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A B S T R A C T

In this work we address the problem of tumour growth control by properly exploiting a low-dimensional
model that grounds on the Chemical Reaction Network (CRN) formalism. Originally conceived to work both
in deterministic and stochastic frameworks, it is shown that, except for the case of very low number of tumour
cells, the deterministic approach is appropriate to characterize the system behaviour, especially for control
planning purposes. Two alternative control approaches are here investigated. One trivially assumes a constant
infusion of external drug administration, the other is designed according to a state-feedback control scheme,
with complete or partial knowledge of the state. Pros and cons of both control laws are investigated, showing
that the tumour size at the beginning of the therapy plays a role of paramount importance for fixed infusion
therapies, whilst only state-feedback laws can eradicate arbitrarily large tumours.
r

1. Introduction

Model-based control is gaining an increasing interest in the last
decades, since it allows the design of very sophisticated feedback
regulations accounting for the innate dynamics of the system under in-
vestigation. Within biomedical frameworks, minimal models are often
exploited since they allow to catch the basic relationships among the in-
volved variables without explicitly detailing all the physical/molecular
mechanisms: they can be easily identified according to standard pertur-
bation experiments, and allow the synthesis of affordable and readily
implementable control laws.

As far as tumour growth models are concerned, starting from the
seminal paper (Hahnfeldt et al., 1999) (proposing an Ordinary Dif-
ferential Equation (ODE) model of the vascular growth of tumours
characterized by low dimension and minimal number of parameters)
several theoretical/experimental results have been achieved, dealing
with model extensions (see d’Onofrio and Gandolfi, 2004, 2010) and
closed-/open-loop anti-angiogenic drugging (see, e.g. Cacace et al.,
2018b,a; Drexler et al., 2017c; Ledzewicz and Schättler, 2008; Sápi
et al., 2016), possibly combined with chemotherapy treatments (see,
e.g. d’Onofrio et al., 2009; Ledzewicz et al., 2011). Feedback controls
of tumour growth kinetic models have been also proposed in stochastic
frameworks, like the recent contributions Preziosi et al. (2021) and
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Medaglia et al. (2022) exploiting mathematical tools from statisti-
cal physics. The theoretical approaches aiming at providing tumour
dynamics characterization are very frequent (see e.g. Pinho et al.,
2013), even in the context of more complex age/spatial-structured PDE
models (see e.g. Liu et al., 2019; Wei and Cui, 2008). Such a kind of
mathematical analysis allows to identify conditions for carcinogenesis
and for tumour growth and invasion, which are fundamental results for
tumour control planning and for optimizing treatments (see Dzyubak
et al., 2019).

More recently, models of tumour growth have been proposed (Drexle
et al., 2019, 2017a,b) as coming from the formalism of Chemical
Reaction Network (CRN) (Feinberg, 2019). The advantage of such an
approach is that CRN can be straightforwardly modelled according to
the stochastic framework implemented by the Chemical Master Equa-
tions (CME) (Borri et al., 2020), able to account for the inherent noise
providing random fluctuations on the involved chemical players; the
usual (ODE) models associated to CRNs may be thought of as a linear
approximation of the average dynamics coming from the CME (van
Kampen, 2007). These ODE models can be fruitfully exploited in
spite of the more complete CMEs whenever the chemical players copy
number is very high, because of their superior computational manage-
ability. In this work it is shown by realistic numerical simulations that
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the stochastic approach may be set aside for tumour growth control
purposes, at least at the beginning of an exogenous drug administration
therapy, because such therapies are supposed to start with a very large
number of tumour cells. Instead, assuming to have successfully reduced
the initial tumour mass, it could be interesting to approach the tumour
eradication problem from a stochastic control perspective, dealing with
a very low number of leftover tumour cells.

In fact, this contribution starts from the qualitative analysis carried
out in Borri et al. (2020) for the ODE model associated to the CRN and
further investigates tumour growth control techniques accounting for
both fixed and state-dependent feedback control laws. The main results
of this paper show that constant administration therapies have several
limitations. In particular, they cannot eradicate the tumour if its size is
too large when the therapy starts. Conversely, a state-feedback control
law can overcome the limitations of the constant therapy. Indeed, it is
always possible to design a control scheme able to eradicate arbitrarily
large tumours, allowing a high infusion rate only for a limited time
period.

The next Section is devoted to briefly recap the equations and
the main features of the model. It will be shown that the stochastic
approach provides a significant contribution only according to very
low copy numbers: although interesting when dealing with the issue
of complete tumour eradication, such an approach will not be kept in
the sequel, in favour of an in-depth investigation of tumour size control
in the deterministic model, which provides a good approximation of
the mean behaviour of the stochastic one. Section 3 deals with the
case of a fixed drug administration; it will be shown how the initial
tumour size is responsible of a successful tumour eradication and how
we can cope with adverse initial conditions. Section 4 gets in the details
of state-feedback control, showing that only such a control scheme
can eradicate arbitrarily large tumours. Conclusions follow. Finally,
an Appendix reporting some details on the (both deterministic and
stochastic) adopted numerical strategies closes the paper.

2. Model formulation: deterministic vs stochastic approach

In the recent paper (Borri et al., 2020) we provided a double formu-
lation, deterministic versus stochastic, of a growing tumour cell popu-
lation under chemotherapeutic treatment. The proposed deterministic–
stochastic model is a minimally parameterized and low-dimensional
system taking into account the dynamics of proliferating and dead
cancer cells, as well as the anti-cancer drug level. Our modelling frame-
work generalizes the approach introduced by Drexler et al. (2019),
where the well known CRN formalism (see Feinberg, 2019 for the
details) is exploited for describing physiological aspects and cell-drug
interaction, and it allows to derive an ODE system describing the
dynamics of the treated tumour.

The deterministic formulation describes the system behaviour in
average terms, as it actually well approximates the first moment of
the stochastic representation. Nevertheless, a stochastic formulation is
mandatory in order to provide a more realistic representation of the
system, characterized by random fluctuations and correlations between
state variables (see van Kampen, 2007).

As described in Borri et al. (2020), the chemical players considered
by the stochastic formulation are: (i) growing cancer cells, 𝑋1, (ii)
necrotic cancer cells, 𝑋2, and (iii) drug molecules, 𝑋3; moreover,
the physiological aspects and the state interactions that have been
represented are:

𝑅1 − proliferation ∶ 𝑋1 → 2𝑋1,
𝑅2 − necrosis ∶ 𝑋1 → 𝑋2,
𝑅3 − dead cell washout ∶ 𝑋2 → ∅,
𝑅4 − drug clearance ∶ 𝑋3 → ∅,
𝑅5 − drug action ∶ 𝑋1 +𝑋3 → 𝑋2,
𝑅6 − drug administration ∶ ∅ → 𝑋3.

(1)

Following the usual stochastic approach, we opted for countable
2

variables 𝑛𝑖, 𝑖 = 1, 2, 3, (number of cancer cells and drug molecules) to t
Table 1
Population resets according to the set of reactions (1).
Event Resets propensities

𝑅1 𝑛1 ↦ 𝑛1 + 1 𝑎1 = 𝑘1𝑛1

𝑅2

{

𝑛1 ↦ 𝑛1 − 1
𝑛2 ↦ 𝑛2 + 1

𝑎2 = 𝑘2𝑛1

𝑅3 𝑛2 ↦ 𝑛2 − 1 𝑎3 = 𝑘3𝑛2
𝑅4 𝑛3 ↦ 𝑛3 − 1 𝑎4 = 𝜌 𝑛3

𝑀4+𝑛3

𝑅5

⎧

⎪

⎨

⎪

⎩

𝑛1 ↦ 𝑛1 − 1
𝑛2 ↦ 𝑛2 + 1
𝑛3 ↦ 𝑛3 − 1

𝑎5 = 𝑘5
𝑛1𝑛3

𝑀5+𝑛3

𝑅6 𝑛3 ↦ 𝑛3 + 1 𝑎6 = 𝑟

denote the values of the chemicals 𝑋𝑖. When a reaction in (1) occurs,
the state 𝑛 = (𝑛1, 𝑛2, 𝑛3) updates according to the resets of Table 1. The
third column in 1 refers to the propensities 𝑎𝑖, 𝑖 = 1,… , 6, related to
the probabilities of occurrence of reactions 𝑅𝑖 in (𝑡, 𝑡+𝑑𝑡) (namely 𝑎𝑖𝑑𝑡,
see Borri et al., 2020).

Besides, according to the usual mathematical formalism, coefficients
𝑘𝑖, 𝑖 = 1, 2, 3, 5, in Table 1 are the reaction rate constants (day−1) of
eactions 𝑅𝑖, 𝑖 = 1, 2, 3, 5, 𝑀𝑖, 𝑖 = 4, 5, are the MM constants (number of
ells/molecules) of reactions 𝑅𝑖, 𝑖 = 4, 5, 𝜌 is the maximal rate of drug
limination (molecules per day) of reaction 𝑅4 and 𝑟 is the treatment
ate (molecules per day) of reaction 𝑅6. Note that, in principle, 𝑟 can
e time-varying and dependent on the drugging regimen.

According to Table 1, the stochastic model of system (1) is given by
he Chemical Master Equations (CME) describing the dynamics of the
rand probability function 𝑃 (𝜂1, 𝜂2, 𝜂3; 𝑡), that is the probability that the
tate 𝑛(𝑡) is equal to the value 𝜂 = (𝜂1, 𝜂2, 𝜂3)𝑇 at time 𝑡. In particular,
enoting by 𝛿𝑖 ∈ R3 the vector of resets referred to the state (𝑛1, 𝑛2, 𝑛3)
ecause of reaction 𝑅𝑖, the CME (Borri et al., 2020; van Kampen, 2007;
orri et al., 2016) is written as

𝑃 (𝜂; 𝑡)∕𝜕𝑡 =
6
∑

𝑖=1

[

𝑎𝑖(𝜂 − 𝛿𝑖)𝑃 (𝜂 − 𝛿𝑖; 𝑡) − 𝑎𝑖(𝜂)𝑃 (𝜂; 𝑡)
]

. (2)

Fig. 1 shows the state transition maps for any reaction occurrence
roviding a transition from state (𝜂1, 𝜂2, 𝜂3) (upper panel of Fig. 1,
egative terms in Eq. (2)) and any reaction occurrence providing a
ransition into state (𝜂1, 𝜂2, 𝜂3) (lower panel of Fig. 1, positive terms in
q. (2)).

As it usually happens, CME cannot be directly solved because of
he combinatorial explosion of the possible state values: dealing with
illions of cancer cells, necrotic cells and drug molecules would lead

o (106)3 = 1018 distinct states 𝜂, each described by a CME of the
ype (2). Such a curse of dimensionality prevents the search for an-
lytical solutions, even according to recent computational schemes
elying on efficient state-space realization of the CME, Borri et al.
2016). In these cases, one may resort to search for a less informative
odel, looking for first-order (or higher-order) moment equations.
nfortunately, because of the nonlinearity fashion of some model
ropensities, moment equations are not achievable in closed form van
ampen (2007). The application of a linear approximation to first-
rder moments provides the usual ODE equations coming out when
he chemical reaction network is directly translated into a kinetic
ompartmental model, following the classical deterministic modelling
pproach based on the stoichiometry matrix definition (where the reset
ector 𝛿𝑖 previously introduced coincides with the 𝑖th column of the
toichiometry matrix van Kampen, 2007). Denoting by ⟨𝑛𝑖⟩, 𝑖 = 1, 2, 3,
he average values of 𝑛, the ODE system approximately describing the
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Fig. 1. State transition diagram for the CME (2).

average values is given by
𝑑 ⟨𝑛1⟩
𝑑𝑡

= (𝑘1 − 𝑘2) ⟨𝑛1⟩ − 𝑘5
⟨𝑛1⟩ ⟨𝑛3⟩
𝑀5 + ⟨𝑛3⟩

,

𝑑 ⟨𝑛2⟩
𝑑𝑡

= 𝑘2 ⟨𝑛1⟩ − 𝑘3 ⟨𝑛2⟩ + 𝑘5
⟨𝑛1⟩ ⟨𝑛3⟩
𝑀5 + ⟨𝑛3⟩

,

𝑑 ⟨𝑛3⟩
𝑑𝑡

= −𝜌
⟨𝑛3⟩

𝑀4 + ⟨𝑛3⟩
− 𝑘5

⟨𝑛1⟩ ⟨𝑛3⟩
𝑀5 + ⟨𝑛3⟩

+ 𝑟.

(3)

otice that the deterministic model can well approximate the mean
alue of the Markov chain provided that the drug copy number 𝑛3 is
ar from the saturation values of the MM functions (achieved when
3 ≫ 𝑀4,𝑀5), which makes the MM propensity functions close to be
inear.

In summary, starting from the more complete stochastic formula-
ion, the standard ODE deterministic model is derived as the first-order
pproximation of the CME average values and it is usually preferred
o the CME model when the copy number of the involved species is
igh enough to average and smooth the relative fluctuations. Dealing
ith a model of tumour growth there may not be a clear separation
etween the two cases (i.e. high copy number versus low copy number),
nd both approaches may well deserve a thorough analysis, especially
hen a tumour growth control law is applied: at the beginning of the
elivered drug therapy it is reasonable to assume a very high copy
umber of tumour cells, so that the ODE may be preferable to lighten
he computational burden; on the other hand, in case of a successful
rug therapy, tumour cells may reduce to such a low level to make
ore reasonable to account for the stochastic approach.

To better investigate what happens to the case at hand, we have
imulated different scenarios according to the 𝜏-leap algorithm Gille-
pie (2001): this method has been preferred to standard Gillespie
lgorithm (providing statistically exact simulations) Gillespie (1976)
ecause the very high cell copy number entailed impractically long
imulations. Figs. 2 and 3 report some numerical simulations obtained
y means of the stochastic modelling approach and its deterministic
DE approximation.

Parameters are reported in Table 2 and are set according to exper-
mental values related to Pegylated Liposomal Doxorubicin treatment
nd breast cancer cells of mice (see Borri et al., 2020 for details). Under
uitable hypotheses, described in Section 3, the drugging rate 𝑟 is kept
onstant and equal to the same value, i.e. 1.53 ⋅ 109 drug molecules per
ay, picked in the interval (𝛽𝜌, 𝜌), where the parameter function 𝛽 is
3

Table 2
Values of the model parameters for
the deterministic model. The model-
dependent quantities 𝛽 and 𝑛𝑚𝑎𝑥10 are
computed from Eqs. (6) and (17).
Parameter Value

𝑘1 𝑒𝑥𝑝(−1.18)
𝑘2 𝑒𝑥𝑝(−1.94)
𝑘3 𝑒𝑥𝑝(−1.08)
𝑘5 𝑒𝑥𝑝(−1.79)
𝑀4 5.553 ⋅ 1010

𝑀5 1.495 ⋅ 107

𝜌 3.953 ⋅ 1010

𝛽 0.0128
𝑛𝑚𝑎𝑥10 2.386 ⋅ 1011

given by Eq. (6). A unique and asymptotically stable equilibrium point
is ensured by the chosen model parameters and by the constant rate of
drug administration.

The random paths reported in Fig. 2 are obtained starting from the
initial state (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (3.95 ⋅ 106, 100, 0). It can be appre-
ciated that the deterministic behaviour very well resembles the first
moment dynamics and that, according to the chosen parameter values,
the high number of tumour cells makes the stochastic fluctuations
actually negligible. Conversely, assuming a different initial scenario
characterized by a reduced copy number of proliferating cells (initial
growth phase), noise fluctuations become significant. Fig. 3 shows the
comparison between the stochastic model and the deterministic one
when (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (300, 100, 0). It can be noted from the figure
that, although the mean trend of the random path is still well captured
by the deterministic model, now the fluctuations actually are highly
appreciable. Moreover, the random fluctuations allow the tumour to
reach a maximal dimension that is almost double with respect to the
maximal value reached by the mean trend.

It is worth noticing that the case of very few cell copies is of interest
for the stochastic formulation when dealing with tumour eradication
strategies, that is when the planning of a suitable control law is crucial
to bring 𝑛1 to zero. Nevertheless, the design of a stochastic control is not
the aim of the present work, but it is a future development naturally
arising from the present results. In this paper we further investigate
the qualitative behaviour of the first moment approximation of the
stochastic model, that is the dynamical system (3), and possible related
control strategies addressing tumour eradication (at least on average).

In the following Section, the state variables of the ODE in (3) will
be shortly denoted by 𝑛𝑖 rather than ⟨𝑛𝑖⟩.

3. Model dynamics under a fixed infusion therapy

As a first remark, we highlight that all the reaction rates in the
ODE model (3) are bounded and continuously-differentiable (hence
Lipschitz-continuous) in the positive orthant, which is a sufficient
condition for the existence and uniqueness of the solution of the model,
as well as for the search of the equilibrium points of the ODE unique
solution as the roots of the algebraic equation coming from setting
𝑑⟨𝑛𝑖⟩
𝑑𝑡 = 0, 𝑖 = 1, 2, 3 in (3), see e.g. Khalil (1996). With regards to

the qualitative behaviour of the ODE model (3) under a fixed infusion
𝑟(𝑡) = �̄�, in Borri et al. (2020) we proved the existence and stability
properties of the equilibrium points summarized by Table 3, where

𝐸1 =
(

0, 0, 𝑀4
�̄�

𝜌 − �̄�

)

, (4)

and

𝐸2 =
(

�̄� − 𝛽𝜌
𝑘1 − 𝑘2

,
𝑘1
𝑘3

�̄� − 𝛽𝜌
𝑘1 − 𝑘2

,
𝑀5(𝑘1 − 𝑘2)
𝑘5 − 𝑘1 + 𝑘2

)

, (5)

with

𝛽 = 𝑀 (𝑘 − 𝑘 )∕(𝑀 (𝑘 − 𝑘 + 𝑘 ) +𝑀 (𝑘 − 𝑘 )), (6)
5 1 2 4 5 1 2 5 1 2
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Fig. 2. Random paths from 𝜏-leap stochastic simulations (blue dots) overlapping the
approximate first-order dynamics (red line) when (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (3.95 ⋅ 106 , 100, 0).
Parameters are taken from Table 2. Constant administration rate 𝑟 fixed to 1.53 ⋅ 109

drug molecules per day.

refer to two distinct equilibrium points: the former (𝐸1) provides tu-
mour eradication and it can be locally asymptotically stable according
to specific model parameter values (included the fixed drug adminis-
tration rate); the latter (𝐸2) refers to a non-trivial point (with respect
to the three state variables) but reveals to be unstable regardless of the
model parameter setting. Therefore, only 𝐸1 is of interest for medical
applications.

By reading the table, the following points can be stressed:

– for 𝑘1 < 𝑘2 we are in the lucky case where even without any
treatments (i.e. �̄� = 0) we have tumour eradication because
the 𝑛1 time derivative is negative, whatever the positive initial
conditions: in case of a drug treatment lower than 𝜌, the tumour
eradication reflects the local stability of an equilibrium point with
a non-trivial stationary value for the drug accumulation (that is
equal to zero for no drug administration). This is a case where no
intervention is required;

– for 𝑘1 > 𝑘2 and 𝑘5 ≤ 𝑘1 − 𝑘2, if point 𝐸1 exists, it is unstable for
any value of the drug administration therapy. We are in the very
unlucky case where no fixed treatment is able to change the fate
of a definitely increasing tumour; this is attributable to a scarce
efficacy of the chosen drug, since the maximal rate constant of
cell killing is lower than the net proliferation rate constant;
4

Fig. 3. Random paths from 𝜏-leap stochastic simulations (blue dots) and the approxi-
mate first-order dynamics (red line) for (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (300, 100, 0). Parameters are
taken from Table 2. Constant administration rate 𝑟 fixed to 1.53 ⋅ 109 drug molecules
per day.

Table 3
Existence and stability of the equilibrium points of system (3). 𝑓 = {(𝜉, 𝑘1

𝑘3
𝜉, 0) ∶ 𝜉 ≥ 0}

is a family of points existing only in the limit condition 𝑘1 = 𝑘2, �̄� = 0.
Parameter region Infusion rate Equilibrium Stability

𝑘1 < 𝑘2
0 ≤ �̄� < 𝜌 𝐸1 Locally asympt. stable
�̄� ≥ 𝜌 ∄ –

𝑘1 = 𝑘2
�̄� = 0 𝑓 (⊃ {𝐸1}) Nothing can be said
0 < �̄� < 𝜌 𝐸1 Locally asympt. stable
�̄� ≥ 𝜌 ∄ –

𝑘1 > 𝑘2

𝑘5 ≤ 𝑘1 − 𝑘2
0 ≤ �̄� < 𝜌 𝐸1 Unstable
�̄� ≥ 𝜌 ∄ –

𝑘5 > 𝑘1 − 𝑘2

0 ≤ �̄� < 𝛽𝜌 𝐸1 Unstable
�̄� = 𝛽𝜌 𝐸1 ≡ 𝐸2 Nothing can be said

𝛽𝜌 < �̄� < 𝜌
𝐸1 Locally asympt. stable
𝐸2 Unstable

�̄� ≥ 𝜌 𝐸2 Unstable

– for 𝑘1 > 𝑘2 and 𝑘5 > 𝑘1 − 𝑘2, point 𝐸1 is locally asymptotically
stable for specific values of the exogenous drug treatment: 𝛽𝜌 <
�̄� < 𝜌.

We stress the fact that all the properties given above are local
properties (i.e. valid in a subregion of the state-space sufficiently close
to the considered equilibrium point) and they are obtained for a
constant administration rate. Let us now better characterize the global
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dynamical properties of system (3) focusing only on the case for which
it is actually reasonable to look for an effective anticancer treatment,
i.e.

𝑘1 > 𝑘2, 𝑘5 > 𝑘1 − 𝑘2, 𝛽𝜌 < �̄� < 𝜌. (7)

n the following we will prove that, under a constant administration
ate �̄� (fixed within (𝛽𝜌, 𝜌)), the dynamical behaviour of the state
ariables strongly depends on their initial values, and in particular on
he tumour size when the therapy starts.

Let us restrict our analysis to the ODEs of 𝑛1 and 𝑛3 only, since they
re totally independent of the dynamical behaviour of 𝑛2 (𝑛2 does not
nter in the equations of �̇�1, �̇�3, although it is obviously influenced by
𝑛1, 𝑛3). We start noticing that every real scenario begins from the initial
conditions 𝑛1(0) = 𝑛10, with 𝑛10 > 0, and 𝑛3(0) = 0. Since �̄� is strictly
positive, 𝑛3 becomes strictly positive too as soon as we move from the
initial instant 𝑡 = 0 and it never comes back to zero. Indeed, otherwise,
there would exist a time instant 𝑡 such that

3(𝑡) = 0, �̇�3(𝑡) ≤ 0

hat is impossible. Conversely, if 𝑛1 possibly became zero at a time 𝑡⋆,
it would remain equal to zero because the solution should satisfy the
Cauchy problem for the system (of decoupled equations)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�1 = 0,
�̇�2 = −𝑘3𝑛2,
�̇�3 = −𝜌

𝑛3
𝑀4 + 𝑛3

+ 𝑟,

𝑛1(𝑡⋆) = 0, 𝑛2(𝑡⋆) = 𝑛2⋆, 𝑛3(𝑡⋆) = 𝑛3⋆,

which, due to the uniqueness argumentation highlighted at the begin-
ning of this Section, implies a unique solution with 𝑛1(𝑡) = 0,∀𝑡 ≥ 𝑡⋆.
Moreover, when 𝑛1 is zero the dynamics of 𝑛3 becomes very simple,
asymptotically converging to the equilibrium value of 𝐸1, indepen-
dently of its starting point (see the dynamical equation of �̇�3 setting
𝑛1 = 0).

Recalling the parameter relation 𝑘5 > 𝑘1 − 𝑘2 > 0, it is easy to find
that, as long as 𝑛1 ≠ 0, the following results related to �̇�1 hold:

⎧

⎪

⎨

⎪

⎩

�̇�1 > 0 ⇔ 𝑛3 < �̄�3,
�̇�1 = 0 ⇔ 𝑛3 = �̄�3,
�̇�1 < 0 ⇔ 𝑛3 > �̄�3,

(8)

where

�̄�3 =
(𝑘1 − 𝑘2)𝑀5
𝑘5 − 𝑘1 + 𝑘2

. (9)

Conversely, from the equation of �̇�3 it is possible to find the properties

⎧

⎪

⎨

⎪

⎩

�̇�3 > 0 ⇔ 𝑛1 < 𝑔(𝑛3),
�̇�3 = 0 ⇔ 𝑛1 = 𝑔(𝑛3),
�̇�3 < 0 ⇔ 𝑛1 > 𝑔(𝑛3),

(10)

where the function 𝑔(𝑛3) is given by

𝑔(𝑛3) =
(�̄�𝑀4 − (𝜌 − �̄�)𝑛3)(𝑀5 + 𝑛3)

𝑘5(𝑀4 + 𝑛3)𝑛3
. (11)

As far as the behaviour of the function (11) is concerned, denoting by
̄̄3 the drug concentration at the equilibrium 𝐸1, i.e. ̄̄𝑛3 = �̄�𝑀4∕(𝜌 − �̄�),
he following properties hold:

𝑔(𝑛3) > 0 ⇔ 𝑛3 < ̄̄𝑛3,
𝑔(𝑛3) = 0 ⇔ 𝑛3 = ̄̄𝑛3,
𝑔(𝑛3) < 0 ⇔ 𝑛3 > ̄̄𝑛3,
lim
𝑛3→0

𝑔(𝑛3) = ∞,

lim
𝑛3→∞

𝑔(𝑛3) = −
𝜌 − �̄�
𝑘5

< 0.

(12)

nother important property of 𝑔(𝑛3) can be given looking at its deriva-
ive, that is
𝑑𝑔(𝑛3) = 1 [

−(𝜌 − �̄�)𝑘5(𝑀5 + 𝑛3)(𝑀4 + 𝑛3)𝑛3
5

𝑑𝑛3 (𝑘5(𝑀4 + 𝑛3)𝑛3)2
−(�̄�𝑀4 − (𝜌 − �̄�)𝑛3)𝑘5((𝑀4 + 𝑛3)𝑀5 + 𝑛23 +𝑀5𝑛3)
]

. (13)

ecalling that �̄� is strictly lower than 𝜌, it is easy to verify that

3 ≤ ̄̄𝑛3 ⇒
𝑑𝑔(𝑛3)
𝑑𝑛3

< 0. (14)

This property guarantees a monotonic decreasing behaviour of the
function 𝑛1 = 𝑔(𝑛3) in the region of interest of the plane (𝑛3, 𝑛1), i.e. in
he non-negative orthant.

We finally provide another important property that allows to de-
ermine the relative position of the curves �̇�1 = 0 (related to 𝑛1 ≠ 0)
nd �̇�3 = 0 in the considered region of the state-space. In particular,
e notice that the condition �̄� > 𝛽𝜌 straightforwardly provides the

ollowing ordering of the quantities �̄�3 and ̄̄𝑛3:

�̄� > 𝛽𝜌 ⇔ �̄�3 < ̄̄𝑛3. (15)

ig. 4 shows a summarizing picture of all the properties given by
qs. (8)–(15) in the non-negative orthant of the plane (𝑛3, 𝑛1). Note
hat the state vectors ( ̄̄𝑛3, 0) and (�̄�3, �̄�1) are both characterized by the
tationary conditions �̇�1 = 0, �̇�3 = 0 and they actually represent 𝐸1 and
2, respectively. Indeed, setting 𝑛3 = �̄�3 in the expression of 𝑔(𝑛3), we
btain

̄1 = 𝑔(�̄�3)

=
�̄�(𝑀4(𝑘5 − 𝑘1 + 𝑘2) +𝑀5(𝑘1 − 𝑘2)) − 𝜌𝑀5(𝑘1 − 𝑘2)

(𝑀4(𝑘5 − 𝑘1 + 𝑘2) +𝑀5(𝑘1 − 𝑘2))(𝑘1 − 𝑘2)
=

�̄� − 𝛽𝜌
𝑘1 − 𝑘2

. (16)

Based on the results given above, and depicted by Fig. 4, we are
ow able to provide the following theorem.

heorem 1. The dynamical behaviour of system (3) in the parameter
region (7) is such that

1. if 𝑛3(0) ≥ �̄�3, 0 ≤ 𝑛1(0) ≤ �̄�1, and (𝑛3(0), 𝑛1(0)) ≠ (�̄�3, �̄�1) (green area
of Fig. 4 not including 𝐸2) then (𝑛3(𝑡), 𝑛1(𝑡)) → ( ̄̄𝑛3, 0) for 𝑡 → ∞;

2. if 0 ≤ 𝑛3(0) ≤ �̄�3, 𝑛1(0) ≥ �̄�1, and (𝑛3(0), 𝑛1(0)) ≠ (�̄�3, �̄�1) (red area
of Fig. 4 not including 𝐸2) then (𝑛3(𝑡), 𝑛1(𝑡)) → (0,∞) for 𝑡 → ∞.

roof. Concerning item 1, we start by proving this property for all
he internal points of the green area. Indeed, all these points are
haracterized by the property �̇�1 < 0. Then, if it is guaranteed that the

state trajectory does not exit from this region, then 𝑛1 will necessarily
go to zero (as it is always non-negative and it is �̇�1 = 0 when 𝑛1 = 0)
when 𝑡 → ∞ and, consequently, 𝑛3 will tend to ̄̄𝑛3. The trajectory exiting
from the area is actually not allowed because of the very own derivative
sign of the state variables. In particular, the border 𝑛3 = �̄�3, 0 ≤ 𝑛1 ≤ �̄�1
cannot be reached starting from the inside as the whole area between
this border, the curve 𝑛1 = 𝑔(𝑛3) and the axis 𝑛3 is characterized by the
condition �̇�3 ≥ 0, which prevents 𝑛3 to approach �̄�3 from higher values.
Moreover, the border 𝑛1 = �̄�1, 𝑛3 ≥ �̄�3 cannot be reached from the
inside as the whole area between this border and the curve 𝑛1 = 𝑔(𝑛3) is
characterized by the condition �̇�1 ≤ 0, which prevents 𝑛1 to approach �̄�1
from lower values. Finally, as previously said, the border 𝑛1 = 0, 𝑛3 ≥ �̄�3
can be reached but it cannot be crossed because of the condition �̇�1 = 0
characterizing all its points.

We complete the proof of item 1, noting that if we start from any
point of the borders except 𝐸2, the trajectory will tend again to the limit
point ( ̄̄𝑛3, 0). Indeed, since all the points satisfying 𝑛3 = �̄�3, 0 < 𝑛1 < �̄�1
and those satisfying 𝑛1 = �̄�1, 𝑛3 > �̄�3 are characterized by �̇�3 > 0 and
by �̇�1 < 0, respectively, a state trajectory starting from any of these
points will enter the green area as soon as 𝑡 increases from zero, and
then it will proceed as described above. Conversely, as already said, if
the trajectory starts from the border 𝑛1 = 0, 𝑛3 ≥ �̄�3, 𝑛1 does not change
while 𝑛3 goes towards ̄̄𝑛3.

In order to prove item 2, we can follow similar arguments to those
used for item 1. Let us start by proving the property for all the internal
points of the red area, which are characterized by the constant property
�̇� > 0. If the state trajectory does not exit from this area, 𝑛 will
1 1
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Fig. 4. Sign framework of the time derivatives �̇�1, �̇�3 as functions of the state in the non-negative orthant of (𝑛3 , 𝑛1)-plane. The solid blue line denoted by �̇�3 = 0 represents the
graph of the function 𝑛1 = 𝑔(𝑛3), described by Eq. (11). The critical values �̄�3, �̄�1 can be computed by means of Eqs. (9), (16); according to the parameter values of Table 2 and
to the administration rate �̄� = 1.53 ⋅ 109, it is �̄�3 = 7.1864 ⋅ 108, �̄�1 = 6.3168 ⋅ 109.
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necessarily diverge when 𝑡 → ∞, while the corresponding evolution
of 𝑛3 will converge to zero. Indeed, the sign of �̇�3 on both sides of the
curve 𝑛1 = 𝑔(𝑛3) within the red area is such that the evolution of 𝑛3 is
always pushed towards such a curve, that actually approaches the axis
𝑛3 = 0 while 𝑡 → ∞. We can assure again that the trajectory exiting
from this area is not allowed, by looking at the derivative sign of the
state variables. In particular, the border 𝑛3 = �̄�3, 𝑛1 ≥ �̄�1 cannot be
reached starting from the inside as the whole area between this border
and the curve 𝑛1 = 𝑔(𝑛3) is characterized by the condition �̇�3 ≤ 0,

hich prevents 𝑛3 to approach �̄�3 from lower values. Moreover, the
order 𝑛1 = �̄�1, 𝑛3 ≤ �̄�3 cannot be reached from the inside as the
hole area between this border, the curve 𝑛1 = 𝑔(𝑛3) and the axis 𝑛1 is

haracterized by the condition �̇�1 ≥ 0, which prevents 𝑛1 to approach
̄1 from higher values. Finally, as previously said, the border 𝑛3 = 0,
𝑛1 ≥ �̄�1 cannot be reached, at least for finite time intervals, because of
the condition �̇�3 > 0 characterizing all its points.

We complete the proof of item 2, noting that if we start from any
point of the borders except 𝐸2, the trajectory will tend again to the
imit point (0,∞). Indeed, since all the points verifying 𝑛3 = �̄�3, 𝑛1 > �̄�1
nd those verifying 𝑛1 = �̄�1, 𝑛3 < �̄�3 are characterized by �̇�3 < 0 and
y �̇�1 > 0, respectively, a state trajectory starting from any of these
oints will enter the red area as soon as 𝑡 increases from zero, and then

it will proceed as described above. Conversely, as already said, if the
trajectory starts from the border 𝑛3 = 0, 𝑛1 ≥ �̄�1, 𝑛3 will increase because
f the property �̇�3 = �̄� > 0 and the trajectory will enter the red area (so
roceeding as described above).

Taking into account the results of Theorem 1 we can now provide
he following remark concerning real scenarios, which are character-
zed by an initial condition (𝑛3(0), 𝑛1(0)) belonging to the axis 𝑛3 = 0,
1 > 0, i.e. (𝑛3(0), 𝑛1(0)) = (0, 𝑛10), with 𝑛10 > 0.

emark 1. With reference to the parameter setting given by (7) and to
constant administration rate �̄� ∈ (𝛽𝜌, 𝜌), the value 𝑛10 characterizing

he tumour size when the therapy starts has a crucial impact on the
ynamical evolution of system (3). As a matter of fact, if the admin-
stration rate were chosen without a proper evaluation of the tumour
nitial size the therapy could fail. In particular, if the condition 𝑛10 ≥ �̄�1
ere satisfied the tumour would indefinitely grow, independently of
6

he value of the constant administration rate. However, note that the
hreshold �̄�1 actually depends on �̄� (see Eq. (16)); so, in principle, it is
ossible to set the value of the administration rate in order to increase

�̄�1 and to keep 𝑛10 far from the critical region of unlimited growth
red area of Fig. 4). Indeed, Eq. (16) shows that, when �̄� increases, �̄�1
ncreases too, and the condition 𝑛10 < �̄�1 could be reached if there were
o size limitations on �̄�. Nevertheless, the constraint �̄� < 𝜌 (hindering

the unlimited drug accumulation of a constant therapy) can prevent the
therapy planning from reaching the desired condition 𝑛10 < �̄�1. In other
words, if the initial tumour size is such that 𝑛10 ≥ 𝑛𝑚𝑎𝑥10 , where

𝑛𝑚𝑎𝑥10 =
(1 − 𝛽)𝜌
𝑘1 − 𝑘2

, (17)

there is no constant administration rate which satisfies both the upper
bound �̄� < 𝜌 and the condition 𝑛10 < �̄�1.

Although setting �̄� such that 𝑛10 < �̄�1 is necessary to avoid a
certain therapy failure, such a condition does not guarantee the tumour
eradication, that is the convergence of the system dynamics to the
equilibrium 𝐸1. It is evident from the results of Theorem 1, as well
as from Fig. 4, that the outcome of a constant therapy s.t. 0 < 𝑛10 < �̄�1
strongly depends on the rapidity of growth that characterizes both 𝑛1
and 𝑛3 during the initial phase of their evolution. Indeed, �̇�1 and �̇�3 are
both strictly positive until 𝑛1 < �̄�1 and 𝑛3 < �̄�3 and, sooner or later, one
out of the two upper bounds will be reached by the state trajectory.
Then, the final outcome actually depends on which variable reaches its
critical value before the other one. Let us denote by (0, 𝑡), with 𝑡 > 0,
the initial time interval until the time instant at which one out of the
two conditions is verified:

(1) 𝑛1(𝑡) = �̄�1 and 𝑛3(𝑡) < �̄�3;
(2) 𝑛1(𝑡) < �̄�1 and 𝑛3(𝑡) = �̄�3.

Note that the condition 𝑛1(𝑡) = �̄�1, 𝑛3(𝑡) = �̄�3 can be excluded starting
from a point different from 𝐸2 because of the local instability of 𝐸2. If
the first condition were reached in 𝑡 then the tumour would indefinitely
grow for 𝑡 > 𝑡, while if the second one were satisfied then the tumour
would be eradicated.

Fig. 5 shows an example of state trajectories obtained changing
the initial tumour size 𝑛10 and choosing the model parameters such
that relations (7) are satisfied. In particular, model parameters and
administration rate are chosen as in Fig. 2 (see Section 2) while 𝑛10

is set in the interval (0, 2�̄�1]. Note that, for this realistic case (mouse
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Fig. 5. State trajectories for 𝑛10 ∈ (0, 2�̄�1]; model parameters taken from Table 2 and
administration rate �̄� = 1.53 ⋅ 109; critical values: �̄�3 = 7.1864 ⋅ 108, �̄�1 = 6.3168 ⋅ 109,
obtained from Eqs. (9), (16). Panel A: The trajectories start from 20 equispaced values
of 𝑛10 in the interval (0, 2�̄�1]. Panel B: Increased number of initial points; the sampling
interval of 𝑛10 is reduced by ten times in (0, �̄�1].

breast cancer cells and Pegylated Liposomal Doxorubicin treatment),
once �̄� is fixed (1.53 ⋅ 109 drug molecules per day), the transition from
stability to instability is obtained when 𝑛10 is very close to the threshold
̄1, that is when 𝑛10 is over the 98% of �̄�1.

The remark given above shows the importance of suitably choosing
the therapy intensity based on the tumour size. In particular, dealing
with a constant therapy, the evaluation of the initial size has been
proved to be crucial. More in general, dealing with variable admin-
istration rates, some information on the current size of the tumour is
necessary to adequately tune the therapy. As shown in the next section,
a control law which automatically adjusts the administration rate based
on some evaluation of the tumour evolution can actually obtain the
tumour eradication.

4. Model dynamics under a suitable state-feedback control law

In the previous section, an analysis of possible tumour eradication
has been performed by means of a constant therapy administration,
which has the advantage that it is only dependent on the system
7

parameters, without exploiting any real-time information about the
system dynamics.

However, as shown in the final part of the previous Section and il-
lustrated by Fig. 4, the constant therapy approach suffers the following
important limitations:

1. big tumours having an initial size larger than or equal to the
critical size 𝑛𝑚𝑎𝑥10 (see Eq. (17)) cannot be eradicated by an
admissible constant therapy, i.e. using an administration rate s.t.
�̄� < 𝜌;

2. there is no guarantee that tumours with an initial size smaller
than 𝑛𝑚𝑎𝑥10 can be actually eradicated using a constant therapy; for
such a case, condition 1 of Remark 1 is a necessary and sufficient
condition for a successful therapy.

In the present section we design a suitable control law able to
eradicate the tumour independently of its initial size (i.e. the tumour
dimension at the therapy planning) provided that some real-time in-
formation on the dynamical evolution of the tumour can be inferred.
In the following, we focus on the autonomous subsystem 𝑧 = (𝑛1, 𝑛3)𝑇 ,
described by the first and third equation of the ODE system (3), and we
restrict our analysis to the meaningful case given by Eq. (7), which, in
the presence of a constant therapy 𝑟(𝑡) = �̄�, is characterized by a locally
asymptotically stable equilibrium 𝑧𝑒 =

(

0, ̄̄𝑛3
)𝑇 , with ̄̄𝑛3 = 𝑀4

�̄�
𝜌−�̄� , and

by a stability region depicted by the green area of Fig. 4.

4.1. The tumour model is not stabilizable at the origin

In this subsection we prove that a non-zero therapy is necessary
to eradicate the tumour reaching a stable equilibrium, so there ex-
ist no feedback laws able to stabilize the tumour by means of an
asymptotically vanishing therapy rate.

We start noticing that the linearization of the reduced (autonomous)
dynamics 𝑧 = (𝑛1, 𝑛3) of Eq. (3) around the origin leads to

̇ (𝑡) ≃ 𝐴𝑧(𝑡) + 𝐵𝑟(𝑡), (18)

with 𝐴 =

[

(𝑘1 − 𝑘2) 0
0 − 𝜌

𝑀4

]

, 𝐵 =
[

0
1

]

. So the origin is a saddle (un-

stable equilibrium) of the uncontrolled system, because of the positive
eigenvalue 𝜆1 = 𝑘1 − 𝑘2.

To show that neither linear nor nonlinear feedback laws can stabi-
lize the system, it is sufficient (see Sastry, 2013, Chapter 6) to run the
PBH test of stabilizability on the positive eigenvalue 𝜆1 of the linearized
system:

Stabilizability of the origin ⟺ 𝑟𝑎𝑛𝑘
([

𝐴 − 𝜆1𝐼 𝐵
])

= 𝑑𝑖𝑚(𝐴). (19)

In our case, we get

𝑟𝑎𝑛𝑘(
[

𝐴 − 𝜆1𝐼 𝐵
]

) = 𝑟𝑎𝑛𝑘

([

0 0 0
0 − 𝜌

𝑀4
− (𝑘1 − 𝑘2) 1

])

= 1 < 2.

(20)

The test fails, implying that the 𝑛1 dynamics cannot be stabilized in
a neighbourhood of the origin. This is in perfect agreement with Fig. 4
and with the sign of �̇�1 with 𝑛1 > 0 (see Eqs. (8)–(9)):

̇ 1|𝑛1>0 ≥ 0 ⟺ (𝑘1 − 𝑘2) − 𝑘5
𝑛3

𝑀5 + 𝑛3
≥ 0 ⟺ 𝑛3 ∈ [0, �̄�3] (21)

so for 𝑛3 lower than �̄�3, the tumour volume cannot decrease, indepen-
dently of the nature of the therapy, since the input term 𝑟 does not
directly affect the 𝑛1 dynamics.

From the previous discussion, we can conclude that feedback cannot
help in avoiding the problem that the therapy must be constantly
administered to prevent a new tumour wave.
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Fig. 6. Comparison between constant therapy regime and state feedback in the short term (20 days): tumour level 𝑛1 (top panel) and drug level 𝑛3 (bottom panel). Simulations
are run from different values of the initial tumour level: 𝑛1(0) = 0.95�̄�1 (for constant therapy, blue line) and 𝑛1(0) = 1.05�̄�1 (for constant therapy, red line, and state-feedback
therapy, yellow line); the constant therapy rate and the initial conditions for dead tumour cells and drug level are kept constant at the values �̄� = 0.95𝜌, 𝑛2(0) = 100 and 𝑛(3) = 0,
espectively. Parameters are taken from Table 2.
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.2. Feedback laws can eradicate arbitrarily large tumours

The limitations about the constant therapy evidenced above come
rom the necessity of making a permanent choice on the size of the con-
tant administration rate at the beginning of the therapy, exploiting at
ost an evaluation of the initial tumour size. In the following, we show

hat a feedback control is actually able to overcome such limitations
llowing to eradicate the tumour even when only partial information
bout the system dynamics are available. Each drug delivery regimen
tarts with the initial condition for the treatment 𝑛3(0) = 0, so no
herapy was administered so far.

As shown in the proof of Theorem 1, large tumours belonging to
he 𝑛1 axis within the red zone of Fig. 4 (characterized by �̇�1 > 0),
.e. tumours with an initial dimension 𝑛1 higher than �̄�1, cannot be
radicated by constant therapy, since the drug level dynamics 𝑛3 cannot
each the zone 𝑛3 > �̄�3 (characterized by �̇�1 < 0) without crossing
efore the curve 𝑛1 = 𝑔(𝑛3), beyond which �̇�3 < 0 (𝑛3 decreases). In a

nutshell, the tumour is so big that an admissible (lower than 𝜌) constant
administration rate cannot accumulate up to a sufficient drug level to
8

undermine the tumour volume.
The situation is different if we are able to tune the therapy in
real-time depending on the estimated tumour volume. To this end, we
assume that a conservative estimate of the state variables is available,
i.e. �̂�1(𝑡) ≥ 𝑛1(𝑡), �̂�3(𝑡) ≥ 𝑛3(𝑡). The strategy can be divided into different
teps.
Step 1. Guarantee drug level accumulation. As a matter of fact,

ifferently from constant therapy, when the administration rate is
hanged over time based on the state estimation, we can always guar-
ntee an increase of the drug level, independently of the tumour size.
n fact, based on the conservative state estimates �̂�1, �̂�3 given above,
he 𝑛3 dynamics implies that

�̇�3(𝑡) = −𝜌
𝑛3(𝑡)

𝑀4 + 𝑛3(𝑡)
− 𝑘5𝑛1(𝑡)

𝑛3(𝑡)
𝑀5 + 𝑛3(𝑡)

+ 𝑟(𝑡)

≥ −𝜌
�̂�3(𝑡)

𝑀4 + �̂�3(𝑡)
− 𝑘5�̂�1(𝑡)

�̂�3(𝑡)
𝑀5 + �̂�3(𝑡)

+ 𝑟(𝑡) (22)

ue to the fact that the Michaelis–Menten function is increasing. So we
ave the following implication:

(𝑡) > 𝑟𝐿𝐵(𝑡) ∶= 𝜌
�̂�3(𝑡) + 𝑘5�̂�1(𝑡)

�̂�3(𝑡)
⟹ �̇�3(𝑡) > 0, (23)
𝑀4 + �̂�3(𝑡) 𝑀5 + �̂�3(𝑡)
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Fig. 7. Comparison between constant therapy regime and state feedback in the short term (20 days): administered therapy 𝑟. Simulations are run from different values of the
initial tumour level: 𝑛1(0) = 0.95�̄�1 (for constant therapy, blue line) and 𝑛1(0) = 1.05�̄�1 (for constant therapy, red line, and state-feedback therapy, yellow line); the constant therapy
rate and the initial conditions for dead tumour cells and drug level are kept constant at the values �̄� = 0.95𝜌, 𝑛2(0) = 100 and 𝑛(3) = 0, respectively. Parameters are taken from
Table 2.

Fig. 8. Comparison between full information and partial information feedback laws in the long term (1000 days): tumour level 𝑛1 (top panel) and drug level 𝑛3 (bottom panel).
Simulations are run from the initial state (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (1.5 ⋅ 𝑛𝑚𝑎𝑥10 , 100, 0), with parameters taken from Table 2. The time 𝑡2 required to switch to a constant therapy �̄�∗ = (1+𝛽)𝜌

2
is lower (𝑡2 = 326) in the case of imperfect information with respect to full state feedback (𝑡2 = 380).
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𝑛

Fig. 9. Comparison between full information and partial information feedback laws in the long term (1000 days): administered therapy 𝑟. Simulations are run from the initial
state (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (1.5 ⋅ 𝑛𝑚𝑎𝑥10 , 100, 0), with parameters taken from Table 2. The time 𝑡2 required to switch to a constant therapy �̄�∗ = (1+𝛽)𝜌

2
is lower (𝑡2 = 326) in the case of

imperfect information with respect to full state feedback (𝑡2 = 380).
Fig. 10. Comparison between full information and partial information feedback laws in the short term (10 days): administered therapy 𝑟. Simulations are run from the initial state
(𝑛1(0), 𝑛2(0), 𝑛3(0)) = (1.5 ⋅ 𝑛𝑚𝑎𝑥10 , 100, 0), with parameters taken from Table 2.
A
t

𝑟

where 𝑟𝐿𝐵(𝑡) is a lower bound for the administration rate 𝑟(𝑡) evaluated
on the basis of the state estimate.

If we have no information about the drug therapy accumulation,
but the tumour estimation is still available, due to the fact that the
Michaelis–Menten function takes value in [0, 1) we can further elaborate
the bound (22) to obtain:

̇ 3(𝑡) ≥ −𝜌
�̂�3(𝑡) − 𝑘5�̂�1(𝑡)

�̂�3(𝑡) + 𝑟(𝑡)
10

𝑀4 + �̂�3(𝑡) 𝑀5 + �̂�3(𝑡) f
> −𝜌 − 𝑘5�̂�1(𝑡) + 𝑟(𝑡). (24)

higher lower-bound for 𝑟(𝑡), only dependent on �̂�1, is then obtained
o guarantee �̇�3 > 0:

(𝑡) > 𝑟𝐿𝐵(𝑡) ∶= 𝜌 + 𝑘5�̂�1(𝑡) ⟹ �̇�3(𝑡) > 0. (25)

The previous Eqs. (23) and (25) provide conservative lower bounds

or the administration rate ensuring the drug level accumulation, so
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𝑟

i

𝑛

Fig. 11. Comparison between full information and partial information feedback laws in the very long term (5000 days): phase plot 𝑛1 vs. 𝑛3. Simulations are run from the initial
state (𝑛1(0), 𝑛2(0), 𝑛3(0)) = (1.5 ⋅ 𝑛𝑚𝑎𝑥10 , 100, 0), with parameters taken from Table 2.
t

𝑛

𝑛

o

that the zone 𝑛3 > �̄�3 can be reached in a finite time. For example,
the condition 𝑛3(𝑡) > �̄�3 for 𝑡 ≥ 𝑡1 can be guaranteed for any desired 𝑡1
rovided that 𝑟(𝑡) is chosen as

(𝑡) = 𝑟𝐿𝐵(𝑡) +
�̄�3
𝑡1

(26)

and the lower bound 𝑟𝐿𝐵(𝑡) is set according to Eq. (25). In fact, by
integrating �̇�3 and exploiting Eqs. (24), (25), (26), when 𝑡 ≥ 𝑡1 we get

𝑛3(𝑡) = 𝑛3(0) + ∫

𝑡

0
�̇�3(𝜏)𝑑𝜏

> ∫

𝑡

0

(

−𝜌 − 𝑘5�̂�1(𝜏) + 𝑟(𝜏)
)

𝑑𝜏

= ∫

𝑡

0

(

−𝜌 − 𝑘5�̂�1(𝜏) + 𝑟𝐿𝐵(𝜏) +
�̄�3
𝑡1

)

𝑑𝜏

= ∫

𝑡

0

(

�̄�3
𝑡1

)

𝑑𝜏 =
�̄�3
𝑡1
𝑡 ≥

�̄�3
𝑡1
𝑡1 = �̄�3,

which is the desired condition on the derivative of 𝑛3.
Notice that the therapy lower bounds (23) and (25) are possibly

ncreasing in this first phase, since 𝑛1 and 𝑛3 are actually increasing
with time until the drug threshold �̄�3 is reached. We also note that the
value of 𝜌, limiting the size of the constant administration rate, is no
more a boundary for a time-varying administration. In fact, since the
feedback control can be applied for finite time intervals, 𝑟(𝑡) can exceed
the value of 𝜌, as in Eq. (25), without risking an unlimited accumulation
of drug.

Step 2. Guarantee tumour reduction. In the previous step we
proved that the control action 𝑟(𝑡) ensures drug accumulation for any
tumour size. It is now possible to keep the same control input of
Step 1 (this is the simple choice we adopt in the following numerical
simulations) or to switch to a possibly milder therapy guaranteeing
̇ 3 ≥ 0 (and not strictly �̇�3 > 0), so that 𝑛3(𝑡) > �̄�3 is guaranteed for any
𝑡 ≥ 𝑡1, namely the drug concentration of the controlled system cannot
decrease below the threshold �̄�3 from 𝑡1 on. This guarantees that �̇�1 < 0
since time 𝑡1, i.e. the tumour size is actually shrinking from 𝑡1 on and
that the decreasing behaviour is surely maintained under the proposed
11

control action, in agreement with Eq. (8) and Fig. 4.
Step 3. Switch to constant therapy and long-term tumour re-
moval. In the previous steps we provided the formulation of a therapy
ensuring �̇�3 > 0, as well as �̇�1 < 0 from a given instant 𝑡1 onwards.
However, it is not recommended the consequent drug accumulation
to be maintained for indefinitely long periods, but the control action
should switch to a lower (possibly constant) administration rate as soon
as favourable conditions regarding tumour eradication are reached.

To this end, we first need to identify a suitable constant admin-
istration rate �̄� = �̄�∗ in the admissibility interval (𝛽𝜌, 𝜌). This choice
could be a compromise between patient safety (keeping �̄�∗ far from 𝜌)
and eradication rapidity (rising for increasing �̄�∗). After choosing the
desired �̄�∗, the corresponding value �̄�∗1 is uniquely determined according
o Eq. (16), i.e. �̄�∗1 = �̄�∗−𝛽𝜌

𝑘1−𝑘2
. Such a value gives a threshold for the

tumour shrinking and allows to identify the time instant 𝑡2 at which the
switching from the feedback control law to the constant administration
rate can be performed, by virtue of the property 𝑛1(𝑡2) ≤ �̄�∗1.

More formally, the control action 𝑟(𝑡) is switched to 𝑟(𝑡) = �̄�∗ for
𝑡 ≥ 𝑡2, where 𝑡2 can be determined by the simple condition 𝑛1(𝑡2) =
̄∗1. Notice that, in absence of accurate real-time information or late
detection of the condition 𝑛1(𝑡) ≤ �̄�∗1, a conservative evaluation of time
𝑡2 can be used, i.e. a time larger than the real crossing time. This
postpones the switching to the constant therapy regime but the delay
is acceptable, since the proposed control law guarantees 𝑛3(𝑡) > �̄�3 and
̇ 1(𝑡) < 0 since 𝑡1 by construction.

Conditions 𝑛1(𝑡) ≤ �̄�∗1 and 𝑛3(𝑡) > �̄�3 guaranteed for 𝑡 ≥ 𝑡2 finally
ensure that the dynamics has reached the green zone of Fig. 4 within
time 𝑡2 (where the general �̄�1 of the picture is now �̄�∗1). Since the
therapy 𝑟(𝑡) is switched to constant therapy 𝑟(𝑡) = �̄�∗ for 𝑡 ≥ 𝑡2, the
derivative signs shown in Fig. 4 and discussed in the previous section
are valid. In particular, it can be readily shown that the green region
𝐺 = {𝑧 = (𝑛1, 𝑛3) ∶ 𝑛1 < �̄�1 & 𝑛3 > ̄̄𝑛3} of Fig. 4 is a basin of attraction
for the equilibrium 𝑧𝑒 (𝐸1 in the figure). This can be verified by means
f the Lyapunov function (see e.g. Khalil, 1996) 𝑉 (𝑧) = 1

2 (𝑧−𝑧
𝑒)𝑇 (𝑧−𝑧𝑒),

whose derivative along the system trajectories is �̇� = (𝑧 − 𝑧𝑒)𝑇 �̇� =
𝑛1�̇�1+(𝑛3− ̄̄𝑛3)�̇�3 < 0 in 𝐺⧵{𝑧𝑒}. This ensures the asymptotic convergence
to the tumour-free equilibrium.
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4.3. Simulation results

Numerical simulations have been performed in MATLAB®. In all the
simulations, the initial conditions for dead tumour cells and drug level
are kept constant at the values 𝑛2(0) = 100 and 𝑛(3) = 0, respectively,

hile different values of the initial tumour level 𝑛1(0) are considered.
Figs. 6–7 show the effect of constant therapy compared with state

eedback using full information. These simulations compare the evolu-
ion with the same admissible constant therapy �̄� = 0.95𝜌 ∈ (𝛽𝜌, 𝜌) for
wo different values of 𝑛1(0), equal to 0.95�̄�1 and to 1.05�̄�1, respectively.
n a short term horizon (20 days), it is shown (Fig. 6, top panel) that a
onstant therapy is not able to contrast tumours with size larger than
̄1, differently from the state feedback computed according to (26),

ith 𝑡1 = 7 (days), and the lower bound in (23), with 𝑛1(0) = 1.05�̄�1,
̂1(𝑡) = 𝑛1(𝑡) and �̂�3(𝑡) = 𝑛3(𝑡) (perfect information). In the latter case, the
tate feedback after a time interval of 𝑡1 days is able to start (slowly) the
umour reduction. The different behaviour of 𝑛1 in the different cases
roduces dissimilar trajectories for the coupled variable 𝑛3 (drug level,
ig. 6, bottom panel). Fig. 7 shows that the administered therapy is
omparable in the constant and in the feedback case.

Figs. 8–9 instead show a comparison, over a long time horizon
1000 days), between the state feedback (26) with full information,
hat is �̂�1(𝑡) = 𝑛1(𝑡), �̂�3(𝑡) = 𝑛3(𝑡), and with the smaller lower bound
23) (the same formula adopted in the short-term simulation described
bove), and the feedback law (26) with partial and inaccurate state
nformation, i.e. �̂�1(𝑡) > 𝑛1(𝑡) and no estimation of 𝑛3(𝑡), and with the

higher lower bound (25). In particular, in the latter case the available
imperfect information about the current tumour size is given by �̂�1(𝑡) =
.1𝑛1(𝑡) at all times. The initial tumour level has been set to 𝑛1(0) = 1.5 ⋅
𝑛𝑚𝑎𝑥10 , with 𝑛𝑚𝑎𝑥10 defined in (17). The partial information feedback, due to
he tumour size overestimation and the more conservative lower bound,
orces a faster tumour decrease (Fig. 8, top panel), thanks to a higher
rug level (Fig. 8, bottom panel), as a consequence of a larger quantity
f administered drug (Fig. 9) in the transient with respect to full state
eedback. As illustrated in the previous part, in the control procedure it
s required to choose a constant therapy level �̄� = �̄�∗ in the admissibility
nterval (𝛽𝜌, 𝜌); to this end, we set the steady-state therapy equal to
he midpoint �̄�∗ = (1+𝛽)𝜌

2 of such an interval, which is a robust choice
with respect to possible model parameter uncertainties. According to
Eq. (16), �̄� = �̄�∗ determines the value of �̄�1 = �̄�∗1 to be reached before
witching (at time 𝑡2) to the constant therapy regime, i.e. 𝑛1(𝑡) ≤ �̄�∗1
or 𝑡 ≥ 𝑡2. As a consequence of the higher drug administered in the
ransient, the time 𝑡2 required to switch to a constant therapy is lower
𝑡2 = 326) in the case of imperfect information (see Fig. 9) with respect
o full state feedback (𝑡2 = 380). Fig. 10 shows a zoom of Fig. 9
imited to the first 10 days, which allows to better observe the initial
ise of the full-information feedback law. Finally, Fig. 11 shows (over
n even larger horizon of 5000 days) the asymptotic convergence of
he (𝑛3, 𝑛1) dynamics in the phase plane to the controlled equilibrium
1 =

(

0, 0, ̄̄𝑛∗3
)

, with ̄̄𝑛∗3 = 𝑀4
�̄�∗

𝜌−�̄�∗ , consistently with Fig. 4.

. Conclusions

This paper addresses the problem of tumour growth control exploit-
ng a minimally parameterized and low-dimensional deterministic ODE
odel of tumour growth under treatment, which is able to provide
good approximation of the first-order moment of the more realistic

tochastic formulation. Two alternative control approaches are here
nvestigated. The first one is based on a constant infusion of drug, while
he second one proposes a state-feedback control scheme, exploiting
artial or complete knowledge of the state.

The results of the paper show that a constant therapy, initially
et and never adjusted during time, has several limitations. In par-
icular, the initial tumour size is responsible for the possible therapy
ailure and too large tumours have no chances to be eradicated by
dmissible (i.e. tolerable) constant infusions. Conversely, the proposed
12

w

state-feedback control is very promising since it is always able to
eradicate arbitrarily large tumours.

We finally highlight that the deterministic modelling framework
used for the present analysis suffers from an intrinsic limitation; indeed,
since the tumour dynamics is linear with respect to tumour size, the
tumour can be eradicated only asymptotically, i.e. over an infinite
time horizon. Preliminary studies on the discrete stochastic framework
instead show that, with the same conditions on the model parameters,
the tumour can be eradicated with probability 1 in finite time. There-
fore, the design of a stochastic control is a future perspective naturally
arising from the results obtained in this paper.
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Appendix. Numerical integration

The ODE model describing the approximated average value so-
lutions of the CME is integrated according to the standard ode45
MATLAB Runge–Kutta function.

In order to generate random paths from the CME model, we ex-
ploited the 𝜏-leap algorithm (Gillespie, 2001), an approximate proce-
dure of the statistically exact Gillespie algorithm Gillespie (1976).
Indeed, the standard Gillespie algorithm involves a prohibitively long
computer time if the molecular populations of at least some of the
reactant species are very large, and the present stochastic model ac-
tually may involve millions of tumour cells: in all these cases, the
𝜏-leap approximation is the usual trade-off that overcomes Gillespie
bottlenecks Gillespie (2001). It is based on a fixed sampling time 𝜏,
according to which, for any time instant 𝑡𝑘 = 𝑘𝜏, we assume that the
ropensity 𝑎𝑖 of each reaction 𝑖 (𝑖 = 1,… ,𝑀) is constant within the time
nterval [𝑡𝑘, 𝑡𝑘+1] of duration 𝜏, and equal to the propensity value at the

beginning of the sampling interval 𝑎𝑖(𝑛(𝑡𝑘)); therefore we approximate
the number 𝑙 of occurrences of any reaction 𝑅𝑖 as a Poisson random
variable of parameter 𝜆 = 𝑎𝑖(𝑛(𝑡𝑘))𝜏:

𝑃
(

𝑛(𝑡𝑘 + 𝜏) − 𝑛(𝑡𝑘) = 𝑙𝛿𝑖
)

≃

(

𝑎𝑖(𝑛(𝑡𝑘))𝜏
)𝑙

⋅ 𝑒−𝑎𝑖(𝑛(𝑡𝑘))𝜏

𝑙!
, (A.1)

where 𝛿𝑖 is the reset associated to reaction 𝑖, namely reaction 𝑖 trans-
forms a state vector 𝑛 into the state vector 𝑛 + 𝛿𝑖.

Therefore, by accounting for all the reactions 𝑖 = 1,… ,𝑀 , one gets
the following approximate discrete-time evolution for the process:

𝑛(𝑡𝑘+1) = 𝑛(𝑡𝑘) +
𝑀
∑

𝑖=1
𝛿𝑖𝛬𝑖(𝑡), 𝑘 = 0, 1,… , (A.2)

here 𝛬 (𝑡 ) is a Poisson random variable of parameter 𝑎 (𝑛(𝑡 ))𝜏.
𝑖 𝑘 𝑖 𝑘
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