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Abstract: In recent years, deep learning (DL) has garnered significant attention for its successful
applications across various domains in solving complex problems. This interest has spurred the
development of numerous neural network architectures, including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and the
more recently introduced Transformers. The choice of architecture depends on the data characteristics
and the specific task at hand. In the 1D domain, one-dimensional CNNs (1D CNNs) are widely
used, particularly for tasks involving the classification and recognition of 1D signals. While there are
many applications of 1D CNNs in the literature, the technical details of their training are often not
thoroughly explained, posing challenges for those developing new libraries in languages other than
those supported by available open-source solutions. This paper offers a comprehensive, step-by-step
tutorial on deriving feedforward and backpropagation equations for 1D CNNs, applicable to both
regression and classification tasks. By linking neural networks with linear algebra, statistics, and
optimization, this tutorial aims to clarify concepts related to 1D CNNs, making it a valuable resource
for those interested in developing new libraries beyond existing ones.

Keywords: convolutional neural network; linear algebra; statistics; tutorial

1. Introduction

Recently, there has been a surge of interest in deep learning (DL), with numerous
review papers on the topic published in recent years [1–14]. DL architectures, such as
Deep Neural Networks (DNNs), Deep Belief Networks (DBNs), Recurrent Neural Net-
works (RNNs), Convolutional Neural Networks (CNNs), and Transformers, have found
compelling applications across various fields. These include computer vision, speech
recognition [15–21], natural language processing [22–29], bioinformatics [30–37], medical
image analysis [38–47], climate science [48–58], and material inspection [59–67].

Focusing specifically on one-dimensional problems, CNN-based architectures are still
the most widely used in the literature compared to other, more recent, and potentially
more effective architectures for certain problems. This observation is based on research
conducted using prominent databases and search engines (e.g., Scopus, IEEXplore, Sci-
enceDirect, SpringerLink, Web of Science, ACM Digital Library, PubMed). Relevant results
have emerged regarding the frequency with which a specific deep learning architecture,
associated with one-dimensional problems, appears in paper titles published between 2018
and 2023. Although this research is not exhaustive, it highlights that discussions on 1D
CNNs remain highly active in the literature.

However, within the realm of CNNs applications, it is important to note that those
focusing on one-dimensional data are less frequent compared to those dealing with multidi-
mensional data (2D and 3D). This discrepancy in research activity can be observed through
a simple Google search. For example, a search for terms like “3D CNN”, “2D CNN”, or “1D
CNN” reveals a significant drop in the number of results as the dimensionality of the data
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fed into the network decreases. Although searches include web pages and blog posts, which
are generally not peer-reviewed, a similar trend is evident in the peer-reviewed literature as
well. The relatively limited number of published papers on 1D CNNs, compared to those
on 2D and 3D, suggests an under-explored area that could stimulate further research [68].
One possible outcome of this could be an increase in review papers specifically focusing on
1D CNNs, which are currently quite limited [69–71].

1D CNNs offer promising solutions across various sectors. They are particularly
well-suited for real-time applications [72–75] due to their low computational requirements.
In fact, continuous online monitoring generates a large quantity of data that needs to be
processed and analyzed rapidly and accurately to efficiently detect specific patterns, assets
or even diseases. This is the case of Raman spectra detection, in which the use of 1D CNNs
has proven effective at identifying in real-time one pure unknown Raman instance from
thousands of classes with higher accuracy over traditional multivariate analyses [72]. In
the context of real-time applications for 5G communications, the increased bandwidth has
posed a significant challenge in linearization of power amplifier over a wide bandwidth,
which has been faced implementing 1D CNNs that have proven to be highly effective
for real-time digital pre-distortion operation, surpassing traditional methods like Volterra
series [73].

The use of 1D CNNs has also been proposed as a computationally efficient solution
for fast and accurate diagnostics in the power industry, particularly for monitoring elec-
tromagnetic interference. This approach has enabled highly accurate automatic condition
monitoring, significantly aiding in the identification of insulation and mechanical faults
in high-voltage electrical power assets [74]. Another interesting example the real-time
processing capability with significantly lower delay achieved by using 1D CNNs has been
presented to classify cardiac acoustic signals for heart anomaly detection. This method
proved to be robust and accurate also in reducing the false alarms [75].

The ability of 1D CNNs to learn models from 1D signals such as acoustic signals
has also been well demonstrated. Specifically, 1D CNNs are increasingly being used to
process raw audio waveforms for environment sound [76], music genre [77], and in general
audio [78] classification, along with speech acoustic modeling [79], garnering growing
attention in these areas.

Given that 1D CNNs can process any 1D signal, they are also applicable to physiologi-
cal signals such as electroencephalograms (EEG) and electrocardiograms (ECG). Therefore,
fields traditionally dominated by 2D CNNs, such as medicine and biology, could benefit
from the application of 1D CNNs. A significant portion of the literature on classification
problems involves time series signals as input data, with outputs typically predicting labels
related to brain states for tasks such as identifying epileptic episodes [80,81], establishing
communication paths between brain processes and external devices [82], and classifying
sleep phases [83]. Additionally, there are notable examples of classification of various car-
diac disease from ECGs [84–87], and or other conditions, including Parkinson’s disease [88],
COVID-19 [89], and diabetes [90].

Moreover, 1D CNNs have likewise become popular for improving intrusion detection
in cyber-physical systems [91–102], and, within industrial contexts, particularly for fault
and anomaly detection in complex production environments [103,104].

Additionally, 1D CNNs have proven valuable for cognitive tasks, such as classifying
emotional states, including speech emotion recognition. They have been shown to be
effective for speaker-independent types of emotion recognition [105], offering increased
accuracy while maintaining reasonable computational costs [106,107].

Noteworthy applications of 1D CNNs extend to the financial sector, where they can
be used to identify line chart patterns from financial time series [108]. In spectroscopy, 1D
CNNs have demonstrated intriguing applications, such as predicting Dry Matter Content
(DMC) from infrared absorbance spectra of fruits—a crucial indicator of fruit maturity that
impacts harvest timing—[109], and classifying corn seed viability [110].

Moreover, in the biomedical field, 1D CNNs have been effectively used to extract
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lifetime parameters from fluorescence lifetime imaging microscopy signals [111]. In agri-
cultural environmental monitoring, 1D CNNs have been applied to classify soil texture
using hyper-spectral data [112–114] and to predict various soil properties from visible and
infrared spectra [115]. In geology, 1D CNNs have demonstrated their ability to link multi-
variate geochemical data with known mineral deposit locations, significantly enhancing the
precision of exploration areas [116]. They also offer rapid seismic predictions, potentially
addressing the limitations of traditional physics-informed systems [117], and can be used
to classify seismic signals from different tectonic settings [118].

While this literature review is not exhaustive, it highlights that 1D CNNs continue
to be widely utilized within the community. This raises the question of whether their
prevalent use, despite the availability of potentially more efficient architectures, is due to a
deep understanding of their fundamental mechanisms by researchers or the convenience
of using readily available open-source software packages. Although many applications
have already been developed and more are on the horizon, there appears to be a gap.
Among common themes and recurring issues observed in the literature, we find that many
published papers, even if innovative from an application standpoint and highly cited, often
lack detailed descriptions of fundamental theoretical aspects. While the use of open-source
packages is frequently mentioned, very little attention is generally paid to theoretical as-
pects such as which definition of convolution has been considered, which loss or activation
functions have been used, and whether some kind of padding has been introduced. In
those papers where a theoretical section exists, many technical aspects are only briefly
outlined. In other words, the success of 1D CNNs partly stems from gaps in knowledge
that do not impede progress as long as pre-existing software solutions are utilized. This is
evidenced by the ongoing activity within the community on the topic.

However, the situation becomes more challenging if one needs to develop custom
neural network libraries in languages other than those supported by available open-source
solutions. Implementing a 1D CNN-based solution in new libraries written in different
languages presents several potential challenges. A deep understanding of fundamental
concepts such as convolutions, activation functions, pooling operations, and backpropaga-
tion is essential.

However, this knowledge alone is not enough to tackle the challenges that such a
development requires. It is necessary to ensure that the new libraries are accompanied by
thorough documentation that explains the theoretical underpinnings of 1D CNNs in detail.
Additionally, educational resources, including tutorials, code examples, and step-by-step
guides, are necessary to help users grasp the implementation process. Finally, community
support is also vital for the successful adoption of these tools, including not only scholarly
publications but also forums or user groups where developers can exchange ideas and
seek assistance.

On a practical level, once the theoretical foundations are established, attention must
be given to various other factors such as performance optimization, compatibility with
existing systems, cross-platform support, and fostering user adoption to build a supportive
community. Moreover, developing new libraries for 1D CNNs involves potential risks and
challenges, including overfitting, generalization issues, data requirements, and computa-
tional complexity. While these concerns are important for the developer community, they
are beyond the scope of this tutorial.

Although the general theory of CNNs is well-covered in books and papers (especially
for 2D CNNs), in the few that specifically refer to 1D CNNs [69,119–122], there are still
theoretical elements that are not sufficiently outlined but that deserve further explanation.
This tutorial aims to bridge what is still missing, providing a step-by-step guide that in-
cludes all the necessary mathematical expressions for using 1D CNNs. It starts with a clear
definition of convolution, which can sometimes be confusing, and progresses through the
feedforward and backpropagation equations. The scope is to present these expressions
explicitly, helping readers to become more familiar with the numerous neural network
libraries available and, over time, aiding in the development of new libraries in languages
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other than those currently available.
The tutorial covers each aspect of feedforward and backpropagation in 1D CNNs. It

particularly addresses limitations noted in our literature review, such as the limited dis-
cussion of activation functions (typically only hyperbolic tangent or sigmoid functions are
covered) and loss functions (which are often chosen for regression rather than classification
tasks). To tackle these issues, we draw on concepts from linear algebra, statistics, and
optimization, as schematically depicted in Figure 1.

Statistics
Linear 
Algebra

FeedForward
Equations

BackPropagation
Equations

Optimization

Mathematical Foundations

1D CNNs 
Literature Review

Gap in Studies

Challenges

Training Process

Figure 1. Our literature review on 1D CNNs has revealed gaps in studies, posing a challenge in
fully addressing the theoretical elements required to derive all the equations involved in the training
process (i.e., feedforward and backpropagation). The mathematical foundations we refer to include
linear algebra, statistics, and optimization.
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The tutorial is structured as follows. In Section 2, discrete convolution is defined
with an emphasis on its distinction from cross-correlation. In Section 3, the network
architecture is described in terms of building blocks. The training process is discussed
in Section 4 for the feedforward propagation, and in Section 5 for the backpropagation.
Section 6 explores other additional activation functions, such as hyperbolic tangent (tanh),
Rectified Linear Unit (ReLU) and logarithmic hyperbolic cosine (log cosh), as well as other
loss functions for both regression and classification tasks. In Section 7, the conclusions
are presented, and Appendix A provides a review of the derivatives used in Section 5
(backpropagation section).

2. Convolution

In general, discrete convolution involves sliding a filter (K) over an input signal (I).
The simplest case is when the filter slides over each position of the input.

Assuming that the filter iterates one element at a time (i.e., stride = 1), this operation
can be performed according to the following definitions:

(I∗K)(i) =
s

∑
u=1

I(i + u − 1)K(u) (1)

(I∗K)(i) =
s

∑
u=1

I(i − u − 1)K(u) (2)

where I is the input of length n and K the filter (kernel) length s.
Equation (1) is known as non-causal convolution and, in the context of digital sig-

nal processing, as cross-correlation; (2) is known as causal convolution. According to
definition (1), cross-correlation means sliding a filter across an input signal, while
convolution (2) means sliding a flipped filter across the input signal [123].

In modern CNN packages (such as PyTorch [124]), the operation commonly referred
to as convolution is actually cross-correlation (1).

However, this misnomer does not impact the performance of the network since the
network has the ability to adapt accordingly. This is true as long as ready-made packages
are used to implement a CNN. If not, to avoid confusion, it is worth specifying which
convolution definition is implemented. Here, 1D CNNs are explored using the convolution
definition (1), and in the following, we refer to definition (1) as convolution.

Moreover, it should be noted that the convolution is not defined correctly near the
boundaries of the input signal.

This can be overcome if the convolution starts at an inner entry of the input signal
such that the filter window is completely within the signal. The drawback of this procedure
is that the resulting signal is smaller than the original one (Figure 2a). When it is mandatory
to maintain the same size, it is possible to artificially add ghost entries to the input signal at
the boundaries (padding). In this work, no padding has been considered.

*
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𝐾ଵ,ଵ 𝑢
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𝑖 ൌ 1, 2, . . 𝑛 െ 𝑠  1

*

𝐼 𝑖 𝐶ଵ 𝑖 , . . 𝐶 𝑖 , . . 𝐶 𝑖
்

𝑗 ൌ 1, 2, . . 𝑝 
𝑢 ൌ 1, 2, . . 𝑠

𝐾ଵ, 𝑢

𝑖 ൌ 1, 2, . . 𝑛

𝑖 ൌ 1, 2, . . 𝑛 െ 𝑠 +1
𝑗 ൌ 1, 2, . . 𝑝

. .

. .

(a) (b)

Figure 2. (a) 1D single filter convolution, (b) 1D multi-filter convolution. The dimension of the 1D
input signal is n, and each filter size is s.
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Let us consider an input vector I (size n) and a kernel K1,1 (size s). Their convolution
is represented by a new vector C (size n − s + 1), as schematically shown in Figure 2a. It
can be computed as follows:

C(i) =
s

∑
u=1

I(i + u − 1)K1,1(u). (3)

The convolution (3) can be extended to the case of a collection of p filters with size
s. The result of this multi-filter convolution is represented by a 2D matrix with size
(n − s + 1)× p, as schematically represented in Figure 2b, where each column Cj(i) is

Cj(i) =
s

∑
u=1

I(i + u − 1)K1,j(u) (4)

and p represents the number of filters.
Moreover, the convolution definition can be further extended to the case of an input

array of p columns, as schematically depicted in Figure 3.
In this case, we can perform the convolution separately on each of the p columns Ij

using a multi-filter represented by a third-order tensor (size s × p × q). A 2D matrix (size
(n − s + 1)× q) results from a convolution operation. This 2D matrix can be regarded as
an array of q columns (Figure 3), in which each column (Cl(i)) is obtained by summing up
p convolutions:

Cl(i) =
p

∑
j=1

Ij∗Kj,l(u). (5)

where l = 1, 2, . . . q.

+

+

+

...

𝐶ଵ ൌ𝐼 ∗ 𝐾,ଵ



ୀଵ

𝐶ଶ ൌ𝐼 ∗ 𝐾,ଶ



ୀଵ

𝐶 ൌ𝐼 ∗ 𝐾,



ୀଵ

...

i ൌ 1, 2, . . n
j ൌ 1, 2, . . p

𝐾ଵ,ଵሺ𝑢ሻ

𝑙 ൌ 1, 2, . .q

𝐼ଵ 𝑖

𝐼ଶ 𝑖

𝐼 𝑖

Figure 3. Convolution of an input signal p columns, each of length n, and a multi-filter represented by
a 3D matrix of size s × p × q, where the index u runs from 1 to the filter size s, and p × q is the number
of filters. This process results in a 2D matrix in which each column Cq is obtained by summing up
p convolutions.
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3. 1D CNN Architecture

CNNs typically perform a series of operations to extract features from an input signal.
For simplicity, this analysis focuses on a model with two convolutional layers (CL1, CL2)

followed by a fully connected layer (FCL), as indicated in the “Layer” column of Table 1.

Table 1. Description of the considered CNN. The “Layer” column describes the types of layers used
sequentially, the “Operation” column indicates the type of operation performed at each layer, the
“Filter” column describes the number and size of kernels used in each layer, and the “Output size”
specifies the size of the signal obtained at the end of each layer. The illustration of this 1D CNN is
schematized as an image in the Supplementary Materials (Figure S1).

Layer Operation
Filter

Output Size
N. Size

CL1
Conv + Act p = 4 s(1) = 3 C(1)

σ = 16 × 4
Pool 1 SS(1) = 2 S(1) = 8 × 4

CL2
Conv + Act q = 6 s(2) = 3 C(2)

σ = 6 × 6
Pool 1 SS(2) = 2 S(2) = 3 × 6

FCL
Flat – – f = 18 × 1

Fully connected + Act – – 2 × 1

In turn, each convolution layer comprises convolution (Conv), activation (Act), and
pooling (Pool) operations, as detailed in the “Operation” column of Table 1. The general
features of the CNN architecture in terms of sizes are summarised in the “Filter” and
“Output size” columns of Table 1. In CL1, the convolution is performed using a single-
channel input (I) with dimension n = 18 and p = 4 filters with dimension s(1) = 3. A
bias array is then added to the output, and the sigmoid activation function is applied. A
new array (C(1)

σ ) of p columns with n − s(1) + 1 = 16 dimensions is obtained. It is then
down-sampled (using max or average-pooling) with a factor SS(1) = 2, resulting in a new
array (S(1)) of p columns with size 8.

In CL2, the convolution operation is performed using S(1) as the input signal and p × q
filters with q = 6 and s(2) = 3 as the dimension of each filter.

Similar to CL1, a bias array is added here, and an activation function (σ) is applied.
This results in an array (C(2)

σ ) of q columns of length 6. It is down-sampled (using max or
average-pooling) by a factor of SS(2) = 2. The resulting S(2) is then represented by an array
of q columns of size 3.

Finally, the output of CL2 is flattened, obtaining a new vector ( f ) with dimension 18.
This latter vector represents the input for the FCL. The output of the 1D CNN is represented
by an array with two dimensions. This implies that a weight matrix 2 × 18 is required in
the FCL.

4. Feed Forward Propagation

In CL1, the convolution is performed using the input signal (I) and a multi-filter
(K(1)

1,j ), resulting in an array containing p elements:

C(1) =
(

C(1)
1 , C(1)

2 , . . . , C(1)
p

)
. (6)

Each element in (6) is then represented by

C(1)
j (i) = I(i)∗K(1)

1,j (u) =
s(1)

∑
u=1

I(i + u − 1)K(1)
1,j (u) + b(1)j (7)
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where the superscript refers to the convolutional layer number, j runs from 1 to the number
of filters employed in the layer (p = 4), u runs from 1 to the filter size s(1), and b(1)j repre-

sents the bias. In this specific case, as indicated in Table 1, p = 4, s(1) = 3, and i ranges
from 1 to 16.

An activation function (σ) is applied to each element of C(1) and the resulting output
C(1)

σ is then pooled.
The primary objective of a pooling operation is to reduce the spatial dimensions of the

input for the subsequent convolutional layer. Similar to the convolution operation, pooling
uses a sliding window or a specific region that moves in stride across the input, transform-
ing the values into representative ones. This transformation is commonly achieved by
taking either the average or the maximum value from the input values within the window.
The former is called “average pooling”, while the latter is called “max pooling”.

After pooling, a new array S(1) with p columns is obtained. Each column S(1)
j is then

represented by S(1)
j (i) = Max{C(1)

j,σ (is)}W=1,2,...SS(1) Max

S(1)
j (i) = 1

SS(1) ∑SS(1)

W=1 C(1)
j,σ (is) Average

(8)

where is = SS(1)i − W + 1. In this specific case, is runs from 1 to 16, and with SS(1) = 2,
i runs from 1 to 8. For the sake of notation convenience, henceforth, i will represent the
index is.

In CL2, the convolution is performed using S(1) as the input signal and a multi-filter
represented by a third-order tensor. Since this type of tensor refers to a three-dimensional
array of numbers, for clarity, the representation of its 2D components is provided in
Figure 4.
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Figure 4. The filter K(2) is a third-order tensor with s(2) × p × q dimension, where s(2) = 3, p = 4
and q = 6. The 2D components of K(2) are represented separately.
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An array of q columns is then obtained, and each column is represented by

C(2)
l =

p

∑
j=1

S(1)
j ∗ K(2)

j,l + b(2)l (9)

In this specific case, p = 4, l runs from 1 to q = 6, and i from 1 to 8 − 3 + 1 = 6.
An activation function is then applied to each element in C(2), and the resulting output

C(2)
σ is then pooled. A new array S(2) with q columns is obtained, in which each column

S(2)
j is then represented by


S(2)

j (i) = Max{C(2)
j,σ (is)}w=1,2,...SS(2) Max

or

S(2)
j (i) = 1

SS(2) ∑SS(2)

w=1 C(2)
j,σ (is) Average

(10)

where is = SS(2)i − w + 1. In CL2, is runs from 1 to 6, and with SS(2) = 2 i runs from 1 to 3.
Again, for convenience of notation, in the following, i will denote the index is.

In the FCL, the first operation to be performed is represented by a flattening. It involves
the 2D output generated at the end of the pooling step in CL2 (S(2)) and transforms it into
a 1D vector. Generally, this operation can be performed by reshaping in row-major or
column-major order. In the case under consideration, S(2) is a 3 × 6 matrix. It can be
reshaped to form a new 1D vector as follows: f (i + m(j − 1)) = S(2)

j (i) column-major

f (j + n(i − 1)) = S(2)
j (i) row-major

(11)

where the row index (i) of S(2) runs from 1 to m = 3, and the column index j from 1 to
n = 6. In this specific case, the new vector ( f ) has m × n = 18.

Once the vector f has been obtained, it can be fed to the fully connected network.
Then, each element of the output vector yout = σ(W × f + b) can be written as

yout(i) = σ

(
18

∑
j=1

W(i, j) f (j) + b(i)

)
(12)

where σ is an activation function (σ), W is the weight matrix 2 × 18, and b a bias vector
2 × 1.

5. Backpropagation

The training process of the network comprises both feedforward and backpropagation,
as schematically depicted in Figure 5.
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Figure 5. Schematization of the training process.
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Backpropagation aims to minimize a loss function by updating the network’s param-
eters (e.g., weights and biases) so that the network can correctly map arbitrary inputs to
outputs. The choice of loss function depends on the specific task at hand, as different tasks
require different loss functions to effectively measure and optimize model performance.

Our literature review indicates that regression and classification are among the most
commonly used tasks. Typically, a regression task aims to predict the value of a continuous
variable, such as a price or probability. For instance, a 1D CNN can be used in regression
tasks to predict the concentration of a specific compound in a sample based on its absorp-
tion spectrum. In this example, the input 1D signals are represented by absorbance values
recorded at various wavelengths (spectra). Additionally, the same spectral data can be
employed for classification tasks by making use of different loss function. In this case, the
goal is to categorize different chemical compounds into predefined categories.

While the underlying architecture of 1D CNNs for both regression and classification
tasks involves convolutional layers to extract features from sequential data, the key dif-
ferences lie in the output layer configuration, the choice of activation functions, the loss
functions used for training, and the evaluation metrics. For regression, the output is a
continuous value and the model is trained to minimize the error between predicted and
actual values. For classification, the output is categorical, and the model is trained to
correctly classify inputs into one of several classes.

Backpropagation is the process used in training neural networks, where the error (or
loss) is propagated backward through the layers of the network, starting from the output
layer and moving toward the input layer. Its main purpose is to calculate the gradients
(partial derivatives) of the loss function with respect to each parameter (weight) in the
network. These gradients indicate how much each parameter needs to change to reduce the
loss. The derivatives can be efficiently computed using the chain rule and can be used in
the gradient descent algorithm to update the network’s parameters in a way that minimizes
the loss function.

In this section, the gradients of each parameter are computed from end to start (e.g.,
from FCL to CL1). In regression problems, the loss function (L) is computed by comparing
the actual target yt with the predicted output values yout. One of the most popular loss
functions is represented by the mean squared error (MSE):

L =
1
N

N

∑
i=1

(yout(i)− yt(i))
2 (13)

where i runs from 1 to the dimension of the output, in this case N = 2.
Let us begin with the FCL. In this case, the parameters to be updated are the weight

matrix W and the bias b. The first gradient to be calculated is ∆W, with each entry repre-
sented by

∆W(i, j) =
∂L

∂W(i, j)

=
∂L

∂yout(i)
· ∂yout(i)

∂W(i, j)

= (yout(i)− yt(i)) ·
∂

∂W(i, j)
σ

(
18

∑
j=1

W(i, j) f (j) + b(i)

) (14)

where “ · ” refers to the element-wise product. The last derivative in Equation (14) can
be calculated once an activation function is provided. Discussing the advantages and
disadvantages of using a specific activation function over another is beyond the scope of
this work. For this purpose, we refer the curiosity of the reader to the existing literature on
this topic [7,125–129].

In this output layer, the sigmoid activation function has been considered [130], while



Appl. Sci. 2024, 14, 8500 11 of 26

other functions will be discussed in Appendix A.
Defining ∆yout as a vector 2 × 1 vector

∆yout(i) = (yout(i)− yt(i)) · yout(i) · (1 − yout(i)) (15)

the gradient ∆W can be rewritten as

∆W = ∆yout × f T . (16)

where “ × ” refers to the matrix product, and f T represents the transpose of the vector f ,
which is a 1 × 18 vector.

The same calculation can be applied for the bias gradient:

∆b(i) =
∂L

∂b(i)

=
∂L

∂yout(i)
· ∂yout(i)

∂b(i)

= (yout(i)− yt(i)) ·
∂

∂b(i)
σ

(
18

∑
j=1

W(i, j) f (j) + b(i)

)
= (yout(i)− yt(i)) · yout(i) · (1 − yout(i))

= ∆yout(i).

(17)

Before updating the parameters in CL2, it is necessary to calculate the gradient of the
vector f . Each entry of ∆ f is then represented by

∆ f (j) =
∂L

∂ f (j)

=
2

∑
i=1

∂L
∂yout(i)

· ∂yout(i)
∂ f (j)

=
2

∑
i=1

(yout(i)− yt(i)) · yout(i) · (1 − yout(i)) · W(i, j)

=
2

∑
i=1

∆yout(i)W(i, j)

(18)

and ∆ f can now be written as
∆ f = WT × ∆yout. (19)

During the feedforward step, the vector f results from S(2) reshaping. Here, in the
backpropagation step, the gradient ∆ f is reshaped back to obtain ∆S(2), as schematically
depicted in Figure 6.

In the CL2, an un-pooling operation should be performed to up-sample the compressed
data ∆S(2) and obtain ∆C(2)

σ . To avoid confusion, great attention is now needed. If average
up-sampling was used in feedforward, the backpropagation error is multiplied by 1/SS(2)

and uniformly assigned to all the elements in the pooling block (Figure 7).
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Figure 6. The vector f (18 × 1) is reshaped back in order to obtain ∆S(2) (3 × 6).
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Figure 7. Example of an up-sampling operation. The input is the 2 × 1 array on the left. Down-
sampling produces a 1D array based on the average or maximum of the input. During up-sampling,
the 1D array is split into a new 2 × 1 array. If averaging is used, the output is filled by evenly
distributing the output value from down-sampling, in this case, dividing by 2. If the max operation is
used, the output value is placed where the original maximum value occurred.

In this case, each column of ∆C(2) can be written as

∆C(2)
jσ (iu) =

1
SS(2)

∆S(2)
j

(⌈
iu/SS(2)

⌉)
(20)

where the index i of ∆S(2)
j runs from 1 to n = 3, iu runs from 1 to 6 = SS(2)n, and finally

⌈x⌉ represents the ceiling function. As in previous instances, in the following, i will denote
the index iu.

On the other hand, if max-pooling was performed during the feedforward step, the
error is assigned to the location it originated from, and zero is assigned to all the other
elements. This implies that during the feedforward step, the index of the “winning unit”
should be stored and reused in the backpropagation step. This aspect may not be evident
when using pre-packaged solutions but should be taken into account when developing
new CNN libraries.

Once ∆C(2)
σ has been computed, it is possible to update the filter value in CL2. This

means calculating each element of the third-order tensor ∆K(2), with j = 1, . . . p = 4,
l = 1, . . . q = 6, and u = 1, . . . 3, we obtain
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∆K(2)
j,l (u) =

∂L

∂K(2)
j,l (u)

=
6

∑
i=1

∂L

∂C(2)
l,σ (i)

·
∂C(2)

l,σ (i)

∂K(2)
j,l (u)

=
6

∑
i=1

∆C(2)
l,σ (i) ·

∂σ(C(2)
l (i))

∂K(2)
j,l (u)

=
6

∑
i=1

∆C(2)
l,σ (i) ·

∂σ(C(2)
l (i))

∂C(2)
l (i)

·
∂C(2)

l (i)

∂K(2)
j,l (u)

=
6

∑
i=1

∆C(2)
l,σ (i) · C(2)

l,σ (i) · (1 − C(2)
l,σ (i)) ·

∂C(2)
l (i)

∂K(2)
j,l (u)

=
6

∑
i=1

∆C(2)
l (i) ·

∂C(2)
l (i)

∂K(2)
j,l (u)

(21)

where ∆C(2)
l = ∆C(2)

l,σ · C(2)
l,σ · (1 − C(2)

l,σ ) has been obtained, considering sigmoid as the
activation function (σ). In these hidden layers, other activation functions may be used,
these cases will be discussed in the Appendix A.

Recalling Equations (3) and (9), the last derivative in (21) can be written as

∂C(2)
l

∂K(2)
j,l

=
∂

∂K(2)
j,l

(
n=4

∑
j=1

S(1)
j ∗ K(2)

j,l + b(2)l

)

=
∂

∂K(2)
j,l

(
S(1)

1 ∗ K(2)
1,l + S(1)

2 ∗ K(2)
2,l + · · ·+ S(1)

n ∗ K(2)
n,l + b(2)l

)
=

∂

∂K(2)
j,l

(
S(1)

j ∗ K(2)
j,l

)
(22)

and since only S(1)
j · K(2)

j,l is relevant for the computation, we obtain

∂C(2)
l (i)

∂K(2)
j,l (u)

= S(1)
j (i + u − 1). (23)

Each element of the error ∆K(2)
j,l can now be written as

∆K(2)
j,l (u) =

6

∑
i=1

∆C(2)
l (i)S(1)

j (i + u − 1) (24)

and then the error is
∆K(2)

j,l = S(1)
j ∗ ∆C(2)

l (25)

where “ ∗ ” represents the convolution operation. In the present case, S(1)
j and ∆C(2)

l
are 8 × 1 and 6 × 1 1D columns, respectively. The convolution in Equation (23) yields a
3 × 1 vector, corresponding to the filter dimension selected in CL2 (s(2)).

Now, great attention should be paid when using Equation (25). In the literature, there
are many examples of similar formulae in which the vector S(1)

j is used in reverse [120],
without providing details. The reversing operation is required only when the convolution
definition in (2) is used.
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Following a similar procedure, it is possible to compute the bias b(2)l error. Since C(2)
l

is linear with the bias, ∂C(2)
l

∂b(2)l

= 1, then the bias error is computed as follows:

∆b(2)l =
∂L

∂b(2)l

=
6

∑
i=1

∂L

∂C(2)
l,σ (i)

·
∂C(2)

l,σ (i)

∂b(2)l

=
6

∑
i=1

∆C(2)
l,σ (i) ·

∂σ(C(2)
l (i))

∂b(2)l

=
6

∑
i=1

∆C(2)
l,σ (i) ·

∂σ(C(2)
l (i))

∂C(2)
l (i)

·
∂C(2)

l (i)

∂b(2)l

=
6

∑
i=1

∆C(2)
l,σ (i) · C(2)

l,σ (i)(1 − C(2)
l,σ (i))

=
6

∑
i=1

∆C(2)
l (i).

(26)

Let us now enter the CL1. The object here is to update filters K(1)
1,j and bias b(1)j . To

achieve this, the error ∆S(1)
j must be calculated first.

Using Equations (1) and (9), C(2)
l (i) can be expressed as a function of S(2)

j (i + u − 1).

Introducing a new index I = i + u − 1, we find that C(2)
l (I − u + 1) can be represented as

a function of S(2)
j (I). Moreover, for simplicity, if we denote I = i, C(2)

l (i − u + 1) can be

written as a function of S(2)
j (i). This result is utilized when computing each element of the

error ∆S(1)
j as follows:

∆S(1)
j (i) =

∂L

∂S(1)
j (i)

=
q=6

∑
l=1

s(2)

∑
u=1

∂L

∂C(2)
l (i − u + 1)

·
∂C(2)

l (i − u + 1)

∂S(1)
j (i)

=
q=6

∑
l=1

s(2)

∑
u=1

∆C(2)
l (i − u + 1) ·

∂C(2)
l (i − u + 1)

∂S(1)
j (i)

(27)

where s(2) = 3 is the filter size used in CL2.
The partial derivative in Equation (27) can be computed by making use of Equation (9)

evaluated in i − u + 1. Each element of the error ∆S(1)
j is then

∆S(1)
j (i) =

q=6

∑
l=1

s(2)

∑
u=1

∆C(2)
l (i − u + 1) · K(2)

j,l (u)

=
q=6

∑
l=1

s(2)

∑
u=1

∆C(2)
l (i + (−u) + 1) · K(2)

j,l (−(−u))

(28)
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and finally, the error can be rewritten as

∆S(1)
j =

q=6

∑
l=1

∆C(2)
l ∗ K(2)

j,l rev (29)

where K(2)
j,l rev is obtained by reversing the order of the elements in K(2)

j,l .
Similar to the approach used in CL2 for average pooling, here in CL1 we can write

∆C(1)
jσ (iu) =

1
SS(1)

∆S(1)
j

(⌈
iu/SS(1)

⌉)
(30)

where the index i of ∆S(1)
j runs from 1 to n = 8, iu runs from 1 to 16 = SS(1)n, and finally,

⌈x⌉ represents the ceiling function. As in previous instances, in the following, i will denote
the index iu.

Finally, we can calculate each element of the error ∆K(1)
1,j as follows:

∆K(1)
1,j (u) =

∂L

∂K(1)
1,j (u)

=
16

∑
i=1

∂L

∂C(1)
j,σ (i)

∂C(1)
j,σ (i)

∂K(1)
1,j (u)

=
16

∑
i=1

∆C(1)
j,σ (i) · C(1)

j,σ (i)(1 − C(1)
j,σ (i)) · I(i + u − 1)

=
16

∑
i=1

∆C(1)
j (i) · I(i + u − 1)

(31)

and then the error is
∆K(1)

1,j = I ∗ ∆C(1)
j (32)

where ∆C(1)
j = ∆C(1)

j,σ C(1)
j,σ (1−C(1)

j,σ ) has been obtained considering sigmoid as the activation
function (σ). Again, other activation functions may be used in these hidden layers. These
cases will be discussed in the Appendix A.

Analogously, the bias error is

∆b(1)j =
∂L

∂b(1)j

=
16

∑
i=1

∂L

∂C(1)
j,σ (i)

∂C(1)
j,σ (i)

∂b(1)j

=
16

∑
i=1

∆C(1)
j,σ (i) · C(1)

j,σ (i)(1 − C(1)
j,σ (i))

=
16

∑
i=1

∆C(1)
j (i).

(33)

where the sigmoid has been used as the activation function, and the substitution
∆C(2)

l = ∆C(2)
l,σ · C(2)

l,σ · (1 − C(2)
l,σ ) introduced above.

6. Other Activation and Loss Functions

In addition to the sigmoid as an activation function, which was considered in Section 5,
here, we aim to extend the calculation to also consider the hyperbolic tangent (tanh) [131–134],
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logarithmic hyperbolic cosine (log cosh) [135], and Rectified Linear Unit (ReLU) [136],
including some of its variants [129,137,138].

Moreover, along with MSE, other loss functions are explored for both regression
and classification problems. To provide the correct expressions for the different cases, in
backpropagation, what needs to be modified are only the expressions for ∆yout(i), ∆C(2)

l (i),

and ∆C(1)
j (i). Once computed, they can be used in Equations (15)–(33). Generally, the

choice of the activation function depends on which layer you are dealing with [139].
Although ReLU is commonly preferred in hidden layers (here CL1 and CL2), there are

examples of its use in output layers [140] when the response variable is continuous and
greater than zero [141].

In this section, we assume that the ReLU activation function is applied exclusively in
hidden layers, while the other activation functions are used in both the output and hidden
layers. Let us start by discussing the regression task. The various configurations explored
in terms of activation and loss functions for this task are summarized in the Tables 2 and 3.

The expression for ∆yout(i) depends on both the loss and the activation functions
considered in the output layer. When MSE is used with the sigmoid, the valid expression is
the one provided in Section 5. Instead, when tanh is used, we have

∆yout(i) = (yout(i)− yt(i)) ·
(

1 − y2
out(i)

)
. (34)

where the first factor comes from the derivative of MSE, and the second one from the
derivative of tanh, which is 1 − tanh2.

Another loss function commonly used in regression problems is represented by the
log cosh function

L =
1
N

N

∑
i=1

(log(cosh(yout(i)− yt(i)))) (35)

where i runs from 1 to the dimension of the output (here, N = 2). With log cosh as loss
function, the expression (34) becomes

∆yout(i) =
1
2

tanh(yout(i)− yt(i))yout(i) · (1 − yout(i)) (36)

for sigmoid activation function in the output layer, and

∆yout(i) =
1
2

tanh(yout(i)− yt(i)) ·
(

1 − y2
out(i)

)
(37)

for tanh activation in the output layer. As in Equations (34)–(36), the first factor comes from
the derivative of the loss function, and the second comes from that of the activation function.

Table 2. Expressions for ∆yout corresponding to different loss and activation functions in the out-
put layer.

Loss Function Activation Function in Output Layer ∆yout

MSE sigmoid (15)
MSE tanh (34)

log cosh sigmoid (36)
log cosh tanh (37)
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Table 3. Expressions for ∆C(n) corresponding to different activation functions in hidden layers.

Activation Function in Hidden Layer ∆C(n)

sigmoid (20),(30)
tanh (38)

ReLU (40)
ELU (43)

Leaky ReLU (44)

The different activation functions available for hidden layers have an impact on both
∆C(2)

l (i) and ∆C(1)
j (i) expressions. When the sigmoid is used, the valid expressions are

those provided in Section 5. Instead, when the tanh activation function is used, we have

∆C(n)
l (i) = ∆C(n)

l,σ (i)
(

1 −
(

C(n)
l,σ (i)

)2
)

(38)

where n = 1, 2 represents the hidden layer number.
Moreover, with the ReLU activation function in hidden layers defined as follows:

ReLU(x) =

{
x x ≥ 0

0 x < 0
, (39)

Equation (38) can be rewritten:

∆C(n)
l (i) = ∆C(n)

l,σ (i)

{
1 C(n)

l (i) ⩾ 0

0 C(n)
l (i) < 0

(40)

where n = 1, 2 represents the hidden layer number.
Among the possible variants of teh ReLU activation function, we can consider ELU

(Exponential Linear Unit):

ELU(x) =

{
x x > 0

α(ex − 1) x ≤ 0
(41)

and Leaky ReLU

LeakyReLU(x) =

{
x x ≥ 0

αx ≤ 0
(42)

with α a parameter that might be considered as trainable.
The expression (38) is now

∆C(n)
l (i) = ∆C(n)

l,σ (i)

1 C(n)
l (i) > 0

αeC(n)
l (i) C(n)

l (i) ≤ 0
(43)

for ELU, and

∆C(n)
l (i) = ∆C(n)

l,σ (i)

{
1 C(n)

l (i) ⩾ 0

α C(n)
l (i) < 0

(44)

for Leaky ReLU.
Let us shift our focus to classification tasks. In these scenarios, the output layer

provides probabilities for decision-making when classifying input data. Essentially, the
output is presented as a list of probabilities for different potential labels. When calculating
the error, the target output yt(i) is represented by a one-hot vector that has 1 at one index
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and 0 at all other indices. Consequently, this implies that ∑N
k=1 yt(k) = 1. Since the output

of the output layer may assume both positive and negative real values, the output yout(i)
needs to be transformed into probability-like values. This can be achieved using the
Softmax function:

Pi =
eyout(i)

∑N
k=1 eyout(k)

(45)

where 0 ≤ Pi ≤ 1 and ∑N
i=1 Pi = 1. The derivative of Equation (43) can be easily calculated

as follows:
∂Pk

∂yout(i)
=

{
−PkPi k ̸= i

Pk(1 − Pi) k = i.
(46)

When using the Softmax as the output activation function, the loss function that is
generally associated is represented by the cross-entropy, given by

L = −
N

∑
i=1

yt(i) ln(Pi). (47)

The expression for ∆yout(i) can be derived after calculating the derivative of the loss,
which is obtained using the derivative of Equation (44):

∂L
∂yout(i)

=
N

∑
k=1

∂L
∂Pk

∂Pk
∂yout(i)

=
N

∑
k=1

(
yt(k)

Pk
PkPi

)
− yt(i)

Pi
Pi

= Pi − yt(i).

(48)

7. Conclusions

This tutorial thoroughly covers the theoretical aspects of feedforward and backprop-
agation in 1D CNNs, providing a step-by-step guide. It points out existing relationships
with linear algebra, statistics, and optimization, addressing gaps identified in our literature
review. The provided results consider both regression and classification tasks and include
some of the most widely used activation functions. Its goal is to support the development of
practical applications using these mathematical concepts. Moreover, the tutorial highlights
potential challenges and pitfalls commonly encountered when implementing new library
packages for 1D CNN in languages other than the available open-source ones. By bridging
theoretical foundations with practical insights, this tutorial serves as a comprehensive
guide for both beginners and experienced professionals aiming to deepen their under-
standing of 1D CNNs. In conclusion, this tutorial not only enhances comprehension of 1D
CNNs but also equips beginners with the confidence to apply these techniques effectively.
Future research directions might include exploring advanced architectures, integrating
novel activation functions, and leveraging emerging optimization algorithms to further
improve the performance and applicability of 1D CNNs.
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Appendix A

In this section, all the derivatives used for backpropagation are calculated by making
use of the rule. Let us consider a vector y of length m, which is calculated by forming the
product of a matrix A with m rows and n columns:

y1 = a11x1 + a12x2 + . . . + a1nxn

y2 = a21x1 + a22x2 + . . . + a2nxn
...
ym = am1x1 + am2x2 + . . . + amnxn

(A1)

in other words, each element of the vector y can be written as follows:

yi =
n

∑
j=1

aijxj. (A2)

The derivative of y with respect to x requires calculating the partial derivative of each
component of y with respect to each component of x:

∇xy =


∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn

 =


a11 a21 · · · am1

a12 a22 · · · am2
...

a1n a2n · · · amn

 = AT . (A3)

The derivative of y with respect to A is calculated considering that ∂yi
∂ajk

vanishes for
i ̸= j, we obtain

∇Ay = xT . (A4)
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Let us now consider the vector z as a function of y = Ax. In this case, the derivative
with respect to x is represented by a vector n × 1 and can be calculated as follows:

∇xz = ∇x f (Ax) =


∂ f (Ax)

∂x1
∂ f (Ax)

∂x2
...

∂ f (Ax)
∂xn

 =


∂ f (y1,y2,···ym)

∂x1
∂ f (y1,y2,···ym)

∂x2
...

∂ f (y1,y2,···ym)
∂xn

. (A5)

Making use of the chain rule we obtain

∇x f (Ax) =


∂ f
∂y1

∂y1
∂x1

+ ∂ f
∂y2

∂y2
∂x1

+ · · ·+ ∂ f
∂ym

∂ym
∂x1

∂ f
∂y1

∂y1
∂x2

+ ∂ f
∂y2

∂y2
∂x2

+ · · ·+ ∂ f
∂ym

∂ym
∂x2

...
∂ f
∂y1

∂y1
∂xn

+ ∂ f
∂y2

∂y2
∂xn

+ · · ·+ ∂ f
∂ym

∂ym
∂xn

. (A6)

Each entry of this matrix
(

∂yj
∂xk

)
is ajk; then Equation (A6) can be rewritten as

∇x f (Ax) = AT ∂ f
∂y

(A7)

where AT is the transpose of the A matrix and

∂ f
∂y

=


∂ f
∂y1
∂ f
∂y2
...

∂ f
∂ym

. (A8)

Now, we are interested in calculating the derivative with respect to A:

∇A f (Ax) =


∂ f (Ax)

∂a11

∂ f (Ax)
∂a12

· · · ∂ f (Ax)
∂a1n

∂ f (Ax)
∂a21

∂ f (Ax)
∂a22

· · · ∂ f (Ax)
∂a2n

...
∂ f (Ax)

∂am1

∂ f (Ax)
∂am2

· · · ∂ f (Ax)
∂amn

. (A9)

Using the chain rule, each entry of the matrix can be calculated as follows:

∂ f (Ax)
∂aij

=
∂ f (y1, y2, ..ym)

∂aij
=

∂ f
∂y1

∂y1

∂aij
+

∂ f
∂y2

∂y2

∂aij
+ · · ·+ =

∂ f
∂yi

∂yi
∂aij

=
∂ f
∂yi

xj (A10)

and hence (A9) can be rewritten as
∂ f
∂y1

x1
∂ f
∂y1

x2 · · · ∂ f
∂y1

xn
∂ f
∂y2

x1
∂ f
∂y2

x2 · · · ∂ f
∂y2

xn
...

∂ f
∂ym

x1
∂ f

∂ym
x2 · · · ∂ f

∂ym
xn

 =
∂ f
∂y

xT (A11)

where ∂ f
∂y and xT are m × 1 and 1 × n vectors respectively.
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