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Funnelling (Fun) is a recently proposed method for cross-lingual text classiication (CLTC) based on a two-tier learning2

ensemble for heterogeneous transfer learning (HTL). In this ensemble method, 1st-tier classiiers, each working on a diferent3

and language-dependent feature space, return a vector of calibrated posterior probabilities (with one dimension for each class)4

for each document, and the inal classiication decision is taken by a meta-classiier that uses this vector as its input. The5

meta-classiier can thus exploit class-class correlations, and this (among other things) gives Fun an edge over CLTC systems in6

which these correlations cannot be brought to bear. In this paper we describe Generalized Funnelling (gFun), a generalisation of7

Fun consisting of an HTL architecture in which 1st-tier components can be arbitrary view-generating functions, i.e., language-8

dependent functions that each produce a language-independent representation (łviewž) of the (monolingual) document. We9

describe an instance of gFun in which the meta-classiier receives as input a vector of calibrated posterior probabilities10

(as in Fun) aggregated to other embedded representations that embody other types of correlations, such as word-class11

correlations (as encoded byWord-Class Embeddings), word-word correlations (as encoded by Multilingual Unsupervised or12

Supervised Embeddings), and word-context correlations (as encoded by multilingual BERT ). We show that this instance of13

gFun substantially improves over Fun and over state-of-the-art baselines, by reporting experimental results obtained on two14

large, standard datasets for multilingual multilabel text classiication. Our code that implements gFun is publicly available.15

CCS Concepts: · Computing methodologies→ Ensemble methods; Supervised learning by classiication.16

Additional Key Words and Phrases: Transfer Learning, Heterogeneous Transfer Learning, Cross-Lingual Text Classiication,17

Ensemble Learning, Word Embeddings18

1 INTRODUCTION19

Transfer Learning (TL) [62] is a class of machine learning tasks in which, given a training set of labelled data items20

sampled from one or more łsourcež domains, we must issue predictions for unlabelled data items belonging to21

one or more łtargetž domains, related to the source domains but diferent from them. In other words, the goal of22

TL is to łtransferž (i.e., reuse) the knowledge that has been obtained from the training data in the source domains,23

to the target domains of interest, for which few labelled data (or no labelled data at all) exist. The rationale of TL24

is thus to increase the performance of a system on a downstream task (when few labelled data for this task exist),25
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or to make it possible to carry out this task at all (when no training data at all for this task exist), while avoiding26

the cost of annotating new data items speciic to this task.27

TL techniques can be grouped into two main categories, according to the characteristics of the feature spaces28

in which the instances are represented. Homogeneous TL (which is often referred to as domain adaptation [69])29

encompasses problems in which the source instances and the target instances are represented in a shared feature30

space. Conversely, heterogeneous TL [13] denotes the case in which the source data items and the target data31

items lie in diferent, generally non-overlapping feature spaces. This article focuses on the heterogeneous case32

only; from now on, by HTL we will thus denote heterogeneous transfer learning.33

A prominent instance of HTL in the natural language processing and text mining areas is Cross-Lingual Transfer34

Learning (CLTL), in which data items have a textual nature and the diferent domains are actually diferent35

languages in which the data items are expressed. In turn, an important instance of CLTL is the task of cross-lingual36

text classiication (CLTC), which consists of classifying documents, each written in one of a inite set L = {�1, ...,37

� | L | } of languages, according to a shared codeframe (a.k.a. classiication scheme) Y = {�1, ..., � |Y | }. The brand of38

CLTC we will consider in this paper is (cross-lingual) multilabel classiication, namely, the case in which any39

document can belong to zero, one, or several classes at the same time.40

The CLTC literature has focused on two main variants of this task. The irst variant (that is sometimes called41

the many-shot variant) deals with the situation in which the target languages are such that language-speciic42

training data are available for them as well; in this case, the goal of CLTC is to improve the performance of43

target language classiication with respect to what could be obtained by leveraging the language-speciic training44

data alone. If these latter data are few, the task if often referred to as few-shot learning. (We will deal with the45

many-shot/few-shot scenario in the experiments of Section 4.4.) The second variant is usually called the zero-shot46

variant, and deals with the situation in which there are no training data at all for the target languages; in this case,47

the goal of CLTC is to allow the generation of a classiier for the target languages, which could not be obtained48

otherwise. (We will deal with the zero-shot scenario in the experiments of Section 4.6.)49

Many-shot CLTC is important, since in many multinational organisations (e.g., Vodafone, FAO, the European50

Union) many labelled data may be available in several languages, and there may be a legitimate desire to improve51

on the classiication accuracy that monolingual classiiers are capable of delivering. The importance of few-shot52

and zero-shot CLTC instead lies in the fact that, while modern learning-based techniques for NLP and text mining53

have shown impressive performance when trained on huge amounts of data, there are many languages for which54

data are scarce. According to [29], the amount of (labelled and unlabelled) resources for the more than 7,00055

languages spoken around the world follows (somehow unsurprisingly) a power-law distribution, i.e., while a56

small set of languages account for most of the available data, a very long tail of languages sufer from data scarcity,57

despite the fact that languages belonging to this long tail may have large speaker bases. Few-shot / zero-shot58

CLTL thus represents an appealing solution to dealing with this situation, since it attempts to bridge the gap59

between the high-resource languages and the low-resource ones.60

However, the application of CLTC is not necessarily limited to scenarios in which the set of the source languages61

and the set of the target languages are disjoint, nor it is necessarily limited to cases in which there are few or62

no training data for the target domains. CLTC can also be deployed in scenarios where a language can play63

both the part of a source language (i.e., contribute to performing the task in other languages) and of a target64

language (i.e., beneit from training data expressed in other languages), and where sizeable quantities of labelled65

data exist for all languages at once. Such application scenarios, despite having attracted less research attention66

than the few-shot and zero-shot counterparts, are frequent in the context of multinational organisations, such as67

the European Union or UNESCO, or multilingual countries, such as India, South Africa, Singapore, and Canada,68

or multinational companies (e.g., Amazon, Vodafone). The aim of CLTC, in these latter cases, is to efectively69

exploit the potential synergies among the diferent languages in order to allow all languages to contribute to, and70

to beneit from, each other. Put it another way, the raison d’être of CLTC here becomes to deploy classiication71
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systems that perform substantially better than the trivial solution (the so-called naïve classiier) consisting of |L|72

monolingual classiiers trained independently of each other.73

1.1 Funnelling and Generalized Funnelling74

Esuli et al. [20] recently proposed Funnelling (Fun), an HTL method based on a two-tier classiier ensemble, and75

applied it to CLTC. In Fun, the 1st-tier of the ensemble is composed of |L| language-speciic classiiers, one for76

each language in L. For each document � , one of these classiiers (the one speciic to the language of document �)77

returns a vector of |Y| calibrated posterior probabilities, whereY is the codeframe. Each such vector, irrespective78

of which among the L classiiers has generated it, is then fed to a 2nd-tier łmeta-classiierž which returns the79

inal label predictions.80

The |Y|-dimensional vector space to which the vectors of posterior probabilities belong, thus forms an81

łinterlinguaž among the |L| languages, since all these vectors are homologous, independently of which among82

the |L| classiiers have generated them. Another way of saying it is that all vectors are aligned across languages,83

i.e., the �-th dimension of the vector space has the same meaning in every language (namely, the łposteriorž84

probability that the document belongs to class �� ). During training, the meta-classiier can thus learn from all85

labelled documents, irrespectively of their language. Given that the meta-classiier’s prediction for each class in86

Y depends on the posterior probabilities received in input for all classes in Y, the meta-classiier can exploit87

class-class correlations, and this (among other things) gives Fun an edge over CLTC systems in which these88

correlations cannot be brought to bear.89

Fun was originally conceived with the many-shot / few-shot setting in mind; in such a setting, Fun proved90

superior to the naïve classiier and to 6 state-of-the-art baselines [20]. Esuli et al. [20] also sketched some91

architectural modiications that allow Fun to be applied to the zero-shot setting too.92

In this paper we describe Generalized Funnelling (gFun), a generalisation of Fun consisting of an HTL archi-93

tecture in which 1st-tier components can be arbitrary view-generating functions (VGFs), i.e., language-dependent94

functions that each produce a language-independent representation (łviewž) of the (monolingual) document.95

We describe an instantiation of gFun in which the meta-classiier receives as input, for the same (monolingual)96

document, a vector of calibrated posterior probabilities (as in Fun) as well as other language-independent vectorial97

representations, consisting of diferent types of document embeddings. These additional vectors are aggregated98

(e.g., via concatenation) with the original vectors of posterior probabilities, and the result is a set of extended,99

language-aligned, heterogeneous vectors, one for each monolingual document.100

The original Fun architecture is thus a particular instance of gFun, in which the 1st-tier is equipped with101

only one VGF. The additional VGFs that characterize gFun each enable the meta-classiier to gain access to102

information on types of correlation in the data additional to the class-class correlations captured by the meta-103

classiier. In particular, we investigate the impact ofword-class correlations (as embodied inWord-Class Embeddings104

(WCEs) [44]),word-word correlations (as embodied inMultilingual Unsupervised or Supervised Embeddings (MUSEs)105

[11]), and correlations between contextualized words (as embodied in embeddings generated by multilingual106

BERT [16]). As we will show, gFun natively caters for both the many-shot/few-shot and the zero-shot settings;107

we carry out extensive CLTC experiments in order to assess the performance of gFun in both cases. The results108

of these experiments show that mining additional types of correlations in data does make a diference, and that109

gFun outperforms Fun as well as other CLTC systems that have recently been proposed.110

The rest of this article is structured as follows. In Section 2 we describe the gFun framework, while in Section 3111

we formalize the concept of łview-generating functionž and present several instances of it. Section 4 reports112

the experiments (for both the many-shot and the zero-shot variants)1 that we have performed on two large113

datasets for multilingual multilabel text classiication. In Section 5 we move further and discuss a more advanced,114

1We do not explicitly present experiments for the few-shot case since a few-shot system is technically no diferent from a many-shot system.
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łrecurrentž VGF that combines MUSEs andWCEs in a more sophisticated way, and test it in additional experiments.115

We review related work and methods in Section 6. In Section 7 we conclude by sketching avenues for further116

research. Our code that implements gFun is publicly available.2117

2 GENERALIZED FUNNELLING118

In this section, we irst briely summarise the original Funmethod, and then move on to present gFun and related119

concepts.120

2.1 A brief introduction to Funnelling121

Funnelling, as described in [20], comes in two variants, called Fun(tat) and Fun(kfcv). We here disregard122

Fun(kfcv) and only use Fun(tat), since in all the experiments reported in [20] Fun(tat) clearly outperformed123

Fun(kfcv); see [20] if interested in a description of Fun(kfcv). For ease of notation, we will simply use Fun to124

refer to Fun(tat).125

In Fun (see Figure 1), in order to train a classiier ensemble, 1st-tier language-speciic classiiers ℎ11, ..., ℎ
1
| L |

126

(with superscript 1 indicating the 1st tier) are trained from their corresponding language-speciic training sets127

Tr1, ...,Tr | L | . Training documents � ∈ Tr� may be represented by means of any desired vectorial representation128

�1
� (�) = d, such as, e.g., TFIDF-weighted bag-of-words, or character �-grams; in principle, diferent styles of129

vectorial representation can be used for the diferent 1st-tier classiiers, if desired. The classiiers may be trained by130

any learner, provided the resulting classiier returns, for each language �� , document � , and class � � , a conidence131

score ℎ1� (d, � � ) ∈ R; in principle, diferent learners can be used for the diferent 1st-tier classiiers, if desired.132

Each 1st-tier classiier ℎ1� is then applied to each training document � ∈ Tr� , thus generating a vector

� (�) = (ℎ1� (d, �1), ..., ℎ
1
� (d, � |Y | )) (1)

of conidence scores for each � ∈ Tr� . (Incidentally, this is the phase in which Fun(tat) and Fun(kfcv) difer,133

since Fun(kfcv) uses instead a �-fold cross-validation process to classify the training documents.)134

The next step consists of computing (via a chosen probability calibration method) language- and class-speciic135

calibration functions �� � that map conidence scores ℎ1� (d, � � ) into calibrated posterior probabilities Pr(� � |d).
3

136

Fun then applies �� � to each conidence score and obtains a vector of calibrated posterior probabilities

�2 (�) = (��1 (ℎ
1
� (d, �1)), ..., �� |Y | (ℎ

1
� (d, � |Y | )))

= (Pr(�1 |d), ..., Pr(� |Y | |d))
(2)

Note that the � index for language �� has disappeared, since calibrated posterior probabilities are comparable137

across diferent classiiers, which means that we can use a shared, language-independent space of vectors of138

calibrated posterior probabilities.139

At this point, the 2nd-tier, language-independent łmetaž-classiierℎ2 can be trained from all training documents140

� ∈
⋃ | L |

�=1 Tr� , where document � is represented by its �2 (�) vector. This concludes the training phase.141

In order to apply the trained ensemble to a test document � ∈ Te� from language �� , Fun applies classiier142

ℎ1� to �
1
� (�) = d and converts the resulting vector � (�) of conidence scores into a vector �2 (�) of calibrated143

posterior probabilities. Fun then feeds this latter to the meta-classiier ℎ2, which returns (in the case of multilabel144

classiication) a vector of binary labels representing the predictions of the meta-classiier.145

2https://github.com/andreapdr/gFun
3The reason why we need calibration is that the conidence scores obtained from diferent classiiers are not comparable; the calibration

process serves the purpose of mapping these conidence scores into entities (the calibrated posterior probabilities) that are indeed comparable

even if originating from diferent classiiers.
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Fig. 1. The Fun architecture, exemplified with |L|=3 languages (Chinese, Italian, English). Note that the diferent term-
document matrices in the 1st-tier may contain diferent numbers of documents and/or diferent numbers of terms. The
three grey diamonds on the let represent calibrated classifiers that map the original vectors (e.g., TFIDF vectors) into
|Y|-dimensional spaces. The resulting vectors are thus aligned and can all be used for training the meta-classifier, which is
represented by the grey diamond on the right.

2.2 Introducing heterogeneous correlations through Generalized Funnelling146

As explained in [20], the reasons why Fun outperforms the naïve monolingual baseline consisting of |L| indepen-147

dently trained, language-speciic classiiers, are essentially two. The irst is that Fun learns from heterogeneous148

data; i.e., while in the naïve monolingual baseline each classiier is trained only on |Tr� | labelled examples, the149

meta-classiier in Fun is trained on all the
⋃ | L |

�=1 |Tr� | labelled examples. Put it another way, in Fun all training150

examples contribute to classifying all unlabelled examples, irrespective of the languages of the former and of151

the latter. The second is that the meta-classiier leverages class-class correlations, i.e., it learns to exploit the152

stochastic dependencies between classes typical of multiclass settings. In fact, for an unlabelled document � the153

meta-classiier receives |Y| inputs from the 1st-tier classiier which has classiied � , and returns |Y| conidence154

scores, which means that the input for class �′ has a potential impact on the output for class �′′, for every �′ and155

�′′.156

In Fun, the key step in allowing the meta-classiier to leverage the diferent language-speciic training sets157

consists of mapping all the documents onto a space shared among all languages. This is made possible by the fact158

that the 1st-tier classiiers all return vectors of calibrated posterior probabilities. These vectors are homologous159

(since the codeframe is the same for all languages), and are also comparable (because the posterior probabilities160

are calibrated), which means that we can have all vectors share the same vector space irrespectively of the161

language of provenance.162

In gFun, we generalize this mapping by allowing a set Ψ of view-generating functions (VGFs) to deine this163

shared vector space. VGFs are language-dependent functions that map (monolingual) documents into language-164

independent vectorial representations (that we here call views) aligned across languages. Since each view is aligned165

ACM Trans. Inf. Syst.
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Input : · Sets {Tr1, ...,Tr|L| } of training documents written in languages L = {�1, ..., �|L| }, all labelled according to

Y = {�1, ..., � |Y| };

· Set Ψ = {�1, ...,� |Ψ| } of VGFs;

Output : · VGF parameters Θ = {��� }, 1 ≤ � ≤ |L |, 1 ≤ � ≤ |Ψ | ;

· Parameters of the aggregation function Λ

· Meta-classifer ℎ2

1 for�� ∈ Ψ do

2 /* Learn the parameters of the �th VGF for each language �� */

3 for �� ∈ L do

4 ��� ← it (�� ,Tr� ) ;

5 end

6 /* Stack all language views produced by �� */

7 V� ← vstack(�� (Tr1, �1� ), . . . ,�� (Tr|L|, � |L|� ) ) ;

8 end

9 /* Learn the parameters (if any) of the aggregation function */

10 Λ← it (aggfunc, . . .) ;

11 /* Combine all training sets by aggregating the language-independent views */

12 Tr′ ← aggfunc (�1, . . . ,�|Ψ|,Λ) ;

13 Train meta-classiier ℎ2 from all vectors in Tr′ ;

14 Θ← {��� }, 1 ≤ � ≤ |L |, 1 ≤ � ≤ |Ψ | ;

15 return Λ, Θ, ℎ2

Algorithm 1: Generalized Funnelling for CLTC, training phase.

across languages, it is easy to aggregate (e.g., by concatenation) the diferent views of the same monolingual166

document into a single representation that is also aligned across languages, and which can be thus fed to the167

meta-classiier.168

Diferent VGFs are meant to encode diferent types of information so that they can all be brought to bear on169

the training process. In the present paper we will experiment with extending Fun by allowing views consisting170

of diferent types of document embeddings, each capturing a diferent type of correlation within the data.171

The procedures for training and testing cross-lingual classiiers via gFun are described in Algorithm 1 and172

Algorithm 2, respectively. The irst step of the training phase is the optimisation of the parameters (if any) of the173

VGFs�� ∈ Ψ (Algorithm 1 ś Line 4), which is carried out independently for each language and for each VGF. A174

VGF�� produces representations that are aligned across all languages, which means that vectors coming from175

diferent languages can be łstackedž (i.e., placed in the same set) to deine the view �� (Algorithm 1 ś Line 7),176

which corresponds to the�� portion of the entire (now language-independent) training set of the meta-classiier.177

Note that the vectors in a given view need not be probabilities; we only assume that they are homologous178

and comparable across languages. The aggregation function (aggfunc) implements a policy for aggregating the179

diferent views for them to be input to the meta-classiier; it is thus used both during training (Algorithm 1 ś180

Line 12) and during test (Algorithm 2 ś Line 3). In case the aggregation function needs to learn some parameters,181

those are estimated during training (Algorithm 1 ś Line 10).182

Finally, note that both the training phase and the test phase are highly parallelisable, since the (training and/or183

testing) data for language �′ can be processed independently of the analogous data for language �′′, and since184

each view within a given language can be generated independently of the other views for the same language.185

Note that the original formulation of Fun (Section 2.1) thus reduces to an instance of gFun in which there is a186

single VGF (one that converts documents into calibrated posterior probabilities) and the aggregation function is187

simply the identity function. In this case, the it of the VGF (Algorithm 1 ś Line 4) comes down to computing188

ACM Trans. Inf. Syst.
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Input : · Sets {Te1, ...,Te|L| } of unlabelled documents written in languages L = {�1, ..., �|L| }, all to be labelled according to

Y = {�1, ..., � |Y| };

· Set Ψ = {�1, ...,� |Ψ| } of VGFs with parameters Θ = {��� }, 1 ≤ � ≤ |L |, 1 ≤ � ≤ |Ψ | ;

· Parameters Λ of the aggregation function ;

· meta-classiier ℎ2 ;

Output : · Labels for all documents in {Te1, ...,Te|L| } ;

1 for �� ∈ L do

2 /* Aggregate the views produced by all VGFs */

3 Te′� ← aggfunc (�1 (Te� , ��1 ), . . . ,� |Ψ| (Te� , �� |Ψ| ),Λ) ;

4 /* Use the meta-classifier ℎ2 to predict labels �� for all documents in Te′� */

5 �� ← ℎ2 (Te′� )

6 end

7 return {�1, . . . , �|L| }

Algorithm 2: Generalized Funnelling for CLTC, testing phase.

weighted (e.g., via TFIDF) vectorial representations of the training documents, training the 1st-tier classiiers,189

and calibrating them. Examples of the parameters obtained as a result of the itting process include the choice of190

vocabulary, the IDF scores, the parameters of the separating hyperplane, and those of the calibration function.191

During the test phase, invoking the VGF (Algorithm 2 ś Line 3) amounts to computing the weighted vectorial192

representations and the �2 (�) representations (Equation 2) of the test documents, using the classiiers and193

meta-classiier generated during the training phase.194

In what follows we describe the VGFs that we have investigated in order to introduce into gFun sources of195

information additional to the ones that are used in Fun. In particular, we describe in detail each such VGF in196

Sections 3.1-3.4, we discuss aggregation policies in Section 3.5, and we analyse a few additional modiications197

concerning data normalisation (Section 3.6) that we have introduced into gFun and that, although subtle, bring198

about a substantial improvement in the efectiveness of the method.199

3 VIEW-GENERATING FUNCTIONS200

In this section we describe the VGFs that we have investigated throughout this research, by also briely explaining201

related concepts and works from which they stem.202

As already stated, the main idea behind our instantiation of gFun is to learn from heterogeneous information203

about diferent kinds of correlations in the data. While the main ingredients of the text classiication task are204

words, documents, and classes, the key to approach the CLTC setting lies in the ability to model them consistently205

across all languages. We envision ways for bringing to bear the following stochastic correlations among these206

elements:207

(1) Correlations between diferent classes: understanding how classes are related to each other in some208

languages may bring about additional knowledge useful for classifying documents in other languages.209

These correlations are speciic to the particular codeframe used, and are obviously present only in multilabel210

scenarios. They can be used (in our case: by the meta-classiier) in order to reine an initial classiication (in211

our case: by the 1st-tier classiiers), since they are based on the relationships between posterior probabilities212

/ labels assigned to documents.213

(2) Correlations between diferent words: by virtue of the łdistributional hypothesisž (see [52]), words are214

often modelled in accordance to how they are distributed in corpora of text with respect to other words.215

Distributed representations of words encode the relationships between words and other words; when216

properly aligned across languages, they represent an important help for bringing lexical semantics to bear217

ACM Trans. Inf. Syst.
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on multilingual text analysis processes, thus helping to bridge the gap among language-speciic sources of218

labelled information.219

(3) Correlations between words and classes: proiling words in terms of how they are distributed across220

the classes in a language is a direct way of devising cross-lingual word embeddings (since translation-221

equivalent words are expected to exhibit similar class-conditional distributions), which is compliant with222

the distributional hypothesis (since semantically similar words are expected to be distributed similarly223

across classes).224

(4) Correlations between contextualized words: the meaning of a word occurrence is dependent on the speciic225

context in which the word occurrence is found. Current language models are well aware of this fact, and try226

to generate contextualized representations of words, which can in turn be used straightforwardly in order227

to obtain contextualized representations for entire documents. Language models trained on multilingual228

data are known to produce distributed representations that are coherent across the languages they have229

been trained on.230

We recall from Section 2.1 that class-class correlations are exploited in the 2nd-tier of Fun. We model the other231

types of correlations mentioned above via dedicated VGFs. We investigate instantiations of the aforementioned232

correlations by means of independently motivated modular VGFs. Here we provide a brief overview of each them.233

• the Posteriors VGF : it maps documents into the space deined by calibrated posterior probabilities. This is,234

aside from the modiications discussed in Section 3.6, equivalent to the 1st-tier of the original Fun, but we235

discuss it in detail in Section 3.1.236

• the MUSEs VGF (encoding correlations between diferent words): it uses the (supervised version of) Multi-237

lingual Unsupervised or Supervised Embeddings (MUSEs) made available by the authors of [11]. MUSEs238

have been trained on Wikipedia4 in 30 languages and have later been aligned using bilingual dictionaries239

and iterative Procrustes alignment (see Section 3.2 and [11]).240

• theWCEs VGF (encoding correlations betweenwords and classes): it usesWord-Class Embeddings (WCEs) [44],241

a form of supervised word embeddings based on the class-conditional distributions observed in the training242

set (see Section 3.3).243

• the BERT VGF (encoding correlations between diferent contextualized words): it uses the contextualized244

word embeddings generated by multilingual BERT [17], a deep pretrained language model based on the245

transformer architecture (see Section 3.4).246

In the following sections we present each VGF in detail.247

3.1 The Posteriors VGF248

This VGF coincides with the 1st-tier of Fun, but we briely explain it here for the sake of completeness.249

Here the idea is to leverage the fact that the classiication scheme is common to all languages, in order to deine250

a vector space that is aligned across all languages. Documents, regardless of the language they are written in,251

can be redeined with respect to their relations to the classes in the codeframe. Using a geometric metaphor, the252

relation between a document and a class can be deined in terms of the distance between the document and the253

surface that separates the class from its complement. In other words, while the language-speciic vector spaces254

where the original document vectors lie are not aligned (e.g., they can be characterized by diferent numbers of255

dimensions, and the dimensions for one language bear no relations to the dimensions for another language), one256

can proile each document via a new vector consisting of the distances to the separating surfaces relative to the257

various classes. By using the binary classiiers as łpivotsž [1], documents end up being represented in a shared258

space, in which the number of dimensions are the same for all languages (since the classes are assumed to be259

4https://dumps.wikimedia.org/
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the same for all languages), and the vector values for each dimension are comparable across languages once the260

distances to the classiication surfaces are properly normalized (which is achieved by the calibration process).261

Note that this procedure is, in principle, independent of the characteristics of any particular vector space and262

learning device used across languages, both of which can be diferent across the languages.5263

For ease of comparability with the results reported by Esuli et al. [20], in this paper we will follow these authors
and encode (for all languages in L) documents as bag-of-words vectors weighted via TFIDF, which is computed
as

TFIDF(�� , x� ) = TF(�� , x� ) · log
|Tr|

#Tr (�� )
(3)

where #Tr (�� ) is the number of documents in Tr in which word�� occurs at least once and

TF(�� , x� ) =

{
1 + log #(�� , x� ) if #(�� , x� ) > 0

0 otherwise
(4)

where #(�� , x� ) stands for the number of times �� appears in document x� . Weights are then normalized via264

cosine normalisation, as265

� (�� , x� ) =
TFIDF(�� , x� )

︃∑
�′∈� �

TFIDF(� ′
�
, x� )2

(5)

For the very same reasons we also follow [20] in adopting (for all languages in L) Support Vector Machines266

(SVMs) as the learning algorithm, and łPlatt calibrationž [50] as the probability calibration function.267

3.2 The MUSEs VGF268

In CLTL, the need to transfer lexical knowledge across languages has given rise to cross-lingual representations269

of words in a joint space of embeddings. In our research, in order to encode word-word correlations across270

diferent languages we derive document embeddings from (the supervised version of) Multilingual Unsupervised271

or Supervised Embeddings (MUSEs) [11]. MUSEs are word embeddings generated via a method for aligning272

unsupervised (originally monolingual) word embeddings in a shared vector space, similar to the method described273

in [39]. The alignment is obtained via a linear mapping (i.e., a rotation matrix) learned by an adversarial training274

process in which a generator (in charge of mapping the source embeddings onto the target space) is trained to275

fool a discriminator from distinguishing the language of provenance of the embeddings, i.e., from discerning if the276

embeddings it receives as input originate from the target language or are instead the product of a transformation277

of embeddings originated from the source language. The mapping is then further reined using a technique called278

łProcrustes alignmentž. The qualiication łUnsupervised or Supervised" refers to the fact that the method can279

operate with or without a dictionary of parallel seed words; we use the embeddings generated in supervised280

fashion.281

We use the MUSEs that Conneau et al. [11] make publicly available6, and that consist of 300-dimensional282

multilingual word embeddings trained on Wikipedia using fastText. To date, the embeddings have been aligned283

for 30 languages with the aid of bilingual dictionaries.284

Fitting the VGF for MUSEs consists of irst allocating in memory the pre-trained MUSE matricesM� ∈ R
(��×300)285

(where �� is the vocabulary size for the �-th language), made available by Conneau et al. [11], for each language286

5The vector spaces can indeed be completely diferent from one language to another. For example, one could deine a bag of TFIDF-weighted

bigrams for English, a bag of BM25-weighted unigrams for French, and an SVD-decomposed space for Spanish. Note also that the learning

algorithms can be diferent as well; one may use, say, SVMs for English, logistic regression for French, and AdaBoost for Spanish. As long as

the decision scores provided by each classiier are turned into calibrated posterior probabilities, the language-speciic representations can be

recast into language-independent, comparable representations.
6https://github.com/facebookresearch/MUSE
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Fig. 2. Heatmaps displaying five WCEs each, where each cell indicates the correlation between a word (row) and a class
(column), as from the RCV1/RCV2 dataset. Yellow indicates a high value of correlation while blue indicates a low such value.
Words łavvocatož and łavocatž are Italian and French translations, resp., of the English word łlawyerž; words łcalciož and
łfutbolž are Italian and Spanish translations, resp., of the English word łfootballž; Italian word łborsaž instead means łbagž.

�� involved, and then generating document embeddings for all training documents as weighted averages of the287

words in the document. As the weighting function, we use TFIDF (Equation 3). This computation reduces to288

performing the projection X� ·M� , where the matrix X� ∈ R
( |Tri |×�� ) consists of the TFIDF-weighted vectors that289

represent the training documents (for this we can reuse the matrices X� computed by the Posteriors VGF, since290

they are identical to the ones needed here). The process of generating the views of test documents via this VGF is291

also obtained via a projection X� ·M� , where in this case the X� matrix consists of the TFIDF-weighted vectors292

that represent the test documents.293

3.3 The WCEs VGF294

In order to encode word-class correlations we derive document embeddings from Word-Class Embeddings

(WCEs [44]). WCEs are supervised embeddings meant to extend (e.g., by concatenation) other unsupervised
pre-trained word embeddings (e.g., those produced by means of word2vec, or GloVe, or any other technique) in
order to inject task-speciic word meaning in multiclass text classiication. The WCE for word� is deined as

� (�) = � (� (�,�1), ..., � (�,� |Y | )) (6)

where � is a real-valued function that quantiies the correlation between word � and class � � as observed in295

the training set, and where � is any dimensionality reduction function. Here, as the � function we adopt the296

normalized dot product, as proposed in [44], whose computation is very eicient; as � we use the identity function,297

which means that our WCEs are |Y|-dimensional vectors.298

So far, WCEs have been tested exclusively in monolingual settings. However, WCEs are naturally aligned299

across languages, since WCEs have one dimension for each � ∈ Y, which is the same for all languages �� ∈ L.300

Document embeddings relying on WCEs thus display similar characteristics irrespective of the language in which301

the document is written in. In fact, given a set of documents classiied according to a common codeframe, WCEs302

relect the intuition that words that are semantically similar across languages (i.e., are translations of each other)303

tend to exhibit similar correlations to the classes in the codeframe. This is, to the best of our knowledge, the irst304

application of WCEs to a multilingual setting.305

The intuition behind this idea is illustrated by the two examples in Figure 2, where two heatmaps display the306

correlation values of ive WCEs each. Each of the two heatmaps illustrates the distribution patterns of four terms307

that are either semantically related or translation equivalents of each other (irst four rows in each subigure),308

and of a ifth term semantically unrelated to the previous four (last row in each subigure). Note that not only309

semantically related terms in a language get similar representations (as is the case of łattorneyž and łlawyerž in310

English), but also translation-equivalent terms do so (e.g., łavvocatož in Italian and łavocatž in French).311
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The VGF for WCEs is similar to that for MUSEs, but for the fact that in this case the matrix containing the word312

embeddings needs to be obtained from our training data, and is not pretrained on external data. More speciically,313

itting the VGF for WCEs comes down to irst computing, for each language �� ∈ L, the language-speciic WCE314

matrix W� according to the process outlined in [44], and then projecting the TFIDF-weighted matrix X� obtained315

from Tr� , as X� ·W� . (Here too, we use the TFIDF variant of Equation 3.) During the testing phase, we simply316

perform the same projection X� ·W� as above, where X� now represents the weighted matrix obtained from the317

test set.318

Although alternative ways of exploiting word-class correlations have been proposed in the literature, we319

adopted WCEs because of their higher simplicity with respect to other methods. For example, the GILE system320

[46] uses label descriptions in order to compute a model of compatibility between a document embedding and a321

label embedding; diferently from the latter work, in our problem setting we do not assume to have access to322

textual descriptions of the semantics of the labels. The LEAM model [64], instead, deines a word-class attention323

mechanism and can work with or without label descriptions (though the former mode is considered preferable),324

but has never been tested in multilingual contexts; preliminary experiments we have carried out by replacing the325

GloVe embeddings originally used in LEAM with MUSE embeddings, have not produced competitive results.326

3.4 The BERT VGF327

BERT [17] is a bidirectional language model based on the transformer architecture [61] trained on a masked328

language modelling objective and next sentence prediction task. The transformer architecture has been initially329

proposed for the task of sequence transduction relying solely on the attention mechanism, and thus discarding330

the usual recurrent components deployed in encoder-decoder architectures. BERT’s transformer blocks contain331

two sub-layers. The irst is a multi-head self-attention mechanism, and the second is a simple, position-wise fully332

connected feed-forward network. Diferently from other architectures [49], BERT’s attention is set to attend to all333

the input tokens (i.e., it deploys bidirectional self-attention), thus making it well-suited for sentence-level tasks.334

Originally, the BERT architecture was trained by Devlin et al. [17] on a monolingual corpus composed of the335

BookCorpus and English Wikipedia (for a total of roughly 3,300M words). Recently, a multilingual version, called336

mBERT [16], has been released. The model is no diferent from the standard BERT model; however, mBERT has337

been trained on concatenated documents gathered from Wikipedia in 104 diferent languages. Its multilingual338

capabilities emerge from the exposure to diferent languages during this massive training phase.339

In this research, we explore mBERT as a VGF for gFun. At training time, this VGF is irst equipped with a340

fully-connected output layer, so that BERT can be trained end-to-end using binary cross-entropy as the loss341

function. Nevertheless, as its output (i.e., the one that is eventually fed to the meta-classiier also at testing time)342

we use the hidden state associated with the document embedding (i.e., the [CLS] token) at its last layer.343

3.5 Policies for aggregating VGFs344

The diferent views of the same document that are independently generated by the diferent VGFs need to be345

somehow merged together before being fed to the meta-classiier. This is undertaken by operators that we call346

aggregation functions. We explore two diferent policies for view aggregation: concatenation and averaging.347

Concatenation simply consists of juxtaposing, for a given document, the diferent views of this document, thus348

resulting in a vector whose dimensionality is the sum of the dimensionalities of the contributing views. This349

policy is the more straightforward one, and one that does not impose any constraint on the dimensionality of the350

individual views as generated from diferent VGFs.351

Averaging consists instead of computing, for a given document, a vector which is the average of the diferent352

views for this document. In order for it to be possible, though, this policy requires that the views (i) all have the353

same dimensionality, and (ii) are aligned among each other, i.e., that the �-th dimension of the vector has the same354
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meaning in every view. This is obviously not the case with the views produced by the VGFs we have described355

up to now. In order to solve this problem, we learn additional mappings onto the space of class-conditional356

posterior probabilities, i.e., for each VGF (other than the Posteriors VGF of Section 3.1, which already returns357

vectors of |Y| calibrated posterior probabilities) we train a classiier that maps the view of a document into a358

vector of |Y| calibrated posterior probabilities. The net result is that each document � is represented by� vectors359

of |Y| calibrated posterior probabilities (where� is the number of VGFs in our system). These� vectors can360

be averaged, and the resulting average vector can be fed to the meta-classiier as the only representation of361

document � . The way we learn the above mappings is the same used in Fun; this also brings about uniformity362

between the vectors of posterior probabilities generated by the Posteriors VGF and the ones generated by the363

other VGFs. Note that in this case, though, the classiier for VGF�� is trained on the views produced by�� for364

all training documents, irrespectively of their language of provenance; in other words, for performing these365

mappings we just train (� − 1) (and not (� − 1) × |L|) classiiers, one for each VGF other than the Posteriors366

VGF.367

Each of these two aggregation policies has diferent pros and cons.368

The main advantage of concatenation is that it is very simple to implement. However, it sufers from the fact369

that the number of dimensions in the resulting dense vector space is high, thus leading to a higher computational370

cost for the meta-classiier. Above all, since the number of dimensions that the diferent views contribute is not371

always the same, this space (and the decisions of the meta-classiier) can be eventually dominated by the VGFs372

characterized by the largest number of dimensions.373

The averaging policy (Figure 3), on the other hand, scales well with the number of VGFs, but requires learning374

additional mappings aimed at homogenising the diferent views into a uniied representation that allows averaging375

them. Despite the additional cost, the averaging policy has one appealing characteristic, i.e., the 1st-tier is allowed376

to operate with diferent numbers of VGFs for diferent languages (provided that there is at least one VGF per377

language); in fact, the meta-level representations are simply computed as the average of the views that are378

available for that particular language. For reasons that will become clear in Section 4.6, this property allows gFun379

to natively operate in zero-shot mode.380

In Section 4.7 we briely report on some preliminary experiments that we had carried out in order to assess the381

relative merits of the two aggregation policies in terms of classiication performance. As we will see in Section 4.7382

in more detail, the results of those experiments indicate that, while diferences in performance are small, they383

tend to be in favour of the averaging policy. This fact, along with the fact that the averaging policy scales better384

with the number of VGFs, and along with the fact that it allows diferent numbers of VGFs for diferent languages,385

will eventually lead us to opt for averaging as our aggregation policy of choice.386

3.6 Normalisation387

We have found that applying some routine normalisation techniques to the vectors returned by our VGFs leads388

to consistent performance improvements. This normalisation consists of the following steps:389

(1) Apply (only for the MUSEs VGF and WCEs VGF) smooth inverse frequency (SIF) [3] to remove the irst390

principal component of the document embeddings obtained as the weighted average of word embeddings.391

In their work, Arora et al. [3] show that removing the irst principal component from a matrix of document392

embeddings deined as a weighted average of word embeddings, is generally beneicial. The reason is that393

the way in which most word embeddings are trained tends to favour the accumulation of large components394

along semantically meaningless directions. However, note that for the MUSEs VGF and WCEs VGF we use395
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Fig. 3. The averaging policy for view aggregation: the views are recast in terms of vectors of calibrated posterior probabilities
before being averaged. Note that the resulting vectors lie in the same vector space. For ease of visualisation, only one language
(English) is shown.

the TFIDF weighting criterion instead of the criterion proposed by Arora et al. [3], since in our case we are396

modelling (potentially large) documents, instead of sentences like in their case.7397

(2) Impose unit L2-norm to the vectors before aggregating them by means of concatenation or averaging.398

(3) Standardize8 the columns of the language-independent representations before training the classiiers (this399

includes (a) the classiiers in charge of homogenising the vector spaces before applying the averaging400

policy, and (b) the meta-classiier).401

7The weighting technique proposed by Arora et al. [3] does not account for term repetitions, since they make the assumption that words

rarely occur more than once in a sentence. Conversely, when modelling entire documents, the TF factor may indeed play a fundamental role,

and in such cases, as Arora et al. [3] acknowledge, using TFIDF may be preferable.
8Standardising (a.k.a. łz-scoringž, or łz-transformingž) consists of having a random variable � , with mean � and standard deviation � ,

translated and scaled as � =

�−�
� , so that the new random variable � has zero mean and unit variance. The statistics � and � are unknown,

and are thus estimated on the training set.
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The rationale behind these normalisation steps, when dealing with heterogeneous representations, is straightfor-402

ward and two-fold. On one side, it is a means for equating the contributions brought to the model by the diferent403

sources of information. On the other, it is a way to counter the internal covariate shift across the diferent sources404

of information (similar intuitions are well-known and routinely applied when training deep neural architectures405

ś see, e.g., [27]).406

What might come as a surprise is the fact that normalisation helps improve gFun even when we equip gFun407

only with the Posteriors VGF (which coincides with the original Fun architecture), and that this improvement is408

statistically signiicant. We quantify this variation in performance in the experiments of Section 4.409

4 EXPERIMENTS410

In order to maximize the comparability with previous results we adopt an experimental setting identical to the411

one used in [20], which we briely sketch in this section. We refer the reader to [20] for a more detailed discussion412

of this experimental setting.413

4.1 Datasets414

The irst of our two datasets is a version (created by Esuli et al. [20]) of RCV1/RCV2, a corpus of news stories415

published by Reuters. This version of RCV1/RCV2 contains documents each written in one of 9 languages (English,416

Italian, Spanish, French, German, Swedish, Danish, Portuguese, and Dutch) and classiied according to a set417

of 73 classes. The dataset consists of 10 random samples, obtained from the original RCV1/RCV2 corpus, each418

consisting of 1,000 training documents and 1,000 test documents for each of the 9 languages (Dutch being an419

exception, since only 1,794 Dutch documents are available; in this case, each sample consists of 1,000 training420

documents and 794 test documents). Note though that, while each random sample is balanced at the language421

level (same number of training documents per language and same number of test documents per language),422

it is not balanced at the class level: at this level the dataset RCV1/RCV2 is highly imbalanced (the number of423

documents per class ranges from 1 to 3,913 ś see Table 1), and each of the 10 random samples is too. The fact that424

each language is equally represented in terms of both training and test data allows the many-shot experiments to425

be carried out in controlled experimental conditions, i.e., minimizes the possibility that the efects observed for426

the diferent languages are the result of diferent amounts of training data. (Of course, zero-shot experiments will427

instead be run by excluding the relevant training set(s).) Both the original RCV1/RCV2 corpus and the version we428

use here are comparable at topic level, as news stories are not direct translations of each other but simply discuss429

the same or related events in diferent languages.430

The second of our two datasets is a version (created by Esuli et al. [20]) of JRC-Acquis, a corpus of legislative431

texts published by the European Union. This version of JRC-Acquis contains documents each written in one of 11432

languages (the same 9 languages of RCV1/RCV2 plus Finnish and Hungarian) and classiied according to a set of433

300 classes. The dataset is parallel, i.e., each document is included in 11 translation-equivalent versions, one per434

language. Similarly to the case of RCV1/RCV2 above, the dataset consists of 10 random samples, obtained from435

the original JRC-Acquis corpus, each consisting of at least 1,000 training documents for each of the 11 languages436

(summing up to a total of 12,687 training documents in each sample), and 4,242 test documents for each of the 11437

languages. As in the case of RCV1/RCV2, this version of JRC-Acquis is not balanced at the class level (the number438

of positive examples per class ranges from 55 to 1,155), and the samples obtained from it are not balanced either.439

Note that, in this case, Esuli et al. [20] included at most one of the 11 language-speciic versions in a training set,440

in order to avoid the presence of translation-equivalent content in the training set; this enables one to measure441

the contribution of training information coming from diferent languages in a more realistic setting. When a442

document is included in a test set, instead, all its 11 language-speciic versions are also included, in order to allow443
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|L| |Y| |Tr| |Te| Ave.Cls Min.Cls Max.Cls Min.Pos Max.Pos Ave.Feats

RCV1/RCV2 9 73 9,000 8,794 3.21 1 13 1 3,913 4,176
JRC-Acquis 11 300 12,687 46,662 3.31 1 18 55 1,155 9,909

Table 1. Characteristics of the datasets used in [20] and in this paper, including the number of languages (|L|); number
of classes (|Y|); number of training (|Tr|) and test (|Te|) documents; average (Ave.Cls), minimum (Min.Cls), and maximum
(Max.Cls) number of classes per document; minimum (Min.Pos) and maximum (Max.Pos) number of positive examples per
class; and average number of distinct features per language (Ave.Feats).

Text Labels

BRAZIL: Talks stall on bill to scrap Brazil export tax. Voting to speed up a bill to remove a tax on

Brazilian exports will take place August 27 at the earliest after federal and state governments failed

to reach an accord on terms, a Planning Ministry spokeswoman said. Planning Minister Antonio

Kandir and the Parana and Rio Grande do Sul governments have yet to agree on compensation

following the proposed elimination of the so-called ICMS tax, which applies to products such as

cofee, sugar and soyproducts. The elimination of the tax should inject at least $1.5 billion into the

agribusiness sector (...) [Other 505 words truncated]

• merchandise trade (E512)

• economics (ECAT)

• government inance (E21)

• trade/reserves (E51)

• expediture/revenue (E211)

Commission Regulation (EC) No 1908/2004 of 29 October 2004 ixing the maximum aid for cream,

butter and concentrated butter for the 151th individual invitation to tender under the standing

invitation to tender provided for in Regulation (EC) No 2571/97 THE COMMISSION OF THE

EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Community,

Having regard to Council Regulation (EC) No 1255/1999 of 17May 1999 on the common organisation

of the market in milk and milk products [1], and in particular Article 10 thereof, Whereas: (1) The

intervention agencies are, pursuant to Commission Regulation (EC) No 2571/97 of 15 December

1997 on the sale of butter (...) [Other 243 words truncated]

• award of contract (20)

• concentrated product (2741)

• aid system (3003)

• farm price support (4236)

• butter (4860)

• youth movement (2004)

Table 2. Excerpts from example documents from RCV1/RCV2 (1st example) and JRC-Acquis (2nd example).

a perfectly fair evaluation across languages, since each of the 11 languages is thus evaluated on exactly the same444

content.445

For both datasets, the results reported in this paper (similarly to those of [20]) are averages across the 10446

random selections. Summary characteristics of our two datasets are reported in Table 1; excerpts from sample447

documents from the two datasets are displayed in Table 2.448

4.2 Evaluation measures449

To assess the model performance we employ �1, the standard measure of text classiication, and the more recently
theorized � [55]. These two functions are deined as:

�1 =





2TP

2TP + FP + FN
if TP + FP + FN > 0

1 if TP = FP = FN = 0

(7)
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� =





TP

TP + FN
+

TN

TN + FP
− 1 if TP + FN > 0 and TN + FP > 0

2
TN

TN + FP
− 1 if TP + FN = 0

2
TP

TP + FN
− 1 if TN + FP = 0

(8)

where TP, FP, FN,TN represent the number of true positives, false positives, false negatives, and true negatives450

generated by a binary classiier. �1 ranges between 0 (worst) and 1 (best) and is the harmonic mean of precision451

and recall, while � ranges between -1 (worst) and 1 (best).452

To turn �1 and � (whose deinitions above are suitable for binary classiication) into measures for multilabel453

classiication, we compute their microaverages (�
�
1 and �� ) and their macroaverages (��1 and �� ). �

�
1 and ��

454

are obtained by irst computing the class-speciic values TP� , FP� , FN� , TN� , computing TP =

∑ |Y |
�=1 TP� (and455

analogously for FP, FN,TN), and then applying Equations 7 and 8. Instead, ��1 and �� are obtained by irst456

computing the class-speciic values of �1 and � and then averaging them across all � � ∈ Y.457

We also test the statistical signiicance of diferences in performance via paired sample, two-tailed t-tests at458

the � = 0.05 and � = 0.001 conidence levels.459

4.3 Learners460

Wherever possible, we use the same learner as used in [20], i.e., Support Vector Machines (SVMs) as implemented461

in the scikit-learn package.9 For the 2nd-tier classiier of gFun, and for all the baseline methods, we optimize462

the� parameter, that trades of between training error and margin, by testing all values� = 10� for � ∈ {−1, ..., 4}463

by means of 5-fold cross-validation. We use Platt calibration in order to calibrate the 1st-tier classiiers used464

in the Posteriors VGF and (when using averaging as the aggregation policy) the classiiers that map document465

views into vectors of posterior probabilities. We employ the linear kernel for the 1st-tier classiiers used in the466

Posteriors VGF, and the RBF kernel (i) for the classiiers used for implementing the averaging aggregation policy,467

and (ii) for the 2nd-tier classiier.468

In order to generate the BERTVGF (see Section 3.4), we rely on the pre-trainedmodel released by Huggingface10 [66].469

For each run, we train the model following the settings suggested by Devlin et al. [17], i.e., we add one classiica-470

tion layer on top of the output of mBERT (the special token [CLS]) and ine-tune the entire model end-to-end by471

minimising the binary cross-entropy loss function. We use the AdamW optimizer [36] with the learning rate472

set to 1e-5 and the weight decay set to 0.01. We also set the learning rate to decrease by means of a scheduler473

(StepLR) with step size equal to 25 and gamma equal to 0.1. We set the training batch size to 4 and the maximum474

length of the input (in terms of tokens) to 512 (which is the maximum input length of the model). Given that the475

number of training examples in our datasets is comparatively smaller than that used in Devlin et al. [17], we476

reduce the maximum number of epochs to 50, and apply an early-stopping criterion that terminates the training477

after 5 epochs showing no improvement (in terms of ��1 ) in the validation set (a held-out split containing 20% of478

the training documents) in order to avoid overitting. After convergence, we perform one last training epoch on479

the validation set.480

Each of the experiments we describe is performed 10 times, on 10 diferent samples extracted from the dataset,481

in order to assess its statistical signiicance by means of the paired t-test mentioned in Section 3.6. All the results482

displayed in the tables included in this paper are averages across these 10 samples and across the |L| languages483

in the datasets.484

9https://scikit-learn.org/stable/index.html
10We use the bert-base-multilingual-cased model available at https://huggingface.co/
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We run all the experiments on a machine equipped with a 12-core processor Intel Core i7-4930K at 3.40GHz485

with 32GB of RAM under Ubuntu 18.04 (LTS) and Nvidia GeForce GTX 1080 equipped with 8GB of RAM.486

4.4 Baselines487

As the baselines against which to compare gFun we use the naïve monolingual baseline (hereafter indicated as488

Naïve), Funnelling (Fun), plus the four best baselines of [20], namely, Lightweight Random Indexing (LRI [43]),489

Cross-Lingual Explicit Semantic Analysis (CLESA [59]), Kernel Canonical Correlation Analysis (KCCA [63]), and490

Distributional Correspondence Indexing (DCI [42]). For all systems but gFun, the results we report are excerpted491

from [20], so we refer to that paper for the detailed setups of these baselines; the comparison is fair anyway, since492

our experimental setup is identical to that of [20].493

We also include mBERT [17] as an additional baseline. In order to generate the mBERT baseline, we follow494

exactly the same procedure as described above for the BERT VGF. Note that the diference between mBERT and495

BERT VGF comes down to the fact that the former leverages a linear transformation of the document embeddings496

followed by a sigmoid activation in order to compute the prediction scores. On the other hand, BERT as a VGF is497

used as a feature extractor (or embedder). Once the document representations are computed (by mBERT), we498

project them to the space of the posterior probabilities via a set of SVMs. We also experiment with an alternative499

training strategy in which we simply train the classiication layer, and leave the pre-trained parameters of mBERT500

untouched, but omit the results obtained using this strategy because in preliminary experiments it proved inferior501

to the other strategy by a large margin.502

Similarly to [20] we also report an łidealizedž baseline (i.e., one whose performance all CLC methods should503

strive to reach up to), called UpperBound, which consists of replacing each non-English training example by504

its corresponding English version, training a monolingual English classiier, and classifying all the English test505

documents. UpperBound is present only in the JRC-Acquis experiments since in RCV1/RCV2 the English versions506

of non-English training examples are not available.507

4.5 Results of many-shot CLTC experiments508

In this section we report the results that we have obtained in our many-shot CLTC experiments on the RCV1/RCV2509

and JRC-Acquis datasets.11 These experiments are run in łeverybody-helps-everybodyž mode, i.e., all training510

data, from all languages, contribute to the classiication of all unlabelled data, from all languages.511

We will use the notation -X to denote a gFun instantiation that uses only one VGF, namely the Posteriors512

VGF; gFun-X is thus equivalent to the original Fun architecture, but with the addition of the normalisation steps513

discussed in Section 3.6. Analogously, -M will denote the use of the MUSEs VGF (Section 3.2), -W the use of the514

WCEs VGF (Section 3.3), and -B the use of the BERT VGF (Section 3.4).515

Tables 3 and 4 report the results obtained on RCV1/RCV2 and JRC-Acquis, respectively. We denote diferent516

setups of gFun by indicating after the hyphen the VGFs that the variant uses. For each dataset we report the517

results for 7 diferent baselines and 9 diferent conigurations of gFun, as well as for two distinct evaluation518

metrics (�1 and � ) aggregated across the |Y| diferent classes by both micro- and macro-averaging.519

The results are grouped in four batches of methods. The irst one contains all baseline methods. The remaining520

batches present results obtained using a selection of meaningful combinations of VGFs: the 2nd batch reports the521

results obtained by gFun when equipped with one single VGF, the 3rd batch reports ablation results, i.e., results522

obtained by removing one VGF from a setting containing all VGFs, while in the last batch we report the results523

obtained by jointly using all the VGFs discussed.524

11In an earlier, shorter version of this paper [45] we report diferent results for the very same datasets. The reason of the diference is that in

[45] we use concatenation as the aggregation policy while we here use averaging.
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The results clearly indicate that the ine-tuned version of multilingual BERT consistently outperforms all the525

other baselines, on both datasets. Concerning gFun’s results, among the diferent settings of the second batch526

(testing diferent VGFs in isolation), the only coniguration that consistently outperforms mBERT in RCV1/RCV2527

is gFun-B. Conversely, on JRC-Acquis, all four VGFs in isolation manage to beat mBERT for at least 2 evaluation528

measures. Most other conigurations of gFun we have tested (i.e., conigurations involving more than one VGF)529

consistently beat mBERT, with the sole exception of gFun-XMW on RCV1/RCV2.530

Method ��1 �
�
1 �� ��

Naïve .467 ± .083 .776 ± .052 .417 ± .090 .690 ± .074
LRI [43] .490 ± .077 .771 ± .050 .440 ± .086 .696 ± .069
CLESA [59] .471 ± .074 .714 ± .061 .434 ± .080 .659 ± .075
KCCA [63] .385 ± .079 .616 ± .065 .358 ± .088 .550 ± .073
DCI [42] .485 ± .070 .770 ± .052 .456 ± .082 .696 ± .065
FUN [20] .534 ± .066 .802 ± .041 .506 ±. 073 .760 ± .052
mBERT [16] .581 ± .014 .817 ± .005 .559 ± .015 .788 ± .008

gFunśX .547 ± .065 .798 ± .041 .551 ± .070 .799 ± .046
gFunśM .548 ± .066 .769 ± .042 .564 ± .077 .765 ± .048
gFunśW .487 ± .062 .743 ± .054 .511 ± .086 .730 ± .058
gFunśB .608 ± .064‡ .826 ± .040† .603 ± .078 .797 ± .049

gFunśXMB .611 ± .068 .833 ± .035 .597 ± .077‡ .813 ± .045
gFunśXWB .581 ± .062 .821 ± .037 .574 ± .073 .797 ± .046
gFunśXMW .558 ± .061 .801 ± .038 .558 ± .072 .788 ± .046
gFunśWMB .593 ± .065† .821 ± .036 .582 ± .079† .795 ± .048

gFunśXWMB .596 ± .064† .826 ± .035† .579 ± .075† .802 ± .046

Table 3. Many-shot CLTC results on the RCV1/RCV2 dataset. Each cell reports the mean value and the standard deviation
across the 10 runs. Boldface indicates the best method overall, while greyed-out cells indicate the best method within the
same group of methods. Superscripts † and ‡ denote the method (if any) whose score is not statistically significantly diferent
from the best one; symbol † indicates 0.001 < �-value < 0.05 while symbol ‡ indicates a 0.05 ≤ �-value.

Something that jumps to the eye is that gFun-X yields better results than Fun, which is diferent from it only531

for the the normalisation steps of Section 3.6. This is a clear indication that these normalisation steps are indeed532

beneicial.533

Combinations relying on WCEs seem to perform comparably better in the JRC-Acquis dataset, and worse534

in RCV1/RCV2. This can be ascribed to the fact that the amount of information brought about by word-class535

correlations is higher in the case of JRC-Acquis (since this dataset contains no fewer than 300 classes) than in536

RCV1/RCV2 (which only contains 73 classes). Notwithstanding this, the WCEs VGF seems to be the weakest537

among the VGFs that we have tested. Conversely, the strongest VGF seems to be the one based on mBERT,538

though it is also clear from the results that other VGFs contribute to further improve the performance of gFun;539

in particular, the combination gFun-XMB stands as the top performer overall, since it is always either the best540

performing model or a model no diferent from the best performer in a statistically signiicant sense.541

Upon closer examination of Tables 3 and 4, the 2nd, 3rd, and 4th batches help us in highlighting the contribution542

of each signal (i.e., information brought about by the VGFs).543

Let us start from the 4th batch, where we report the results obtained by the coniguration of gFun that exploits544

all of the available signals (gFun-XWMB). In RCV1/RCV2 such a coniguration yields superior results to the545
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Method ��1 �
�
1 �� ��

Naïve .340 ± .017 .559 ± .012 .288 ± .016 .429 ± .015
LRI [43] .411 ± .027 .594 ± .016 .348 ± .025 .476 ± .020
CLESA [59] .379 ± .034 .557 ± .024 .330 ± .034 .453 ± .029
KCCA [63] .206 ± .018 .357 ± .023 .176 ± .017 .244 ± .022
DCI [42] .317 ± .012 .510 ± .014 .274 ± .013 .382 ± .016
Fun [20] .399 ± .013 .587 ± .009 .365 ± .014 .490 ± .013
mBERT [16] .420 ± .023 .608 ± .016 .379 ± .006 .507 ± .009

gFunśX .432 ± .015 .587 ± .010 .441 ± .016 .553 ± .013
gFunśM .440 ± .039 .586 ± .032 .442 ± .045 .549 ± .034
gFunśW .410 ± .016 .553 ± .014 .410 ± .021 .525 ± .022
gFunśB .501 ± .023 .627 ± .016 .485 ± .023 .574 ± .019

gFunśXMB .525 ± .020 .649 ± .014 .528 ± .023 .620 ± .017
gFunśXWB .497 ± .011 .621 ± .008 .508 ± .011 .606 ± .010
gFunśXMW .475 ± .012 .604 ± .010 .489 ± .014 .593 ± .011
gFunśWMB .513 ± .016 .632 ± .011 .522 ± .017‡ .619 ± .013‡

gFunśXWMB .514 ± .014 .635 ± .010 .521 ± .015† .618 ± .011‡

UpperBound .599 .707 .547 .632

Table 4. As Table 3, but using JRC-Acquis instead of RCV1/RCV2.

single-VGF settings (note that even though results for gFun-B (.608) are higher than those for gFun-XWMB546

(.596), this diference is not statistically signiicant, with a �-value of .680, according to the two-tailed t-test that547

we have run). Such a result indicates that there is indeed a synergy among the heterogeneous representations.548

In the 3rd batch, we investigate whether all of the signals are mutually beneicial or if there is some redundancy549

among them. We remove from the łfull stackž (gFun-XWMB) one VGF at a time. The removal of the BERT550

VGF has the worst impact on ��1 . This was expected since, in the single-VGF experiments, gFun-B was the551

top-performing setup. Analogously, by removing representations generated by the Posteriors VGF or those552

generated by the MUSEs VGF, we have a smaller decrease in ��1 results. On the contrary, ditching WCEs results553

in a higher ��1 score (our top-scoring coniguration); the diference between gFun-XWMB and gFun-XMB is not554

statically signiicant in RCV1/RCV2 (with a �-value between 0.001 and 0.05), but it is signiicant in JRC-Acquis.555

This is an interesting fact: despite the fact that in the single-VGF setting the WCEs VGF is the worst-performing,556

we were not expecting its removal to be beneicial. Such a behaviour suggests that the WCEs are not well-aligned557

with the other representations, resulting in worse performance across all the four metrics. This is also evident558

if we look at results reported in [47]. If we remove from gFun-XMW (.558) the Posteriors VGF, thus obtaining559

gFun-MW, we obtain a ��1 score of .536; by removing the MUSEs VGF, thus obtaining gFun-XW, we lower560

the ��1 to .523; instead, by discarding the WCEs VGF, thus obtaining gFun-XM, we increase ��1 to .575. This561

behaviour tells us that the information encoded in the Posteriors and WCEs representations is diverging: in other562

words, it does not help in building more easily separable document embeddings. Results on JRC-Acquis are along563

the same line.564

In Figure 4, we show a more in-depth analysis of the results, in which we compare, for each language, the565

relative improvements obtained in terms of ��1 (the other evaluation measures show similar patterns) by mBERT566

(the top-performing baseline) and a selection of gFun conigurations, with respect to the Naïve solution.567
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Fig. 4. Percentage of relative improvement per language obtained by diferent cross-lingual models in the many-shot CLTC

experiments, in terms of ��1 with respect to the Naïve solution, for RCV1/RCV2 (top) and JRC-Acquis (botom).

These results conirm that the improvements brought about by gFun-X with respect to Fun are consistent568

across all languages, and not only as an average across them, for both datasets. The only conigurations that569

underperform some monolingual naïve solutions (i.e., that have a negative relative improvement) are gFun-M570

(for Dutch) and gFun-W (for Dutch and Portuguese) on RCV1/RCV2. These are also the only conigurations571

that sometimes fare worse than the original Fun. The conigurations gFun-B, gFun-XMB, and gFun-XWMB, all572

perform better than the baseline mBERT on almost all languages and on both datasets (the only exception for573

this happens for Portuguese when using gFun-XWMB in RCV1/RCV2), with the improvements with respect574

to mBERT being markedly higher on JRC-Acquis. Again, we note that, despite the clear evidence that the VGF575

based on mBERT brings to bear the highest improvements overall, all other VGFs do contribute to improving the576

classiication performance; the histograms of Figure 4 now reveal that the contributions are consistent across all577

languages. For example, gFun-XMB outperforms gFun-B for six out of nine languages in RCV1/RCV2, and for all578

eleven languages in JRC-Acquis.579

As a inal remark, we should note that the document representations generated by the diferent VGFs are580

certainly not entirely independent (although their degree of mutual dependence would be hard to measure581

precisely), since they are all based on the distributional hypothesis, i.e., on the notion that systematic co-582

occurrence (of words and other words, of words and classes, of classes and other classes, etc.) is an evidence583

of correlation. However, in data science, mutual independence is not a necessary condition for usefulness; we584

all know this, e.g., from the fact that the łbag of wordsž model of representing text works well despite the fact585

that it makes use of thousands of features that are not independent of each other. Our results show that, in the586

best-performing setups of gFun, several such VGFs coexist despite the fact that they are probably not mutually587

independent, which seems to indicate that the lack of independence of these VGFs is not an obstacle.588
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4.6 Results of zero-shot CLTC experiments589

Funwas not originally designed for dealingwith zero-shot scenarios since, in the absence of training documents for590

a given language, the corresponding irst-tier language-dependent classiier cannot be trained. Nevertheless, Esuli591

et al. [20] managed to perform zero-shot cross-lingual experiments by plugging in an auxiliary classiier trained592

on MUSEs representations that is invoked for any target language for which training data are not available,593

provided that this language is among the 30 languages covered by MUSEs.594

Instead, gFun caters for zero-shot cross-lingual classiication natively, provided that at least one among the595

VGFs it uses is able to generate representations for the target language with no training data (for the VGFs596

described in this paper, this is the case of the MUSEs VGF and mBERT VGF for all the languages they cover). To597

see why, assume the gFun-XWMB instance of gFun using the averaging procedure for aggregation (Section598

3.5). Assume that there are training documents for English, and that there are no training data for Danish. We599

train the system in the usual way (Section 2). For a Danish test document, the MUSEs VGF12 and the mBERT600

VGF contribute to its representation, since Danish is one of the languages covered by MUSEs and mBERT. The601

aggregation function averages across all four VGFs (-XWMB) for English test documents, while it only averages602

across two VGFs (-MB) for Danish test documents. Note that the meta-classiier does not perceive diferences603

between English test documents and Danish test documents since, in both cases, the representations it receives604

from the irst tier come down to averages of calibrated (and normalized) posterior probabilities. Therefore, any605

language for which there are no training examples can be dealt with by our instantiation of gFun provided that606

this language is catered for by MUSEs and/or mBERT.607

To obtain results directly comparable with the zero-shot setup employed by Esuli et al. [20], we reproduce their608

experimental setup. Thus, we run experiments in which we start with one single source language (i.e., a language609

endowed with its own training data), and we add new source languages iteratively, one at a time (in alphabetical610

order), until all languages for the given dataset are covered. At each iteration, we train gFun on the available611

source languages, and test on all the target languages. At the �-th iteration we thus have � source languages and612

|L| target (test) languages, among which � languages have their own training examples and the other ( |L| − �)613

languages do not. For this experiment we choose the coniguration involving all the VGFs (gFun-XWMB).614

The results are reported in Figure 5 and Figure 6, where we compare the results obtained by Fun and gFun-615

XWMB on both datasets, for all our evaluation measures. Results are presented in a grid of three columns, in616

which the irst one corresponds to the results of Fun as reported in [20], the second one corresponds to the617

results obtained by gFun-XWMB, and the third one corresponds to the diference between the two, in terms of618

absolute improvement of gFun-XWMB w.r.t. Fun. The results are arranged in four rows, one for each evaluation619

measure. Performance scores are displayed through heat-maps, in which columns represent target languages, and620

rows represent training iterations (with incrementally added source languages). Colour coding helps interpret621

and compare the results: we use red for indicating low values of accuracy and green for indicating high values of622

accuracy (according to the evaluation measure used) for the irst and second columns; the third column (absolute623

improvement) uses a diferent colour map, ranging from dark blue (low improvement) to light green (high624

improvement). The tone intensities of the Fun and gFun colour maps for the diferent evaluation measures are625

independent of each other, so that the darkest red (resp., the lightest green) always indicates the worst (resp., the626

best) result obtained by any of the two systems for the speciic evaluation measure.627

Note that the lower triangular matrix within each heat map reports results for standard (many-shot) cross-628

lingual experiments, while all entries above the main diagonal report results for zero-shot cross-lingual experi-629

ments. As was to be expected, results for many-shots experiments tend to display higher igures (i.e., greener cells),630

while results for zero-shot experiments generally display lower igures (i.e., redder cells). These igures clearly631

12In the absence of a proper training set, the IDF factor needed for computing the TFIDF weighting can be estimated using the test documents

themselves, since TFIDF is an unsupervised weighting function.
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RCV1/RCV2 JRC-Acquis

Method Policy ��1 �
�
1 �� �� ��1 �

�
1 �� ��

gFun-XM Concatenation 0.562‡ 0.806 0.552† 0.797‡ 0.468 0.610 0.466 0.572
gFun-XM Averaging 0.573 0.805‡ 0.575 0.800 0.477 0.615 0.488‡ 0.588
gFun-XMW Concatenation 0.540 0.791 0.530 0.773 0.461 0.609 0.445 0.560
gFun-XMW Averaging 0.558† 0.801† 0.558† 0.788 0.475‡ 0.604 0.489 0.593

Table 5. Results of many-shot CLTC experiments comparing the two aggregation policies on RCV1/RCV2 and JRC-Acquis
(from [47]).

show the superiority of gFun over Fun, and especially so for the zero-shot setting, for which the magnitude of632

improvement is decidedly higher. The absolute improvement ranges from 18% of �� to 28% of �� on RCV1/RCV2,633

and from 35% of ��1 to 44% of �� in the case of JRC-Acquis.634

In both datasets, the addition of new languages to the training set tends to help gFun improve the classiication635

of test documents also for other languages for which a training set was already available anyway. This is witnessed636

by the fact that the green tonality of the columns in the lower triangular matrix becomes gradually darker; for637

example, in JRC-Acquis, the classiication of test documents in Danish evolves stepwise from � = 0.52 (when the638

training set consists only of Danish documents) to � = 0.62 (when all languages are present in the training set).13639

A direct comparison between the old and new variants of funnelling is conveniently summarized in Figure 7,640

where we display average values of accuracy (in terms of our four evaluation measures) obtained by each method641

across all experiments of the same type, i.e., standard cross-lingual (CLTC ś values from the lower diagonal642

matrices of Figures 5 and 6) or zero-shot cross-lingual (ZSCLC ś values from the upper diagonal matrices), as a643

function of the number of training languages, for both datasets. These histograms reveal that gFun improves644

over Fun in the zero-shot experiments. Interestingly enough, the addition of languages to the training set seems645

to have a positive impact in gFun, both for zero-shot and cross-lingual experiments.646

4.7 Testing diferent aggregation policies647

In this brief section we summarize the results of preliminary, extensive experiments in which we had compared648

the performance of diferent aggregation policies (concatenation vs. averaging); we here report only the results649

for the gFun-XM and gFun-XMW models (the complete set of experiments is described in [47]).650

Table 5 reports the results we obtained for RCV1/RCV2 and JRC-Acquis, respectively. The results conclusively651

indicate that the averaging aggregation policy yields either the best results, or results that are not diferent (in652

a statistically signiicant sense) from the best ones, in all cases. This, along with other motivations discussed653

in Section 3.5 (scalability, and the fact that it enables zero-shot classiication) makes us lean towards adopting654

averaging as the default aggregation policy.655

Incidentally, Table 5 also seems to indicate that WCEs work better in JRC-Acquis than in RCV1/RCV2. This is656

likely due to the fact that, as observed in [44], the beneit brought about byWCEs tends to bemore substantial when657

the number of classes is higher, since a higher number of classes means that WCEs have a higher dimensionality,658

and that they thus bring more information to the process.659

13That the addition of new languages to the training set helps improve the classiication of test documents for other languages for which

a training set was already available, is true also in Fun. However, this does not emerge from Figure 5 and Figure 6 (which are taken from

[20]). This has already been noticed by Esuli et al. [20], who argue that this happens only in the zero-shot version of Fun, and is due to the

zero-shot classiier’s failure to deliver well calibrated probabilities.
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Fig. 5. Results of zero-shot CLTC experiments on RCV1/RCV2
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Fig. 6. Results of zero-shot CLTC experiments on JRC-Acquis

ACM Trans. Inf. Syst.



Generalized Funnelling • 25

Fig. 7. Performance of diferent CLTC systems as a function of the number of language-specific training sets used.

4.8 Learning-Curve Experiments660

In this section we report the results obtained in additional experiments aiming to quantify the impact on accuracy661

of variable amounts of target-language training documents. Given the supplementary nature of these experiments,662

we limit them to the RCV1/RCV2 dataset. Furthermore, for computational reasons we carry out these experiments663

only on a subset of the original languages (namely, English, German, French, and Italian). In Figure 8 we664

report the results, in terms of � 1
�
, obtained on RCV1/RCV2. For each of the 4 languages we work on, we assess665
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the performance of gFun-XMB by varying the amount of target-language training documents; we carry out666

experiments with 0%, 10%, 20%, 30%, 50%, and 100% of the training documents. For example, the experiments on667

French (Figure 8, bottom left) are run by testing on 100% of the French test data a classiier trained with 100% of668

the English, German, and Italian training data and with variable proportions of the French training data. We669

compare the results with those obtained (using the same experimental setup) by the Naïve approach (see Section670

1 and 4.1) and by Fun[20].671

Fig. 8. Learning-curve experiments performed on RCV1/RCV2 dataset. Experiments are performed for increasing proportions
of training examples (i.e., for 0%, 10%, 20%, 30%, 50%, 100%) for four languages (i.e., German, English, French, and Italian). The
configuration of gFun deployed is gFun-XMB. We compare the performance of gFun-XMB with that displayed by FUN [20]
and by the Naïve approach.
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It is immediate to note from the plots that the two baseline systems have a very low performance when there672

are few target-language training examples, but this is not true for gFun-WMB, which has a very respectable673

performance even with 0% target-language training examples; indeed, gFun-WMB is able to almost bridge674

the gap between the zero-shot and many-shot settings, i.e., for gFun-WMB the diference between the � 1
�

675

values obtained with 0% or 100% target-language training examples is moderate. On the contrary, for the two676

baseline systems considered, the inclusion of additional target-language training examples results in a substantial677

increase in performance; however, both baselines substantially underperform gFun-WMB, for any percentage of678

target-language training examples, and for each of the 4 target languages.679

680

4.9 Precision and recall681

In this section we look at precision and recall for individual languages, as obtained by gFun, with the goal of682

investigating if any signiicant language-speciic pattern emerges.683

Figure 9 and 10 display precision and recall (in both their macro- and micro-averaged versions) obtained for684

the best-performing setting (-XWB) of gFun, in one run on RCV1/RCV2 (Figure 9) and one run on JRC-Acquis685

(Figure 10).686

The main observation that can be made by observing these igures is that, for each language and for each687

dataset, average precision is always invariably higher than average recall. This can be explained by the fact688

that all our datasets are imbalanced at the class level (i.e., for each class the positives are far outnumbered by689

the negatives). In these cases, it is well-known that a learner that optimizes for vanilla accuracy (or for a proxy690

of it, such as the hinge loss, which is our case) tends to err on the side of caution (i.e., choose a high decision691

threshold); after all, on a test set in which, say, 99% of the examples are negatives, classifying all the unlabelled692

examples as negatives (which is the result of an extremely high decision threshold) rewards the classiier with an693

extremely high value of vanilla accuracy, i.e., 0.99. In other words, imbalanced data plus hinge loss as the loss to694

minimize means high decision threshold, which in turn means, quite obviously, higher precision and lower recall.695

As mentioned above, this tendency is displayed essentially by all languages and for both datasets.696

5 LEARNING ALTERNATIVE COMPOSITION FUNCTIONS: THE RECURRENT VGF697

The embeddings-based VGFs that we have described in Sections 3.2 and 3.3 implement a simple dot product as a698

means for deriving document embeddings from the word embeddings and the TFIDF-weighted document vector.699

However, while such an approach is known to produce document representations that perform reasonably well700

on short texts [14], there is also evidence that more powerful models are needed for learning more complex701

łcomposition functionsž for texts [12, 58]. In NLP and related disciplines, composition functions are deined as702

functions that take as input the constituents of a sentence (sometimes already converted into distributed dense703

representations), and output a single vectorial representation capturing the overall semantics of the given sentence.704

In this section, we explore alternatives to the dot product for the VGFs based on MUSEs and WCE.705

For this experiment, for generating document embeddings we rely on recurrent neural networks (RNNs). In706

particular, we adopt the gated recurrent unit (GRU) [10], a lightweight variant of the long-short term memory707

(LSTM) unit [26], as our recurrent cell. GRUs have fewer parameters than LSTMs and do not learn a separate708

output function (such as the output gate in LSTMs), and are thus more eicient during training. (In preliminary709

experiments we have carried out, we have found no signiicant diferences in performance between GRU and710

LSTM; the former is much faster to train, though.) This gives rise to what we call the Recurrent VGF.711

In the Recurrent VGF we thus infer the composition function at VGF itting time. During the training phase, we712

train an RNN to generate good document representations from a set of language-aligned word representations713

consisting of the concatenation of WCEs and MUSEs. This VGF is trained in an end-to-end fashion. The output714
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Fig. 9. Precision and Recall (both in their micro- and macro-averaged version) for each of the 9 diferent languages in
RCV1/RCV2. Results are computed on a single run.

representations of the training documents generated by the GRU are projected onto a |Y|-dimensional space of715

label predictions; the network is trained by minimising the binary cross-entropy loss between the predictions716

and the true labels. We explore diferent variants depending on how the parameters of the embedding layer are717

initialized (see below). We do not freeze the parameters of the embedding layers, so as to allow the optimisation718

procedure to ine-tune the embeddings. We use the Adam optimizer [32] with initial learning rate set at 1e-3 and719

no weight decay. We halve the learning rate every 25 epochs by means of StepLR (gamma = 0.5, step size = 25).720

We set the training batch size to 256 and compute the maximum length of the documents dynamically at each721

batch by taking their average length. Documents exceeding the computed length are truncated, whereas shorter722

ones are padded. Finally, we train the model for a maximum of 250 epochs, with an early-stopping criterion that723

terminates the training after 25 epochs with no improvement on the validation ��1 .724

There is only one Recurrent VGF in the entire gFun architecture, which processes all documents, independently725

of the language they belong to. Once trained, the last linear layer is discarded. All training documents are then726
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Fig. 10. Precision and Recall (both in their micro- and macro-averaged version) for each of the 11 diferent languages in
JRC-Acquis. Results are computed on a single run.

passed through the GRU and converted into document embeddings, which are eventually used to train a calibrated727

classiier which returns posterior probabilities for each class in the codeframe.728

5.1 Experiments729

We perform many-shot CLTC experiments using the Recurrent VGF trained on MUSEs only (denoted -RM),730

or trained on the concatenation of MUSEs and WCEs (denoted -RMW). We do not explore the case in which731

the GRU is trained exclusively on WCEs since, as explained in [44], WCEs are meant to be concatenated to732

general-purpose word embeddings. Similarly, we avoid exploring combinations of VGFs based on redundant733

sources of information, e.g., we do not attempt to combine the MUSEs VGFs with the Recurrent VGF, since this734

latter already makes use of MUSEs.735

Tables 6 and 7 report on the experiments we have carried out using the Recurrent VGF, in terms of all our736

evaluation measures, for RCV1/RCV2 and JRC-Acquis, respectively. These results indicate that the Recurrent VGF737

under-performs the dot product criterion (this can be easily seen by comparing each result with its counterpart738

in Tables 3 and 4). A possible reason for this might be the fact that the amount of training documents available739

in our experimental setting is insuicient for learning a meaningful composition function. A further possible740

reason might be the fact that, in classiication by topic, the mere presence or absence of certain predictive words741
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Method ��1 �
�
1 �� ��

gFunśRM .439 ± .072 .717 ± .067 .450 ± .091 .692 ± .071
gFunśRMW .431 ± .086 .731 ± .064 .411 ± .102 .665 ± .081
gFunśBRM .566 ± .065 .810 ± .040 .559 ± .083 .774 ± .050
gFunśBRMW .581 ± .064 .813 ± .039 .582 ± .080† .794 ± .049
gFunśXRMW .527 ± .060 .788 ± .042 .531 ± .073 .777 ± .049
gFunśXBRM .603 ± .066 .826 ± .038 .601 ± .077 .811 ± .046
gFunśXBRMW .581 ± .059 .815 ± .037 .583 ± .074† .799 ± .047

Table 6. Cross-lingual text classification results on RCV1/RCV2 dataset. Tests of statistical significance are performed against
the best results found in Table 3.

Method ��1 �
�
1 �� ��

gFunśRM .225 ± .074 .379 ± .096 .234 ± .076 .354 ± .096
gFunśRMW .314 ± .019 .488 ± .022 .281 ± .020 .393 ± .024
gFunśBRM .390 ± .027 .561 ± .021 .358 ± .027 .466 ± .021
gFunśBRMW .470 ± .017 .598 ± .013 .472 ± .020 .564 ± .018
gFunśXRMW .418 ± .011 .569 ± .008 .423 ± .012 .528 ± .010
gFunśXBRM .501 ± .016 .634 ± .011 .501 ± .020 .595 ± .016
gFunśXBRMW .483 ± .011 .615 ± .008 .482 ± .014 .577 ± .011

Table 7. As Table 6, but using JRC-Acquis instead of RCV1/RCV2.

captures most of the information useful for determining the correct class labels, while the information conveyed742

by word order is less useful, or too diicult to capture. In future work it might thus be interesting to test the743

Recurrent VGF on tasks other than classiication by topic.744

Another aspect that jumps to the eye is that the relative improvements brought about by the addition of745

WCEs tend to be larger in JRC-Acquis than in RCV1/RCV2 (in which the presence of WCEs is sometimes746

detrimental). This is likely due to the fact that JRC-Acquis has more classes, something that ends up enriching747

the representations of WCEs. Somehow surprisingly, though, the best coniguration is one not equipped with748

WCEs (and this happens also for JRC-Acquis). This might be due to a redundancy of the information captured by749

WCEs with respect to the information already captured in the other views. In the future, it might be interesting750

to devise ways for distilling the novel information that a VGF could contribute to the already existing views, and751

discarding the rest during the aggregation phase.752

6 RELATED WORK753

The irst published paper on CLTC is [6]; in this work, as well as in [22], the task is tackled by means of a754

bag-of-words representation approach, whereby the texts are represented as standard vectors of length |V|,755

withV being the union of the vocabularies of the diferent languages. Transfer is thus achieved only thanks to756

features shared across languages, such as proper names.757

Years later, the ield started to focus on methods originating from distributional semantic models (DSMs) [34, 52,758

53]. These models are based on the so-called łdistributional hypothesisž, which states that similarity in meaning759

results in similarity of linguistic distribution [25]. Originally, these models [18, 41] made use of latent semantic760
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analysis (LSA) [15], which factors a term co-occurrence matrix by means of low-rank approximation techniques761

such as SVD, resulting in a matrix of principal components, where each dimension is linearly independent of762

the others. The irst examples of cross-lingual representations were proposed during the ’90s. Many of these763

early works relied on abstract linguistic labels, such as those from discourse representation theory (DRT) [30],764

instead of on purely lexical features [2, 54]. Early approaches were based on the construction of high-dimensional765

context-counting vectors where each dimension represented the degree of co-occurrence of the word with a766

speciic word in one of the languages of interest. However, these original implementations of DSMs required to767

explicitly compute the term co-occurrence matrix, making these approaches unfeasible for large amounts of data.768

A seminal work is that of Mikolov et al. [39], who irst noticed that continuous word embedding spaces exhibit769

similar topologies across diferent languages, and proposed to exploit this similarity by learning a linear mapping770

from a source to a target embedding space, exploiting a parallel vocabulary for providing anchor points for771

learning the mapping. This has spawned several studies on cross-lingual word embeddings [4, 21, 67]; however,772

all these methods relied on external manually generated resources (e.g., multilingual seed dictionaries, parallel773

corpora, etc.). This is a severe limitation, since the quality of the resulting word embeddings (and the very774

possibility to generate them) relies on the availability, and the quality, of these external resources [35].775

Machine Translation (MT) represents a natural direct solution to CLTC tasks. Unfortunately, when it comes to776

low-resource languages, MT systems may be either not available or not suiciently efective. Nevertheless, the777

MT-based approach will presumably become more and more viable as the ield of MT progresses: recently, Isbister778

et al. [28] have shown evidence that relying on MT in order to translate documents from low-resource languages779

to higher-resource languages (e.g., English) for which state-of-the-art models are available, is indeed preferable780

to multilingual solutions.781

Pre-trained word-embeddings [7, 40, 48] have been a major breakthrough for NLP and have become a key782

component of most natural language understanding architectures. As of today, many methods developed for783

CLTC rely on pre-trained cross-lingual word embeddings [5, 11, 39, 56] (for a more in-depth review on the subject784

see [51]). These embeddings strive to map representations from one language to the other via diferent techniques785

(e.g., Procrustes alignment), thus representing diferent languages in diferent, but aligned, vector spaces. For786

example, [8, 68] exploit aligned word embeddings in order to successfully transfer knowledge from one language787

to another. The approach proposed in [8] is a hybrid parameter-based / feature-based method to CLTC, in which788

a set of convolutional neural networks is trained on both source and target texts, encoded via aligned word789

representations (namely, MUSEs [11]) while sharing kernel parameters to better identify the common features790

across diferent languages. Furthermore, the authors insert in the loss function a regularisation term based on791

maximum mean discrepancy [23] in order to encourage representations that are domain-invariant.792

Standard word embeddings have recently been called static (or global) representations. This is because they793

do not take into account the context of usage of a word, thus allowing only a single context-independent794

representation for each word; in other words, the diferent meanings of polysemous words are collapsed into a795

single representation. By contrast, contextual word embeddings [17, 37, 38, 49] associate each word occurrence796

with a representation that is a function of the entire sequence in which the word appears. Before processing797

each word with the łcontextualisingž function, tokens are mapped to a primary static word representation by798

means of a language model, typically implemented by a transformer architecture previously trained on large799

quantities of textual data. This has yielded a shift in the way we operate with embedded representations, from a800

setting in which pre-trained embeddings were used to initialize the embedding layer of a deep architecture that801

is later fully trained, to another in which the representation of words, phrases, and documents, is carried out802

by the transformer; what is left for training entails nothing more than learning a prediction layer, and possibly803

ine-tuning the transformer for the task at hand.804

Such a paradigm shift has fuelled the appearance of models developed (or adapted) to deal with multilingual805

scenarios. Current multilingual models are large architectures directly trained on several languages at once,806
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i.e., are models in which multilingualism is imposed by constraining all languages to share the same model807

parameters [17, 19, 33]. Given their extensive multilingual pre-training, such models are almost ubiquitous808

components of CLTC solutions.809

For example, Zhang et al. [68] rely on pre-trained multilingual BERT in order to extract word representations810

aligned between the source and the target language. In a multitask-learning fashion, two identical-output (linear)811

classiier sare set up: the irst is optimized on the source language via cross-entropy loss, while the second (i.e.,812

the auxiliary classiier) is instead set to maximize the margin disparity discrepancy [70]. This is achieved by813

driving the auxiliary classiier to maximally difer (in terms of predictions) from the main classiier when applied814

to the target language, while returning similar predictions on the source language.815

Guo et al. [24] tackle mono-lingual TC by exploiting multilingual data. They do so by using a contrastive816

learning loss as applied to Chinese BERT, a pre-trained (monolingual) language model. Then a uniied model,817

which is composed of two trainable pooling layers and two auto-encoders, is trained on the union of the training818

data coming from both the source and the target languages. It is important to note that such a parameter-based819

approach requires parallel training data in order to successfully train the auto-encoders (i.e., so that they are able820

to create representations shared between the source and the target languages).821

Karamanolakis et al. [31] propose a parameter-based approach. They irst train a classiier on the source822

language, and then leverage the learned parameters of a set of � łseedž words to initialize the target language823

model (where � refers to the number of words that can be translated to the target language by a translation824

oracle). Subsequently, this model is used as a teacher, in knowledge-distillation fashion, to train a student classiier825

which is able to generalize beyond the � words transferred from the source classiier to the target classiier.826

Wang et al. [65] leverage graph convolutional networks (GCNs) to integrate heterogeneous information within827

the task. They create a graph with the help of external resources such as a machine translation oracle and a828

POS-tagger. In the constructed graph, documents and words are treated as nodes, and edges are deined according829

to diferent relations, such as part-of-speech roles, semantic similarity, and document translations. Documents and830

words are connected by their co-occurrences, and the edges are labelled with their respective POSs. Document-831

document edges are also deined according to document-document similarity, as well as between translation832

equivalents. Once the heterogeneous cross-lingual graph is constructed, GCNs are applied in order to calculate833

higher-order representations of nodes with aggregated information. Finally, a linear transformation is applied to834

the document components in order to compute the prediction scores.835

van der Heijden et al. [60] demonstrates the efectiveness of meta-learning approaches to cross-lingual text836

classiication. Their goal is to create models that can adapt to new domains rapidly from few training examples.837

They propose a modiication to MAML (Model-Agnostic Meta-Learning) called ProtoMAMLn. MAML is a meta-838

learning approach that optimises the base learner on the so-called łquery setž (i.e., in-domain samples) after it839

has been updated on the so-called łsupport setž (that is, out-of-domain samples). ProtoMAMLn is an adaptation840

of ProtoMAML, where prototypes (computed by łPrototypical Networkž [57]) are also L2-normalized.841

Unlike our system, all the previously discussed approaches are designed to deal with a single source language842

only. Nevertheless, as we have already speciied in Section 1, a solution designed to natively deal with multiple843

sources would be helpful. A similar idea is presented in [9], where the authors propose a method that relies844

on an initial multilingual representation of the document constituents. The model focuses on learning, on the845

one hand, a private (invariant) representation via an adversarial network, and on the other one, a common846

(language-speciic) representation via a mixture-of-experts model. We do not include the system of [9] as a847

baseline in our experiments since it was designed to dealing with single-label problems.848
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7 CONCLUSIONS849

We have presented Generalized Funnelling (gFun), a novel hierarchical learning ensemble method for hetero-850

geneous transfer learning, and we have applied it to the task of cross-lingual text classiication. gFun is an851

extension of Funnelling (Fun), an ensemble method where 1st-tier classiiers, each working on a diferent and852

language-dependent feature space, return a vector of calibrated posterior probabilities (with one dimension for853

each class) for each document, and where the inal classiication decision is taken by a meta-classiier that uses854

this vector as its input, and that can thus exploit class-class correlations. gFun extends Fun by allowing 1st-tier855

components to be arbitrary view-generating functions, i.e., language-dependent functions that each produce856

a language-agnostic representation (łviewž) of the document. In the instance of gFun that we have described857

here, for each document the meta-classiier receives as input a vector of calibrated posterior probabilities (as in858

Fun) aggregated to other embedded representations of the document that embody other types of correlations,859

such as word-class correlations (as encoded by łword-class embeddingsž), word-word correlations (as encoded860

by łmultilingual unsupervised or supervised embeddingsž), and correlations between contextualized words (as861

encoded by multilingual BERT). In experiments carried out on two large, standard datasets for multilingual862

multilabel text classiication, we have shown that this instance of gFun substantially improves over Fun, and863

over other strong baselines such as multilingual BERT itself. An additional advantage of gFun is that it is much864

better suited to zero-shot classiication than Fun, since in the absence of training examples for a given language,865

views of the test document diferent from the one generated by a trained classiier can be brought to bear.866

Aside from its very good classiication performance, gFun has the advantage of having a łplug-and-playž867

character, since it allows arbitrary types of view-generating functions to be plugged into the architecture. A868

common characteristic in recent CLTC solutions is to leverage some kind of available, pre-trained cross- or869

multilingual resource; nevertheless, to the best of our knowledge, a solution trying to capitalise on multiple870

diferent (i.e., heterogeneous) resources has not yet been proposed. Furthermore, most approaches aim at improv-871

ing the performance on the target language by exploiting a single source language (i.e., they are single-source872

approaches). In this, gFun difers from the discussed solutions since (i) it fully capitalises on multiple, hetero-873

geneous available resources, (ii) while capable in principle to deal with single-source settings, it is especially874

designed to be deployed in multi-source settings and (iii) it is an łeverybody-helps-everybodyž solution, meaning875

that each language-speciic training set contributes to the classiication of all the documents, irrespectively of876

their language, and that all the languages beneit from the inclusion of other languages in the training phase (in877

other words, all the languages play both the role of source and target at the same time).878

Finally, we note that gFun is a completely general-purpose heterogeneous transfer learning architecture, and879

its application (once appropriate VGFs are deployed) is not restricted to cross-lingual settings, or even to scenarios880

where text is involved. Indeed, in our future work we plan to test its adequacy to cross-media applications, i.e.,881

situations in which the domains across which knowledge is transferred are represented by diferent media (say,882

text and images).883

ACKNOWLEDGEMENTS884

The present work has been supported by the ARIADNEplus project, funded by the European Commission (Grant885

823914) under the H2020 Programme INFRAIA-2018-1, by the SoBigdata++ project, funded by the European886

Commission (Grant 871042) under the H2020 Programme INFRAIA-2019-1, and by the AI4Media project, funded887

by the European Commission (Grant 951911) under the H2020 Programme ICT-48-2020. The authors’ opinions888

do not necessarily relect those of the European Commission.889

ACM Trans. Inf. Syst.



34 • Moreo, Pedroti, Sebastiani

REFERENCES890

[1] Rie K. Ando and Tong Zhang. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal891

of Machine Learning Research 6 (2005), 1817ś1853.892

[2] Chinatsu Aone and Douglas McKee. 1993. A language-independent anaphora resolution system for understanding multilingual893

texts. In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics (ACL 1993). Columbus, US, 156ś163.894

https://doi.org/10.3115/981574.981595895

[3] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat baseline for sentence embeddings. In Proceedings of the896

5th International Conference on Learning Representations (ICLR 2017). Toulon, FR.897

[4] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016. Learning principled bilingual mappings of word embeddings while preserving898

monolingual invariance. In Proceedings of the 14th Conference on Empirical Methods in Natural Language Processing (EMNLP 2016). Austin,899

US, 2289ś2294. https://doi.org/10.18653/v1/D16-1250900

[5] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word embeddings with (almost) no bilingual data. In901

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). Vancouver, CA, 451ś462. https:902

//doi.org/10.18653/v1/P17-1042903

[6] Nuria Bel, Cornelis H. Koster, and Marta Villegas. 2003. Cross-lingual text categorization. In Proceedings of the 7th European Conference904

on Research and Advanced Technology for Digital Libraries (ECDL 2003). Trondheim, NO, 126ś139. https://doi.org/10.1007/978-3-540-905

45175-4_13906

[7] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model. Journal of Machine907

Learning Research 3 (2003), 1137ś1155.908

[8] Guan-Yuan Chen and Von-Wun Soo. 2019. Deep domain adaptation for low-resource cross-lingual text classiication tasks. In Proceedings909

of the 16th International Conference of the Paciic Association for Computational Linguistics (PACLING 2019). Hanoi, VN, 155ś168.910

[9] Xilun Chen, Ahmed Hassan Awadallah, Hany Hassan, Wei Wang, and Claire Cardie. 2019. Multi-source cross-lingual model transfer:911

Learning what to share. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Firenze, IT,912

3098ś3112. https://doi.org/10.18653/v1/P19-1299913

[10] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.914

Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 12th Conference on915

Empirical Methods in Natural Language Processing (EMNLP 2014). Doha, QA, 1724ś1734. https://doi.org/10.3115/v1/D14-1179916

[11] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018. Word translation without parallel917

data. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018). Vancouver, CA.918

[12] Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller, Samuel Gershman, and Noah D. Goodman. 2018. Evaluating compositionality in919

sentence embeddings. In Proceedings of the 40th Annual Meeting of the Cognitive Science Society (CogSci 2018). Madison, US.920

[13] Oscar Day and Taghi M. Khoshgoftaar. 2017. A survey on heterogeneous transfer learning. Journal of Big Data 4 (2017), Article 17921

(1ś42). https://doi.org/10.1186/s40537-017-0089-0922

[14] Cedric De Boom, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. 2016. Representation learning for very short texts using923

weighted word embedding aggregation. Pattern Recognition Letters 80 (2016), 150ś156.924

[15] Scott C. Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard A. Harshman. 1990. Indexing by latent925

semantic analysis. Journal of the American Society for Information Science 41, 6 (1990), 391ś407.926

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Multilingual BERT readme document. https://github.com/927

google-research/bert/blob/a9ba4b8d7704c1ae18d1b28c56c0430d41407eb1/multilingual.md928

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers929

for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational930

Linguistics (HLT-NAACL 2019). Minneapolis, US, 4171ś4186. https://doi.org/10.18653/v1/N19-1423931

[18] Susan T. Dumais, Todd A. Letsche, Michael L. Littman, and Thomas K. Landauer. 1997. Automatic cross-language retrieval using latent932

semantic indexing. InWorking Notes of the AAAI Spring Symposium on Cross-language Text and Speech Retrieval. Stanford, US, 18ś24.933

https://doi.org/10.1007/978-1-4615-5661-9_5934

[19] Julian Eisenschlos, Sebastian Ruder, Piotr Czapla, Marcin Kardas, Sylvain Gugger, and Jeremy Howard. 2019. MultiFiT: Eicient935

Multi-lingual Language Model Fine-tuning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing936

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019). Hong Kong, CN, 5701ś5706. https:937

//doi.org/10.18653/v1/D19-1572938

[20] Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. 2019. Funnelling: A new ensemble method for heterogeneous transfer939

learning and its application to cross-lingual text classiication. ACM Transactions on Information Systems 37, 3 (2019), Article 37.940

https://doi.org/10.1145/3326065941

[21] Manaal Faruqui and Chris Dyer. 2014. Improving vector space word representations using multilingual correlation. In Proceedings of942

the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2014). Gothenburg, SE, 462ś471.943

ACM Trans. Inf. Syst.

https://doi.org/10.3115/981574.981595
https://doi.org/10.18653/v1/D16-1250
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.1007/978-3-540-45175-4_13
https://doi.org/10.1007/978-3-540-45175-4_13
https://doi.org/10.1007/978-3-540-45175-4_13
https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1186/s40537-017-0089-0
https://github.com/google-research/bert/blob/a9ba4b8d7704c1ae18d1b28c56c0430d41407eb1/multilingual.md
https://github.com/google-research/bert/blob/a9ba4b8d7704c1ae18d1b28c56c0430d41407eb1/multilingual.md
https://github.com/google-research/bert/blob/a9ba4b8d7704c1ae18d1b28c56c0430d41407eb1/multilingual.md
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-1-4615-5661-9_5
https://doi.org/10.18653/v1/D19-1572
https://doi.org/10.18653/v1/D19-1572
https://doi.org/10.18653/v1/D19-1572
https://doi.org/10.1145/3326065


Generalized Funnelling • 35

https://doi.org/10.3115/v1/e14-1049944

[22] Juan José García Adeva, Rafael A. Calvo, and Diego López de Ipińa. 2005. Multilingual approaches to text categorisation. European945

Journal for the Informatics Professional 5, 3 (2005), 43ś51.946

[23] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. A kernel two-sample test.947

Journal of Machine Learning Research 13 (2012), 723Ð-773.948

[24] Zhiqiang Guo, Zhaoci Liu, Zhenhua Ling, Shijin Wang, Lingjing Jin, and Yunxia Li. 2020. Text classiication by contrastive learning and949

cross-lingual data augmentation for Alzheimer’s disease detection. In Proceedings of the 28th International Conference on Computational950

Linguistics (COLING 2020). Barcelona, ES, 6161ś6171.951

[25] Zellig S. Harris. 1954. Distributional structure. Word 10, 23 (1954), 146ś162. https://doi.org/10.1007/978-94-009-8467-7_1952

[26] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735ś1780. https:953

//doi.org/10.1162/neco.1997.9.8.1735954

[27] Sergey Iofe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift.955

In Proceedings of the 32nd International Conference on Machine Learning (ICML 2015). Lille, FR, 448ś456.956

[28] Tim Isbister, Fredrik Carlsson, and Magnus Sahlgren. 2021. Should we stop training more monolingual models, and simply use machine957

translation instead? In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021). Reykjavik, IS, 385ś390.958

[29] Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. 2020. The state and fate of linguistic diversity and959

inclusion in the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (COLING 2020).960

Barcelona, ES, 6282ś6293. https://doi.org/10.18653/v1/2020.acl-main.560961

[30] Hans Kamp. 1988. Discourse representation theory: What it is and where it ought to go. Natural Language at the Computer 320, 1 (1988),962

84ś111.963

[31] Giannis Karamanolakis, Daniel Hsu, and Luis Gravano. 2020. Cross-lingual text classiication with minimal resources by transferring a964

sparse teacher. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Online Event,965

3604ś3622. https://doi.org/10.18653/v1/2020.indings-emnlp.323966

[32] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference967

on Learning Representations (ICLR 2015). San Diego, US.968

[33] Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model pretraining. In Proceedings of the 33rd Conference on Neural969

Information Processing Systems (NeurIPS 2019). Vancouver, CA, 7057ś7067.970

[34] Thomas K. Landauer and Susan T. Dumais. 1997. A solution to Plato’s problem: The latent semantic analysis theory of acquisition,971

induction, and representation of knowledge. Psychological Review 104, 2 (1997), 211ś240.972

[35] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word embeddings.973

Transactions of the Association for Computational Linguistics 3 (2015), 211ś225.974

[36] Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In Proceedings of the 7th International Conference on975

Learning Representations (ICLR 2019). New Orleans, US.976

[37] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned in translation: Contextualized word vectors. In977

Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, US, 6294ś6305.978

[38] Oren Melamud, Jacob Goldberger, and Ido Dagan. 2016. Context2vec: Learning generic context embedding with bidirectional LSTM. In979

Proceedings of the 20th Conference on Computational Natural Language Learning (CoNLL 2016). Berlin, DE, 51ś61. https://doi.org/10.980

18653/v1/K16-1006981

[39] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting similarities among languages for machine translation. (2013).982

arXiv:1309.4168.983

[40] Tomas Mikolov, Wen-Tau Yih, and Geofrey Zweig. 2013. Linguistic regularities in continuous space word representations. In Proceedings984

of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2013). Atlanta, US, 746ś751.985

[41] David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith, and Andrew McCallum. 2009. Polylingual topic models.986

In Proceedings of the 7th Conference on Empirical Methods in Natural Language Processing (EMNLP 2009). Singapore, SN, 880ś889.987

https://doi.org/10.3115/1699571.1699627988

[42] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2016. Distributional correspondence indexing for cross-lingual and cross-domain989

sentiment classiication. Journal of Artiicial Intelligence Research 55 (2016), 131ś163. https://doi.org/10.1613/jair.4762990

[43] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2016. Lightweight random indexing for polylingual text classiication. Journal991

of Artiicial Intelligence Research 57 (2016), 151ś185. https://doi.org/10.1613/jair.5194992

[44] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2021. Word-class embeddings for multiclass text classiication. Data Mining993

and Knowledge Discovery 353, 3 (2021), 911ś963. https://doi.org/10.1007/s10618-020-00735-3994

[45] Alejandro Moreo, Andrea Pedrotti, and Fabrizio Sebastiani. 2021. Heterogeneous document embeddings for cross-lingual text995

classiication. In Proceedings of the 36th ACM Symposium on Applied Computing (SAC 2021). Gwangju, KR, 685ś688. https:996

//doi.org/10.1145/3412841.3442093997

ACM Trans. Inf. Syst.

https://doi.org/10.3115/v1/e14-1049
https://doi.org/10.1007/978-94-009-8467-7_1
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.findings-emnlp.323
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.3115/1699571.1699627
https://doi.org/10.1613/jair.4762
https://doi.org/10.1613/jair.5194
https://doi.org/10.1007/s10618-020-00735-3
https://doi.org/10.1145/3412841.3442093
https://doi.org/10.1145/3412841.3442093
https://doi.org/10.1145/3412841.3442093


36 • Moreo, Pedroti, Sebastiani

[46] Nikolaos Pappas and James Henderson. 2019. GILE: A generalized input-label embedding for text classiication. Transactions of the998

Association for Computational Linguistics 7 (2019), 139ś155.999

[47] Andrea Pedrotti. 2020. Heterogeneous document embeddings for multi-lingual text classiication. Master’s thesis. University of Pisa, Pisa,1000

IT.1001

[48] Jefrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In Proceedings of1002

the 12th Conference on Empirical Methods in Natural Language Processing (EMNLP 2014). Doha, QA, 1532ś1543.1003

[49] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep1004

contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for1005

Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans, US, 2227ś2237. https://doi.org/10.1006

18653/v1/N18-12021007

[50] John C. Platt. 2000. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in1008

Large Margin Classiiers, Alexander Smola, Peter Bartlett, Bernard Schölkopf, and Dale Schuurmans (Eds.). The MIT Press, Cambridge,1009

MA, 61ś74.1010

[51] Sebastian Ruder, Ivan Vulić, and Anders Sùgaard. 2019. A survey of cross-lingual word embedding models. Journal of Artiicial Intelligence1011

Research 65, 1 (2019), 569ś630. https://doi.org/10.1613/jair.1.116401012

[52] Magnus Sahlgren. 2006. The word-space model: Using distributional analysis to represent syntagmatic and paradigmatic relations between1013

words in high-dimensional vector spaces. Ph. D. Dissertation. Swedish Institute for Computer Science, University of Stockholm, Stockholm,1014

SE.1015

[53] Hinrich Schütze. 1993. Word space. In Proceedings of the 6th Conference on Neural Information Processing Systems (NIPS 1993). Denver,1016

US, 895ś902.1017

[54] Tanja Schultz and Alex Waibel. 2001. Language-independent and language-adaptive acoustic modeling for speech recognition. Speech1018

Communication 35, 1 (2001), 31ś51. https://doi.org/10.1016/S0167-6393(00)00094-71019

[55] Fabrizio Sebastiani. 2015. An axiomatically derived measure for the evaluation of classiication algorithms. In Proceedings of the 5th1020

ACM International Conference on the Theory of Information Retrieval (ICTIR 2015). Northampton, US, 11ś20. https://doi.org/10.1145/1021

2808194.28094491022

[56] Samuel L. Smith, David H. P. Turban, Steven Hamblin, and Nils Y. Hammerla. 2017. Oline bilingual word vectors, orthogonal1023

transformations and the inverted softmax. In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017).1024

Toulon, FR.1025

[57] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot learning. In Proceedings of the 31st Conference1026

on Neural Information Processing Systems (NIPS 2017). Long Beach, US, 4077ś4087.1027

[58] Richard Socher, Clif C. Lin, Andrew Y. Ng, and Christopher D. Manning. 2011. Parsing natural scenes and natural language with1028

recursive neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML 2011). Bellevue, US, 129ś136.1029

[59] Philipp Sorg and Philipp Cimiano. 2012. Exploiting Wikipedia for cross-lingual and multilingual information retrieval. Data and1030

Knowledge Engineering 74 (2012), 26ś45. https://doi.org/10.1016/j.datak.2012.02.0031031

[60] Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, and Ekaterina Shutova. 2021. Multilingual and cross-lingual document1032

classiication: Ameta-learning approach. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational1033

Linguistics (EACL 2021). (Virtual Event), 1966ś1976. https://doi.org/10.18653/v1/2021.eacl-main.1681034

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.1035

Attention is all you need. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS 2017). Long1036

Beach, US, 5998ś6008.1037

[62] Ricardo Vilalta, Christophe Giraud-Carrier, Pavel Brazdil, and Carlos Soares. 2011. Inductive transfer. In Encyclopedia of Machine1038

Learning, Claude Sammut and Geofrey I. Webb (Eds.). Springer, Heidelberg, DE, 545ś548.1039

[63] Alexei Vinokourov, John Shawe-Taylor, and Nello Cristianini. 2002. Inferring a semantic representation of text via cross-language1040

correlation analysis. In Proceedings of the 16th Annual Conference on Neural Information Processing Systems (NIPS 2002). Vancouver, CA,1041

1473ś1480.1042

[64] Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo Henao, and Lawrence Carin. 2018.1043

Joint embedding of words and labels for text classiication. In Proceedings of the 56th Annual Meeting of the Association for Computational1044

Linguistics (ACL 2018). Melbourne, AU, 2321ś2331.1045

[65] Ziyun Wang, Xuan Liu, Peiji Yang, Shixing Liu, and Zhisheng Wang. 2021. Cross-lingual text classiication with heterogeneous graph1046

neural network. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL 2021). (Virtual Meeting),1047

612ś620. https://doi.org/10.18653/v1/2021.acl-short.781048

[66] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf,1049

Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,1050

Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing.1051

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (EMNLP 2020). Online1052

ACM Trans. Inf. Syst.

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1613/jair.1.11640
https://doi.org/10.1016/S0167-6393(00)00094-7
https://doi.org/10.1145/2808194.2809449
https://doi.org/10.1145/2808194.2809449
https://doi.org/10.1145/2808194.2809449
https://doi.org/10.1016/j.datak.2012.02.003
https://doi.org/10.18653/v1/2021.eacl-main.168
https://doi.org/10.18653/v1/2021.acl-short.78


Generalized Funnelling • 37

event, 38ś45. https://doi.org/10.18653/v1/2020.emnlp-demos.61053

[67] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embedding and orthogonal transform for bilingual word1054

translation. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics1055

(HLT-NAACL 2015). Denver, US, 1006ś1011. https://doi.org/10.3115/v1/N15-11041056

[68] Dejiao Zhang, Ramesh Nallapati, Henghui Zhu, Feng Nan, Cicero Nogueira dos Santos, Kathleen McKeown, and Bing Xiang. 2020.1057

Margin-aware unsupervised domain adaptation for cross-lingual text labeling. In Findings of the Association for Computational Linguistics:1058

EMNLP 2020. (Virtual Event), 3527ś3536. https://doi.org/10.18653/v1/2020.indings-emnlp.3151059

[69] Jing Zhang, Wanqing Li, Philip Ogunbona, and Dong Xu. 2019. Recent advances in transfer learning for cross-dataset visual recognition:1060

A problem-oriented perspective. Comput. Surveys 52, 1, Article 7 (2019). https://doi.org/10.1145/32911241061

[70] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. 2019. Bridging theory and algorithm for domain adaptation. In1062

Proceedings of the 36th International Conference on Machine Learning (ICML 2019). Long Beach, US, 7404ś7413.1063

ACM Trans. Inf. Syst.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.3115/v1/N15-1104
https://doi.org/10.18653/v1/2020.findings-emnlp.315
https://doi.org/10.1145/3291124

	Abstract
	1 Introduction
	1.1 Funnelling and Generalized Funnelling

	2 Generalized Funnelling
	2.1 A brief introduction to Funnelling
	2.2 Introducing heterogeneous correlations through Generalized Funnelling

	3 View-generating functions
	3.1 The Posteriors VGF
	3.2 The MUSEs VGF
	3.3 The WCEs VGF
	3.4 The BERT VGF
	3.5 Policies for aggregating VGFs
	3.6 Normalisation

	4 Experiments
	4.1 Datasets
	4.2 Evaluation measures
	4.3 Learners
	4.4 Baselines
	4.5 Results of many-shot CLTC experiments
	4.6 Results of zero-shot CLTC experiments
	4.7 Testing different aggregation policies
	4.8 Learning-Curve Experiments
	4.9 Precision and recall

	5 Learning alternative composition functions: The Recurrent VGF
	5.1 Experiments

	6 Related work
	7 Conclusions
	References

