Charon: a Tool for Code Redocumentation and Re-Engineering

Oreste Signore - Mario Loffredo

2nd Workshop on Program Comprehension

Capri, Naples-Italy, July 8-9, 1993

SEAL - Software Engineering & Application Laboratory Istituto CNUCE via S. Maria, 36 56126 Pisa (Italy)

Contents

- p Maintenance
- **p** Re-engineering & Reverse Engineering

p *Charon:* an integration with a CASE tool

- Basic issues
- ADW
- C-TOOL
- The ADW files
- The import process
- A sample

p Conclusions and possible developments

Maintenance

- Maintenance (corrective, adaptive or perfective):
 - *up to 95% of EDP departments activity*
 - we must understand the semantics of the software
- CASE tools claimed to be cost and quality effective:
 - recover existing software and manage it in a CASE environment

• Maintenance interventions may:

- *alter the features of the original software*
- *contribute to their degrade*
- make the application system less reliable and maintainable, error prone, difficult and expensive to be modified
- make their documentation out of date
- *need to rebuild knowledge before making a change*

• Effective prototype systems may need to be migrated to more complex or operational environments.

The Re-Engineering process

Objectives of Re-engineering:

- Better manage portfolio of existing systems.
- Provide automated assistance for maintenance.
- Reduce maintenance errors and costs.
- Increase productivity of system maintainers.
- Make system easier to understand, change, test.
- Enable system conversion and migration.
- Improve maintenance staff morale.
- Enforce adherence to standards.
- Improve response to maintenance request.
- Protect and extend system life.
- Use CASE to support existing systems.
- Reuse existing system components.

Reverse Engineering...

p Data...

p ...and processes

Related work

- H. M. Edwards, M. Munro RECAST: Reverse engineering from COBOL to SSADM Specification (WCRE'93)
- D. P. Olshefsky, A. Cole
 A prototype System For static and Dynamic Program
 Understanding (WCRE'93)
 (PUNDIT: analysis of C source code and production of a set of
 program views)
- W. J. Premerlani, M.R. Blaha An approach for Reverse Engineering of Relational Databases (WCRE'93)
- Bachman
 Bachman Product Set

 (Re-engineering of data structures to E-R)
- Arthur Young Management Consulting *TIBER (Techniques and Instruments to Build Encyclopaedias of Redevelopment engineering)* (From COBOL code to IEW)
- F. Lanubile, P. Maresca, G. Visaggio *An Environment for the Reengineering of Pascal Programs* (CSM '91) (From Pascal code to IEW)

Some basic issues

p Software quality improvement may require a redevelopment of the application system.

p When a software development methodology and CASE tools have been adopted as an enterprise standard:

- recovering the existing software, and documenting it according to these standards may constitute a consistent improvement
- understanding the semantics of the original programs is a key point
- in large scale projects re-engineering and the adoption of CASE tools can produce relevant advantages, namely consistency, easy maintenance and clean documentation
- consistency with the enterprise standards can assure the complete integration of the various subsystems, and reduce the maintenance effort
- the maintenance personnel will no more be forced to operate maintenance interventions on the source code, but can operate on higher level specifications, leaving to the CASE tool the burden of the generation of the code
- documentation will be kept up to date

p An approach: *Charon*

(we extract from the source code information pertinent to analysis and design phases)

CHARON: the objectives

- **p Re-engineering cycle implementation:**
 - from a C MicroSoft language + EXEC SQL program
 - to COBOL code + DB2
- p Reverse engineering: C-TOOL
- p Forward engineering: ADW COBOL code automatic generator

CHARON: the objectives

- P Reconstruct the Database Conceptual Schema (information pertinent to AWS, while C-TOOL acts at the DWS level)
- p The designer can afterwards operate directly upon the Conceptual Schema.
 The Relational Translator can produce a normalised relational schema.
- p A bottom-up approach(from the code to the high level specifications)
- p **A software engineering experiment**

... but, in addition ...

a tool for:

- software packages modification
- environment conversion
- from prototypes to production
- **p** Complete reverse phase executed by C-TOOL

ADW

- p An implementation of the Martin "pyramid"
- p A component of the AD/Cycle platform

The hyperdiagrams

- Support the most popular analysis and design techniques (i.e.: DFD, SC, MAD, ERD, RDD, DSD).
- p Allow the logical binding among many different representations.
- p Are automatically testable and easy to manage.

The Encyclopedia

- p Is a *knowledge base* containing all the project information.
- p Is no DBMS based (B-trieve).
- p Is integrated with a software component, named *Knowledge Coordinator,* that adopts AI techniques to maintain the diagrams' consistency.

C-TOOL: architecture

The C-TOOL output files

p **SQL_STAT file:**

includes all the EXEC SQL commands being in the C source code and their positions

p OUT2 file:

contains the program Call Graph described as a table

p **NESTING file:**

includes the program Nesting Tree represented as a list of records

p **GRAPH file:**

contains the program Control Flow Graph represented as a list of records

The files to import in ADW

They can be divided into three groups:

p ".EXP" files:

including records used to describe all the project information entities as objects, associations and properties

p ".ENC" files:

each one containing the representation of a project module Action Diagram

p "MASC" files:

each one collecting the masks of SQL DML commands on certain table

...the ".EXP" files format...

OI.EXP - includes the encyclopedia objects representations

Object	Object	Object	
instance	type	instance	
token	code	name	

AI.EXP - includes the representations of the associations between the objects involved

Association	Assoc.	From	То
instance	type	token	token
token	code		

PI.EXP - contains the information related to the properties of objects and associations

Subject Pr token tyr co	Prop. Rep. ype no. code	Property value	
-------------------------------	-------------------------------	-------------------	--

TI.EXP - contains the records regarding the long textual properties of objects and associations like definitions and comments

Subject token	Prop. type code	Rep. no.	Long textual property value
------------------	-----------------------	-------------	-----------------------------------

...an example of ".EXP" contents...

Objects 1000000

1000000003,10007,"teacher	"
1000000004,10007,"class	"

Associations

2000000022,20044,1000000004,1000000003

Short properties

2000000022,30034,00000,"is taught by	"
2000000022,30037,00000,"teach	"
2000000022,30035,00000,"1	"
2000000022,30036,00000,"1	"
2000000022,30035,00000,"M	"
2000000022,30036,00000,"M	"

Long textual properties

1000000004,30076,00001,"A_group_of_students_which_study_" 1000000004,30076,00002,"the_same_arguments "

...the ".ENC" files format...

\$ADTEXT\$3.00ENGLISH

- L 0000000For Each Customer Purchase
- D 0000004Customer&oi000181Using Customer No or Customer Name
- B 0000000lf Customer does not have a Customer No
- A 0000001Maintain_Customer_Data&oi0000LZ
- C 0000000Else Customer No does exist 0000000Check Current Credit Rating
- B 0000000lf Current Credit Rating is > or = 90

X3000000Reject Customer Purchase

0000000Reason: Credit Past Due

- C 0000000Else Current Credit Rating is < 90 000000Customer is Valid
- D 0000005Customer&oi000182Customer Name, Customer Address
- E 000000
- E 0000000
- F 0000000

...the "MASC" files format...

67,osG00indagini	newuser 06 Feb 922:88am		
83,MLosG00A100000indag	gini		
83,MLosG00B100000ospedale.indagini			
83,MLosG00C100000ospedaledbsn4			
83,MLosG00P100000TV			
87,MLosG00R10100000inc	agini-CURSORO-1 *CURSOR		
31,MLosG00R101001B	000000EXEC SQL		
45,MLosG00R101000	000000DECLARE c1		
33,MLosG00R101001	000000CURSOR FOR		
58,MLosG00R101002B	0000000SELECT codice_indagine		
53,MLosG00R101003	0000000 , tipo_indagine		
52,MLosG00R101004	0000000 , numero_volte		
54,MLosG00R101005	0000000 , data_richiesta		
52,MLosG00R101006	0000000 , espletamento		
23,MLosG00R101007E	000000		
45,MLosG00R101008	000000FETCH c1		
65,MLosG00R101009B	0000000INTO :osG00-codice_indagine		
60,MLosG00R101010	0000000 , :osG00-tipo_indagine		
59,MLosG00R101011	0000000 , :osG00-numero_volte		
61,MLosG00R101012	0000000 , :osG00-data_richiesta		
59,MLosG00R101013	0000000 , :osG00-espletamento		
23,MLosG00R101014E	000000		
51,MLosG00R101015	000000FROM indagini		
63,MLosG00R101016B	0000000WHERE numero_ammissione =		
64,MLosG00R101017	0000000 :osG00-numero_ammissione		
40,MLosG00R101018	000000		
23,MLosG00R101019E	000000		
31,MLosG00R101020E	000000END-EXEC		

CHARON: the architecture

CHARON: the architecture

(cont.)

p **Step 1**

- 1a) Represent the logical relational model and the data Structure of the relational tables (keys, data types, formats).
- 1b) Create and open "MASC" files.

p **Step 2**

Reconstruct the Structure Chart.

p Step 3

Generate the E-R model

p **Step 4**

- 4a) Represent the modules procedural logic, including the accesses to the database and the calls to other modules.
- 4b) Transform the EXEC SQL statements into masks to be inserted into "MASC" files. The statements that are not supported by ADW are inserted as comments.

...importing files...

...importing files

A different way of importing per type:

p ".EXP" files:

imported by using the *Encyclopedia Data Transfer* option of the *File* menu of the *Encyclopedia Services* task present in each workstation

p ".ENC" files:

moved in the ADW subdirectory associated to the new encyclopedia

p "MASC" files:

transferred through the *Transfer* option of the *File* menu of the *CWS Code Generator* task

CHARON: achieved targets

p From a source program to a CASE tool.Benefits:

- integration with the enterprise standards
- get all the advantages of automated software generation
- exhaustive documentation and reports
- maintenance at higher level

Database Relational Diagram

Data Structure Diagram

(fundamental table)

Data Structure Diagram

(associative table)

Data Type Window

Entity-Relationship Diagram

Entity Type Description

SQL Action Diagram

Structure Chart

Module Action Diagram

Object Details Window

Object List

Charon:

benefits and future developments

p Benefits:

- totally automatic
- the user must conform to some specific design methodology (e.g. Structured Analysis)
- after the reverse engineering phase, we can operate directly on the high level specifications of the software, getting all the benefits claimed by the CASE tools
- the user can rely on all of the ADW and supporting database manager report writers in order to produce a textual documentation
- with the rebuilding of E-R model, if we wish to make some relevant changes to the database structure, we shall easily act on it and, then, obtain a normalised relational form

p Future developments:

- testing the existence of the relationships between relations when examining the SQL commands
- creating another ADW diagram, Screen Layout, and producing CICS code for the activation of video maps which correspond to the I/O commands in the C code
- enhancing the Structure Chart diagram by considering the recursivity
- representing modules formal parameters and converting their C types in COBOL ones in order to allow the generation of the Data Flow Diagram in the Analysis level (AWS)
- *implementing an enriched user interface*