensitivity and specificity for all classes in general when studying the metrics,
so it was decided to perform this analysis on a class-by-class basis first. Table 6 shows
the obtained metrics for each class. The analysis of these metrics reports that, in general,
good results are obtained, with each of the metrics scoring close to 100% in almost all
positions. The only posture that gives problems in the classification is sitting left, with a
sensitivity of 54.24%. This indicates that the system does not detect postures where the user
is actually sitting on the left side of the bed, suggesting that the detection of this posture
should be improved to increase the rate of true positives. As it can be noticed in this case,
the accuracy metric can be somewhat misleading, since despite obtaining very good results
regarding the accuracy of the sitting left posture, from the sensitivity metric, we can see
that the detection rate of true positives is very low and needs to be improved. The average
of each of the metrics is calculated to estimate the performance of the system, considering
the result for each of the postures.

Table 6. Metrics for the multi-class confusion matrix.

Metric No Presence Sitting Right Lying Middle Lying Right Lying Left Sitting Left System (X̄)

Accuracy 100% 100% 98.48% 98.48% 92.42% 92.42% 96.97%
Sensitivity 100% 100% 100% 90.09% 100% 54.54% 90.91%
Specificity 100% 100% 98.18% 100% 90.91% 100% 98.18%

5.2.2. Validating the Motion Detection System

Regarding the motion detection system using the IMU as part of the prevention system,
a set of tests was also developed to determine the accuracy of the TBA, designed based
on observations. This set consists of 40 tests performed by a single user executing the bed
exit action. Out of these 40 tests, 20 were performed on the right side of the bed and 20
on the left side of the bed. Given that the bed exit action can be divided into different
stages, the analysis of the results is segmented into three different phases. The phases are:
lying–sitting, sitting–standing and standing–walking.

The ideal situation is to detect motion in the first phase because the individual has
not yet stood up. As the individual progresses through these phases, the risk of falling
increases. Furthermore, this is related to the ActivityDetector service, which considers that
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the user has exited the bed when it detects that the user is sitting on the bed side and there
is movement, so the main interest is in detecting movement before the user is fully up.

It is important to note that these tests cannot produce false positives, as they are very
limited activities in which only TP or FN is expected; because of these limitations, sensitivity
is the metric to use, telling how many positive measures are truly detected. Hence, it is
necessary to conduct another experiment to verify the system ability to avoid this type of
situation, in which we calculate the number of negative samples classified correctly. The
test results for each of the phases would be a sensitivity of 92.5% for lying–sitting, 100%
for sitting–standing and 100% for standing–walking. The lying–sitting phase obtains the
lowest sensitivity rate with 92.5% of the cases being correctly detected. It is followed by
the sitting–standing and standing–walking phases with 100%, both with consistent results
where all user movements are correctly detected. The obtained results demonstrate that
user movements can be detected in early phases of the bed exit action, which, therefore,
improves the chances of providing early assistance.

To study the case of false positives (FP) in motion detection, the tests were divided into
two parts. In the first part, 40 tests were performed in which the user moved along the bed,
from lying on the right side of the bed to lying flat with the back resting, and then to lying
on the left side of the bed. These movements were repeated 4 times for each test; none of
these 40 tests resulted in a false positive. In the second part, to test the system under more
realistic circumstances, a user was monitored for several nights. The user was monitored
for false positives under real-life circumstances while sleeping. During this monitoring
period, again, no false positives were detected. Given these results, it can be concluded that
the system is robust enough to avoid false positives while the user is lying down, implying
a specificity rate of 100%.

Based on specificity and sensitivity, the accuracy can be calculated with the formula
Accuracy = Sensitivity ∗ Prevalence+ Speci f icity ∗ (1− Prevalence). In this case, the preva-
lence would be calculated as the number of true positives divided by the number of samples
in our test battery (Prevalence = P/P + N), thus yielding 40/40 + 40 = 0.5 = 50%. It
should be noted that with respect to the negative samples, only those corresponding to
the 40 tests performed under control were taken, and not those under real circumstances,
since in the last ones, it was impossible to know the number of samples. The prevalence
data can be used to calculate the accuracy; for example, considering the sensitivity for the
lying–sitting phase, the accuracy is Accuracy = 0.5 ∗ 0.925 + 0.5 ∗ 1.0 = 0.9625 = 96.25%.
All metrics can be observed in Table 7.

Table 7. Results of movements test with IMU.

Phase Accuracy Specificity Sensitivity

Lying-Sitting 96.25% 100% 92.5%
Sitting-Standing 100% 100% 100%
Standing-Walking 100% 100% 100%

Finally, it should be noted that these tests were carried out on young people, so it
is possible that the results may be different when used with older adults, who perform
movements more slowly.

5.2.3. Validating the Comprehensive System Fall Prevention

While no specific tests were performed for the comprehensive fall prevention system,
as it simply combines the information of presence in bed system and user motion system,
and these systems are separately tested, it is possible to estimate the expected accuracy of
the prevention system from the inner systems. Risk situations occur when user activity is
detected, and (1) there is no presence in the bed, or (2) the user is sitting on the bed edge
and movement is detected by the IMU.
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1. No bed presence: In this first case, there is only one source of information, and
that is the information obtained from the bed presence service. The accuracy of this
assumption will therefore be the accuracy of the bed presence service in detecting that
there is no user in the bed. This information is obtained by referring to the metrics
of Table 6, which is the result of the second set of tests. It can be observed that for
the 11 test users, the accuracy, sensitivity and specificity of the system to detect no
presence in bed is 100%.

2. User sat on the bed edge and motion detected: This second case is different, as it
combines information from two different sources. On the one hand, it is necessary that
the presence detection service detects that the user is sitting on a bed edge. Table 6
shows the metrics for the positions sitting right and sitting left, which are related to
knowing when the user is sat on the bed. To reduce the metrics of these positions
to only one position, the arithmetic mean can be used, resulting in an accuracy of
96.21% ((100 + 92.42)/2), specificity of 100% ((100 + 100)/2) and a sensitivity of
77.27% ((100 + 54.54)/2). On the other hand, the motion detector needs to determine
that the user is standing up when, according to the presence detector, the user is sitting
down. The metrics in Table 7 when the user goes from lying down to sitting down are
96.25% accuracy, 100% specificity and 92.5% sensitivity. Considering the metrics of
both cases, the metrics of this case can be estimated by treating it as an intersection
of probabilities of independent events (P(A ∩ B) = P(A)P(B)), and therefore the
estimated metrics would be

• Accuracy: 0.9621 × 0.9625 × 100 = 96.60%
• Specifiicty: 0.1 × 0.1 × 100 = 100%
• Sensitivity: 0.9250 × 0.7727 × 100 = 71.47%

According to the results, the system has good accuracy, and, with a high specificity,
it is able to detect all TN correctly. The main problem of the system is to detect TP,
having a low sensitivity. In this case, accuracy results in a misleading metric again.
Obviously, this is an estimation, and the real metrics of the system could change.

Given these data, it is possible to say that there is a 100% probability of detecting when
a user exits the bed, and it is estimated that it is possible to detect when a user is sitting on
bed and ready to exit the bed with an accuracy of 96.60%. Analyzing the other metrics, the
system does not raise false alarms, thanks to a great specificity of 100%, but also it is not
able to detect all the situations where the user is ready to exit the bed, with a low sensitivity
of 71.47%.

6. Discussion

This paper presents a system for both fall prevention and fall detection. To this end,
the approach presented here differs from most of the state-of-the-art works in that the two
topics (i.e., fall prevention and fall detection) are addressed simultaneously. Furthermore,
these two topics are addressed in a very specific context, as it is bedtime for older adults. It
is during bedtime when most falls take place. For this reason, this work focused on this
specific context.

The proposed system is therefore aimed toward a twofold purpose. On the one hand,
the system is intended to prevent falls from occurring and, on the other hand, to detect when
a fall has occurred. From the fall prevention perspective, the proposed approach is based on
identifying when a bed exit is taking place. This action, on its own, is considered a situation
of risk for certain individuals. The proposed approach achieved promising results, combining
information gathered from the IMU and the pressure sensors located underneath the mattress.
The system reliably detects when a user exits the bed with an accuracy of 100%. When this
situation is detected, the caregiver is notified, in real time, so that the older adult can be attended,
thus contributing to ensure the safety of the older adult.

Additionally, this approach for fall prevention is also employed to detect the individu-
als’ intention to exit the bed, obtaining an estimated accuracy of 74.37%. This functionality
is very useful as, besides detecting 100% of the situations in which the individual has
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exited the bed, the simple fact of attempting to do so already implies a risk of falling. This
functionality enriches the fall prevention system. It is therefore very relevant to be able to
alert the caregiver as early as possible. In general, the literature on fall prevention is quite
limited compared to the fall detection one, which is usually restricted to gait or activity
analysis in order to detect risk situations. Although the works in the literature aim to cover
a wider range of situations and times of day, compared to the work presented here, in the
end, the results obtained are not very reliable, given that they either simply detect users
who may be more likely to fall or they involve a significant loss of privacy, as many of
these systems use computer vision. As opposed to these works, the system proposed here
focuses on that time of the day when individuals are most vulnerable and when privacy
concerns are more stringent. In view of the results, the system may be of great use for
caregivers either at home or in a nursing home.

The approach for fall detection is based on the use of a non-invasive and comfortable
sensor attached to the user waist. While placing the sensor in a wristband on the wrist
may be a more natural location for the user, in general, those solutions that opt for this
location are more fragile, as a sensor on the arm will generate much more noise than one
located on the waist. Environmental sensors, which are less physically invasive (no sensors
are required to be placed on the user body), are also less intrusive, but ultimately lead
to an invasion of privacy, as these environmental sensors are typically based on image
recording. Finally, another option that is becoming widespread is the use of smartphones,
as these have accelerometers and gyroscopes that provide the necessary information for
fall detection. These types of solutions are not realistic when the objective is to monitor
users in their homes, as it is unreasonable to expect the user to carry their mobile phones
all over the house at all times.

Regarding the coverage range of the proposed solution, it is limited to about 5–10 m
within the range of the processing node that downloads and classifies the data collected by
the IMU, which may mean that the user can only be monitored in a single room. However,
this problem can be solved by adding more processing nodes given the proposed system
architecture. The IMU publishes events whenever it detects a possible fall event via BLE.
When the node receives that event, it downloads the data and classifies the movement as a
fall or an ADL. Scaling the range just requires additional Raspberry Pi nodes to be installed
over the house that run the fall detection service and listen for IMU events. Note that all
IMU-based solutions in the literature suffer from this limitation, as the BLE connection is
generally a short-range one. Solutions based on cameras and environmental sensors also
suffer from similar problems as they are static sensors and would have to be replicated with
the cost that this entails. The smartphone solution, which is not affected by the coverage
range problem, is not a viable solution for home environments as stated above.

It is worth noting that, unlike a large number of works in the literature, this article
not only proposes a solution for fall detection, but also proposes an architecture capable
of operating and detecting falls in real time, showing reliable results with an accuracy of
93.51%, sensitivity of 92.04% and specificity of 95.45%.

The achieved sensitivity indicates the rate of true positive being correctly identified. In
this context in which the detection of a fall launches a notification to the caregiver, who has
immediately attend the fallen, the need to avoid false alarms is very important. If at some
point the caregiver has the feeling that the system commonly notifies false positive alerts,
it is also possible that notifications are not given the appropriate importance. Specificity
measures, on the other hand, the number of true negatives correctly identified. In this sense,
it is also very important that events classified as non-falls are not, indeed, a fall. Having
a low specificity will result in the system missing fall events and, in this situation, fallen
individuals would be unattended until discovered by other means.

The comparison with other IMU-based systems from the literature (Table 8) shows that
there are many proposals with better performance, many of them using neural networks.
The use of this technique is proposed as future work to improve system performance, in
addition to the collection of more fall data.
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Table 8. Comparison of different fall detectors with the one proposed in this work.

Work Accuracy Algorithm Location

This work 93.51% SVM Waist
[56] 98.61% FD-CNN Waist
[19] 96.75% CNN-LSTM Pocket
[17] 99.38% TBA Pocket
[58] 99.30% TBA Pocket
[50] 99.06% Deepnet Waist

Despite the promising results obtained by the proposed approaches, based on the
obtained accuracy rates, there are some limitations that need to be addressed in order to
improve the system. The fall detection analysis is performed on the gateway because the
required resources for the processing exceed the capability of the sensor. The use of the
gateway is necessary if caregivers are to be notified when a relevant event takes place (i.e.,:
bed exit or detected fall). Nonetheless, following the edge computing paradigm, ideally,
the processing should remain as close to the information source and destination as possible.
Efforts are currently being addressed to identify a sensor with support for running machine
learning models, whereas at the same time, the proposed algorithm needs to provide a
model, light enough, to support real-time processing in the sensor. Those approaches based
on smart phones do not need to deal with this limitation, as current phones count on both
the resources and connectivity to process locally and publish notifications when needed.

7. Conclusions and Future Work

This research works on the hypothesis that to achieve a system for fall prevention
and fall detection that can be widely adopted by both older adults and caregivers, the
system has to address the following requirements: being privacy aware, working in real
time, avoiding the need to carry uncomfortable devices, and having a constrained price.
Furthermore, the system performance has to minimize the false negative rate and achieve
a similar performance to the best identified previous works. To validate this hypothesis,
this work presents a system architecture for monitoring older adults, with some degree of
dependency, during bedtime. The proposed system is intended to detect when the user
is about to exit the bed so that caregivers can be notified as soon as possible to provide
assistance and supervise the situation. The proposed system achieved a solution that
ensures a low-cost solution, as it only requires a Raspberry Pi 4, the IMU Puck.js sensor
and three pressure sensors. Moreover, the installation is very simple, and it ensures user
privacy in contrast to other solutions based on video. Finally, the wearable sensors are of a
limited size to be placed on the waist, thus being comfortable for the user and unnoticeable
by others.

The system was experimentally validated by running a set of experiments in which the
targeted activities were simulated, such as falling down or exiting the bed. The obtained
results demonstrate the reliability of the system, achieving an accuracy of 100% for detecting
the risk of fall, and an accuracy of 93.51% for detecting actual falls.

Future work will focus on the fall detection and prevention system in parallel. Regard-
ing the fall detection system, improvement will be addressed to increase the accuracy rate,
as it is essential to increase sensitivity. One option for improving accuracy rates involves
implementing a neural network for the classification algorithm and collecting more fall
data to improve the model. Another limitation of the current approach is the short range of
the system, which limits the monitoring range to a single room. Although this problem can
be addressed by using more hardware nodes, it is not ideal, so there are two alternatives
that can be considered. The first option would be to create a sensor with a WiFi module
that can send data to be processed in the cloud from anywhere in the home (nowadays,
WiFi connections can be found in any corner of a house). However, this would have to be
further studied, as WiFi modules consume much energy. The second option would also
involve creating a node, which in this case would be able to carry out the processing at the
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edge, communicating only the results to a gateway to notify the caregiver. This gateway
could be a mobile phone for example, and could extend the range of operation even outside
the home.

Future work for the fall prevention system will focus on improving bed position
detection so that this can help in improving the 74.37% accuracy achieved in detecting
the intention to exit the bed. This improvement will undergo a second round of testing
to see if the problem in the sitting right posture detection results was indeed due to a
problem in one of the sensors, after which more sophisticated techniques for bed position
classification will be searched. Moreover, the capability to monitor bed positions opens the
door to other functionalities. In nursing homes, for example, there are many residents who
require postural changes by a caregiver throughout the night. This system will enable the
automatic tracking of the period of time that the person has been in a given position. This
can help caregivers to record these changes to track that the person has been changed in
their position in a timely manner to avoid the consequences of being immobilized in bed.
This sort of monitoring could be performed without any invasion of privacy, as only the
signals received by the pressure sensors would be processed. Furthermore, the monitoring
of individual movements in bed could also be extended to measure the quality of sleep, as
this depends on the movements made by the user throughout the night.
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