l{ éf§$ “£§g£&ﬁﬁé&QW§
Consiglio Nazionale delleRicezche

ISTITUTO DI ELABORAZIONE
- DELLA INFORMAZIONE

PISA

ON COMBINING META~IV AND CCS

A. Fantechi

Nota interna B85-~07

Agosto 1985

OK COMBINING META-~IV AND CCS

Alessandro Fanteohi§
Department of Computer Science (ID)
Technical University of Denmark (DTH)
Lyngby, Denmark

BSTRACT

x>

An experiment ‘towards the development of & formal method for
specification of concurrent systems is attempted, through the combination of
META-IV {(the meta-language of VDM) and CCS. These two formalisms are combined
in two different ways: different degrees of integration of the two formalisms
re exhibited. In this report we show that this kind of combination «can be
viable as a means for the specification of concurrent software, and we sketch
the theoretical framework which is involved. As such we consider this report
as & contribution towards the more general problem of combining formal
methods.

1 INTRODUCTION

This report presents an experiment towards the development of a formal
method for the specification of concurrent systems. The experiment consists
in ¢combining two well—-known and established formalisms, the META-IV, the
meta~-language of the Vienna Development Method (Bjgrner 78a, Bjgrner 82a), and
the Calculus of Communicating Systems (Milner 80a).

The reason for the choice of the two formalisms can be found in the fact
that VDM is an engineered and well-understood method for specifying sequential
systems, which is widely used and for which some automated tools are being
produced. VDM per se 1s, however, not sultable for the specification of
concurrent systems. On the other side, CCS is & simple and elegant formalism
for specifying concurrent systems with a high deegree of modularity, but its
notation is not very natural when coping with complex subsystems which are
completely sequential, since it drives to decompose such subsystems in a
number of processes combined by the calculus operators.

In the experiment we achleve two different degrees of integration of the
function oriented approach of VDM and fthe process oriented structure of (CCS,

On leave from Istituto di Elaborazione dell'iInformazione, Consiglic
Nazionale delle Ricerche, Pisa, Italy

Visit to ID/DTH made possible by funding from C.N.R. and from Danish
Ministry of Education, grant n.406.

obtaining two different formalisms {presented in sections 2 and 4,
respectively). A compariscn between the two formalisms is made and some

related theoretical problems are addressed, for the moment only at their
surface.

In section Y4 we discuss the relationships between the two formalisms and
YDM+CS8P, which 1is another attempt to extend VDM to describe concurrent
systems, made introducing in the meta-language some concurrency construct
derived from CSP (Folkjdr 80a).

Scome more general considerations induced by the results of fthe experiment
are given in section 5.

2 A SIMPLE COMPOSITION

As a first step of the experiment, we define &a formalism In which a
CC8-~1like process structure 1s imposed at the top level of & VDM systenm
gspecification, while the functions that compute output values and new states
or +the processes are detailed using a VDM-style. This approach is the most
atural and immediate to the problem of combining CCS with other formalisms
hat are suitable to the specification of seguential systems; other work has
een made in this direction: see, for example, (Shields 83a), where algebraic
pecification has Deen used for the sequential part of the CCS specification
f a network communication protocol.

[TR G & SR S T

2.1 Structure of a specification

The formulas that build up a specification are divided in six sections
the first one evidences the superimposed CCS structure.

1. Process Structure
It gives the formulas for each component process; gach process is

specified by a CCS-like behaviour expression and can have paramelters
(corresponding to free variables in the Dbehaviour expression defining
it), that are called the "state". Its input and outpult scorts are
specified explicitly as a set of labels, and the domain assoclated
with them is indicated: this gives the type of the messages that can
be exchanged through the associated ports. Finally, the domain of
the state (i.e. the parameters to the process) 1s indicated.

2. Input~-Qutput Domains
The domains referred to in the sort specifications of processes are
specified in detail with wusual META-IV domain definitions. If
well-formedness conditions are needed on some Input-output domaln,
they are given in this section.

3. State Domalns
The domains referred to in state specifications of processes are
specified in detail with META-IV domain definitions. Ir
well-formedness conditions are needed on some state domain, they are
given in this section.

4., State Transiticn Functions
The functions used In the process definitions to express state
transitions (i.e. to compute the parameters for processes), seen as
functions from Input and State Domains to State Domains, are

specified with usual META-IV notation.

5. Qutput Computing Functions
The functions used in process definitions tc compute values to be
output, seen as functions from Input and State Domains to Output
Domains, are specified with usual META-IV notation.

6. Auxiliary Functions and Domains
All other functions and domains needed in the previous definitions
are then specified, using META-IV notation.

This classification, which c¢losely resembles the structure of a
conventional VDM specification, built wup by Synctactic Domains, Semantic
Domains, Semantic Functions and Auxiliary Functions, makes clear that the (CS
style remains at the "top” of the specification, without really intermixing
with VDM style. In this way, the process structure of the system is always
visible at the top level.

This has the advantage of showing clearly which are the main components
of the system, and of clearly defining the interface of each process with the
external world. However, there is no way to hide a sub-structure. That 1is,
it is not possible for a process to be internally decomposed into
sub—-processes, or internally exploit a non-deterministic Dbehaviour, without
making this immediately visible at the top level. There is no means for
léaving a function underspecified, or specified by means of other techniques
(e.g. pre~ and post~ conditions), and later to refine its specification, for
example to be internally engaged in a parallel computation,

2.2 Syntax and semantics of the meta-language

The syntax of the meta—language can be obtained easily from the CCS
yntax by replacing the CLCS categories of value expressions and variables with
he META-IV categories of expressions and variables (see fig.', in which a
implified abstract syntax is given), with some syntactic sugar added to make
ehaviour expressions closer to usual META-IV notation (for example, the use
f the keywords in and out in front of a port-name, instead of the usual
omplement signj.

O O w W oo 0

Processwdef :: Procld Var BE

BE = NIL | internal move | Input | Output | nd choice |

par_comp | restriction | renaming | Process_call | Ite

{(usual CCS concrete repr.)

internal move :: BE 1.BE
Input :: In sort Var BE ax.BE
Output :: Out_sort Exp BE ax.BE
nd choice :: BE BE BE,+BE,
par_comp :: BE BE BE, |BE,
restriction :: BE Sort BE\a
renaming :: BE Renames BE[map]
Process call :: Procid Exp P(exp)
Ite :: Exp BE BE (%)

In_sort, Out_sort :: Sort

Renames :: Sort 7 Sort

(*) Other control constructs from META-IV can be included.

In the following we shall use only some of the simpler features of
META-IV, which we assume as self-explaining, while we wish Lo recall briefly

e intituive meaning of CCS behaviour expressions, together with the concrete
%%ntax we use:

7.BE is an internal event, i.e. 1its behaviour is to
transform itself in the behaviour specified by BE;

in o x.BE is a process which inputs & value from port o, assigns

it to x and then behaves like BE (free occurrences of x
may be present in BE, that become bound to the input
value);

outa exp.BE is a process which outputs the value of exp on port o,
and then behaves like BE;

BE,+BE, is a nondeterministic choice between the behaviour of
BE, and that of BE,;

BElfBﬁz is the parallel composition of the two behaviours;

BENw 1s the same as BE, but where all the Inputs and Outputs
of BE referring o cannot take place: i,e. 1t restricts
the visibility from outside.

BE[map] is simply like BE, but with all tne ports renamed,
according to map;

P(exp) has the behaviour BE associated with the definition of

P (Process P(x) 4 BE), with all free occurrences of ¥ in

BE replaced by exp.

From what said, it is c¢lear that the semantics of the meta—-language c¢an

be given completely in terms of CCS semantics, where the evaluation of value

expressions is given in terms of denotational semantics of META-IV

expressions. The assumption, made in {(Milner 80a), p.066, that CCS value

expressions compute only total functions 1s respected when only META-IV

functions are used which are total on their definition domains or on
restricted domains on which well-formedness conditions hold.

2.3 An example

As an example of this method we give here the specification of a
rudimentary database. The database contains a 1ist of identifiers (this is
its state), on which four operations are defined: insert a new identifier,
remove an identifier, 1list the contained identifiers and count them. The
database accepts requests of operations from n external processes, here leflt
unspecified, and gives them the related replies. The specification is given
in fig.2. Ei in o X,BEi is a shorthand for

i
in o, x.BE,+in a, X.BE,*...+in o, x.BE,.

n
As can be seen from the example, the behaviour of the database and 1ts

interface are completely specifiled 1In the Process Structure section of the

specification, which is the only section that contains behaviour expressions.

Process Structure

. A
Process Service(state) 2

Zi in a; req.out 6i serve{reg,state).
Service(new(reg,state))
Input sort Gpsosty :Request

Qutput sort éx,.mén : Reply

tate Content;

Input Output Domains

Request = Insertreq | REemovereg | Listreg | Countreg
Insertreqg, Removereqg :: I1d
Listreg, Countreg :: TOKEN

Reply = OK ! Error } Listreply Countreply
0K, Error :: TOKEN

Listreply :: Id

Countreply :: Integer

State Domains
¥
Content :: Id

State Transition Functions

il g

new (reg,state)
(cases req
mk-Insertreq(name) -~
if name ¢ elems state then state else state <name>
mk~Removereq(name) - <id j id ¢ elems state N id » name>
mk-Listreq(), mk-Countreq() -+ state)
type Request Content + Content

Output Computing Functions
serve(req,state) 4
(cases req
mk~Insertreq(name) » mk~0K()
mk~Removereg(name) -+
if name ¢ elems state then mk-OK{) else mk~Error()

mk~Listreq() ~ mk-Listreply(state)
mk~Countreg() + mk~Countreply(len state))

type HReguest Content -+ Reply

rig.2

The system composed by this process and its users can be simply expressed
hy the following process definition:
Process SYSTEM £ P, || ... || P

n I Service(initial state)

where H is a shorthand for parallel composition of the processes and
subsequent restriction on the sort common to all processes, in this case
{al,eua 1 Sys a8y } (we are assuming here that I is associative, since each P,

i
shares only {wl, i} with Service).

3 AN ALTERNATIVE: THE RESULT-VALUED PROCESS CONCEFT

The meta~language proposed above allows to specify concurrent systems in
a CCS style, defining some computations (typically, the sequential ones inside
a process) in META-IV style. What about META~IV functions computing values
using some CCs operators {e.g. nondeterministic choice or parallel
composition)? Such a meta-language would achleve a greater degree of
integraticon of CCS and VDM.

This meta“language can be based on the concept of a Result~Valued Process
{RV~process). A RV-process 1s specified as a CCS-like behaviour expression
which returns a value in some domain. It can be operationally seen as a
function whose computation proceeds in a nondeterministic way and affects the
execution of some other RV-processes. Its computation can, conversely, Dbe
influenced by the execution of other RV-processes.

This concept tries to unify both the function and process concepts a
conventional function 1is a deterministic RV-process without side effects,
while a conventional CCS process can be seen as a RV-process returning a value

in the domain whose only element is NIL, denoted in the same way.

&

3.1 The meta- anguage

The abstract syntax of RV-processes can be obtained from CCS syntax (the
one of fig.1) by replacing the NIL process by a RV-process which terminates
giving a result (concretely represented by: return expr), and allowing
normal expressions to include calls to RV-processes, instead of pure functions
(fig.3).

In this case, starting from a META-IV environment, we have that the
META~IV expressions are generalised to include calls to RV-processes, whose
definitions are given in terms of (result-valued) behaviour expressions, and
of (extended) META~IV expressions themselves.

RVprocess def :: RVprocld Var RVBE

RVBE = Result

internal move } Input f Output {
nd_cheoice | par_comp | restriction |
renaming [RVprocess call ! Ite

Result :: Exp

internal move :: RVBE

"Input :: In sort Var RVBE
Output :: Out_sort Exp RVBE
nd_choice :: RVBE RVBE |
par_comp :: RVBE RVBE
restriction :: RVBE Sort

renaming :: RVBE Renames
RVprocess call :: RVprocid Exp
Ite :: Exp RVBE RVBE (%)

In sort, Out_sort :: Scrt
Renames :: Sort 3 Sort

Exp :: Usual_syntax_of_ expressions(Exp) | RVprocess call

{(*) Other control constructs from META-IV can be included

fig.3
A problem arises with the parallel combination operator: since it must
still represent a RV-process, its result has £o return a unique value; some

rules are hence to be established about which of the values of its RV-process
components 1s to be chosen. A sultable definition would be that the operator
returns the wvalue returned by the leftmost behavicur expression; this
definition maintains the assoclativity of the operator, but not the
commutativity. An alternative definition would be that the returned value is
nondeterministically chosen between the values returned by the left hand and

the right end of the operator: this definition wmaintains both the
assoclativity and the commutativity of the operator. In the following we use
the former definition because it seems to be of more practical use

(operationally, it represents a function which, during its computation, has
the side effect of creating a new process, without worrying about its
termination ~ this is a common situation in real systems, e.g. it is possible
to program a similar function with the Ada tasking facilities), but this 1is
anyway not intended to be a binding choice. The notation j denotes the
(asymmetric) parallel composition operator which returns the value of the
leftmost behaviour expression.

Another problem iIs related to the more dynamic nature of RV-processes
Wwith respect to the conventional CCS processes. In CCS the sorts of each
process are defined with reference to a global set of labels. These labels

are visible at any point of a specification, i.e. any process can refer them.
Since the RV-processes can be defined and called anywhere in the
specification, scope rules for the port names are likely to be introduced. In
the formalism we use later on, we have chosen to allow port names to be passed
as parameters to RV-process; reference to such parameters naming allowed in
input/output expressions (note that this is different from allowing port names
to be passed in communications, as proposed in (Aistesiano 8ua)). Port
identifiers are defined only within & parallel ccmposition, and are passed to
the. component RV~processes. This is because port identifiers are needed in
parallel composition to specify the ports that are to be connected. The
restriction operator applies only‘to port identifiers (see the definition of
the Service process In the example in section 3.2). The use of port
parameters makes useless the renaming operator of CCS, since a renaming is
implicitly done at each RV-process call.

Obviously, our choice is not binding, in the sense that more complex

scope rules for port names are possible and could be included in the
definition of a meta-language.

In the notation we shall use from now on, the syntax of RV-process
definitions and of RV-process calls includes the port parameters, but separate
from the other parameters to the RV~-process (notation:
[input ports; output ports]). Greek letters denote port variables, both in
declaration as formal parameters, or at their use. The notation <a> as a port
variable lenotes the array of variables Gpye ol with n determined by the
corresponding sort definition. Port identifiers are denoted by capital
ietters.

The Input-Output domains for a RV-process are now associated to its port
parameters, with the same syntax wused for the first formalism presented.
Moreover, a type definition (in the style of META-IV) which gives the domain

and codomain of the RV-process 1s added.

The META-IV syntax is maintained for conventional functions; notice that
the RV-processes in which sorts are not used directly (i.e. in which they do
not explicitly appear in any operator), but in which they are only passed to
called RV-processes, are compulscory written as RV-processes, and not as
conventional functions.

3.2 An example

As an example we give the specification of a system that can be seen as a
sophisticated wversion of that of fig.2. In order to obtain a certain dsgree
of parallelism among concurrent reguests, the Service process is now
decomposed into a DB process, which maintains the list of identifiers, and a
Driver process which accepts external requests and delegates their serving to
dynamically created Task processes. The DB process exports only three
operations on the identifier list: insert, remove and list. The answer Lo
the list request i1s a sequence of output values, one for each identifier. For

simplicity, we assume that an external process cannot issue a new request

until the previous requests have been served,
Pig.4 {(a,b).

BV~Process Service(state)[<a>;<8>]

(Driver[<a>,C;<8>,B] 1 DB(state)[B;C

Input sort o;,..0_. :Request

n
Output sort &,,.. 6, : Reply

type Content » NIL;

Request = Insertreg { Removereq f Listreq
Insertreqg, Removereqg :: Id

Listreg, Countreqg :: TOKEN

Reply = 0K | Error | Listreply | Countreply
OK, Errcr :: TOKEN

. ¥
Content :: Id

. - .
RV-Process Driver[<a>,Y;<&>,5] &

L in a; req.(Driver[<a>,Y;<8>,8] 1 Tas
isort o,,..u Reguest, Y: DBReply

n
Qutput sort 61,»won : Reply, #: DBRequest
type > NIL;

RV-Process Task(req)[v;g,p] 2
out o serve(req)lY;8l.return NI
Input sort Y : DBReply

Output sort B : DBRequest, p : Reply

type Request ~» NIL;

RV-Process DB(state)[g;Y] &

in B req.out Y reply(reqg,state)lc].DB(ne
AInput sort B : DBRegquest

Output sort v : DBP@ply
type Content » NIL;

QRN AR

DBRegquest = Insertreq | Removereq | Listreg

DBReply = OK | Error | Item

Item :: I¢

RV-Process serve (i,req)[Y;8]

(cases req

mk-Insertreg(name) + out B regq. in Y rep.
mk-Removereq(name) - out g req. in ¥ rep.
mk~Listreq() + out B reg. givelist(
mk~Countreq() » out B mk-Listreqg().

Input sort Y : DBReply
Output sort 8 : DBRequest
type Integer Request -+ Reply

The specification is given in

JINBAC

Countreg

kireg)[v;g,6.1)

i

e

w(reg,state))[g;Y]

return rep
return rep

)]

givecount ()[Y])

RV~Process reply (req,state)[v] Q
(cases req
mk-Insertreq(name) =+ mk~0K()
mk~Removereq(name) -
if name ¢ elems state then mk-0K()
else mk~Error()

mk~Listreq() + recreply(state)lYy])
Qutput sort Y : DBReply)
type DBRequest Content » DBReply

new {(reg,state) 4
(cases req
mk~Insertreqg(name) -~
1f name ¢ elems state then state
else state”<name>
mk~Removereq(name) -
<id | id ¢ elems state N id = name>
mk-Listreq(), mk~Countreg{() » state)
type Request Content =+ Content

>

RV-~Process givelist()[Y]
in Y rep. (if ~ is-Item(rep) then return <>

else return rep’givelist(J[Y])

Input sort Y : DBReply

Lype + Listreply

RV-Process givecount()[¥] &
in Y rep. (if ~ is-Item(rep) then return 0

else return givecount (){Y1+1)

Input sort Y : DBReply
type + Countreply

RV-Process recreply(state)[Y] 4
@ (if len state = 1 then return hd state
else out Y recreply(tl state)}[Yl.return hd state)
Output sort Y : DBReply
type Content » Item

fig.4b

As we can see from the example, a top-level process structure is no
longer enforced, and hiding of parts of the behaviour in lower level
components is possible: this allows, for example, underspecification of some
components and later refinements in an internally parallel structure.

On the other hand, a specification given by RV-processes does not always
show a clear interface to the external world, since the specification of its
external behaviour 1is spread across several components (in the example,

replies to the external requests are not sent by the same process that has
received the requests).

3.3 Semantics of the meta-language

In the formalism presented in chapter 2 we had a rigid process structure
visible at the top level, specifying the behaviour of the component processes
of a system. This structure also gave a precise boundary between the two
combined formalisms, in order to distinguish which theoretical framework
applies at any point of the specification.

Conversely, the theoretical framework of the RV-processes formalism
cannot Dbe expressed as a mere combination of two separate models. Obviously,
the denotational semantics by input-output functions of META-IV can no longer
be maintalned, neither the semantics given for conventicnal CCS can be
directly transferred to RV-processes. Rather we need a homogeneous framework,
which may Dbe Dbased on some of the proposed models to give the semantics of
concurrent processes.

The semantics of the resulting meta-language is currently under study; a
first way 1s to define the semantics of the meta-language operators by
derivations, as made in (Milner 80a) for conventional CCS. An zlternative Way
is to bulld it on the model for CCS given by Milner using Communication Trees
(Milner 8Ca). Informally speaking, the rules given there for the construction
of - the Communication Tree modelling a CCS process can be extended to model
RAV~processes, in the following way:

a) a return expr behaviour expression is represented by as many branches in
the tree as are the possible values to which expr can evaluate;

b)) a RV-process call inside a behaviour expression 1is represented by the
whole tree corresponding to the called process, and but the
representation of the following part of the behaviour expression is
appended to its leaves . Since those leaves all correspond to a
partlcular value of expr in a return expr clause of the called
RV-process, the appended continuation relies on the value returned by the
called RV-process, as it was expected.

A third way to give the semanfics of the meta~language is to provide a
transformation from a specification built by RV-processes in one given by
conventional CCS processes. Such a transformation allows to extract the
global behaviour of the system, and to make it visible at the top level; this
could be wuseful also, for example, for a better understanding of a
specification given in terms of RV-processes. At a first analysis such a
transformation seems Lo be possible, but a deeper study remains to be done
about this topic. Having such a transformation, one could easily prove that

e two presented formalisms have the same expressive power, since the inverse
ransformation 1is trivial (we have seen that conventional processes can be
een as a particular case of RV-processes).

]

Another open question is whether the algebraic structure of CCS is
maintained and which equivalences are applicable in the case of RV-processes.
This is particalarly important with regard to proof technigues.

L RELATIONS WITH VDM+CSP

A predecessor of the present work is the combination of VDM and CSP by
P.Folkjdr and D.Bjgrner (Folkjsdr 80a); they extend META-IV with CS8P-1like
constructs.

The first formalism we have presented is less flexible than VDM+CSP, both
because the former enforces a specification structure where processes are
rigidly confined to the top level, and for the capability of VDM+CSP to
express Input-output events inside the inner functions. Conversely, our

second formalism is more flexible in expressing concurrent and
non-deterministic Dbehaviours. We think also that the second formalism is
"cleaner™ than VDM+CSP; there no trace is kept of the communications that

affect the computations of other functions.

A transformation from VDM+CSP tc our second formalism seems t0 Dbe
possible and is «currently under study. The inverse transformation is not
pessible in the case of the version of VDM+CSP defined in (Folkjir 80a) and
used in (Lgvengreen 80a), in which the mixed nondeterminism (i.e. a choice of
the CC8 form t.P + ax.Q) is not expressible.

The experiences in the use of VDM+CSP in real systems specification (see,
for example, (Lpvengreen 80a)) and various experiments in the specification of
real systems with CCS-based formalisms (an example is (Doeppner 83a)) give
strength to our believe that the formalisms presented above can be viable in
real applications, once engineered in a conveniently and widely applicable
form.

5 CONCLUDING REMARKS

This report does not aim to define a comprehensive model for the
specification of concurrent software; rather, 1its goal is tc analyse the
ggitic issues of the combination of formal methods.

The experiment presented suggests that it is possible %to combine two
specification formalisms that rely on different theoretical foundations. More
precisely, the two formalisms discussed above show two alfernative ways of
combining.

The first one is almost completely a syntactical composition, let us say
a Juxtaposition of the two formalisms. Such a composition is theoretically
sound given that the "interfaces™ between the two formalisms are well-defined
and well~understood: our case relies on the possibility to use META-IV
expressions instead of CCS value expressions.

The second formalism 1is an attempt toward a greater degree of
integration. What we have obtained is & formazlism that has a greater
flexibility with respect to the two components, and contains the .two
components themselves as subcases, but is no longer theoretically sound in the
framework of any of the two components. Rather, it needs an ad hoe
theoretlcal framework to be understood.

More generally, the [irst alternative can be seen in the direction of a
specification method whic! enforces the wuse of different formalims, or
metalanguages, to model different aspects of a system; the various formalisms
integrate correctly once some proper assumptions abouﬁ their "interfaces" are

met., The second alternative is in the direction of & wmethod providing a
single meta-language, homogeneously Dbullt integratin various theoretical

frameworks, in which all the aspects of a system can be modeled.

It is our opinion that these two alternative ways are the only ones to
combine a Formalism based on denotational semantics with in which concurrency

and communication constructs play the main role. Is open to further study
which way is more convenient to give formal specifications of real systems,

&’ Another interesting general consideration about the specification of
concurrent systems can be made by comparing the examples of fig.2 and fig.4.

Even if we translate the former into the second formalism, they cannot be
claimed to specify two equivalent processes by any of the formal equivalences
defined Tfor CCE, in spite of the fact that they can be seen as specifications
of quite similar databases. The only property that applies to both is: "if a
reqguest is issued to Service, a proper reply ils returned, consistent with a
state of the database between the time of the reqguest and that of the reply",

We can say that the specification of fig.2 is "more deterministic" than
that of Tfig.4, Dbecause it allows no concurrency in the service ¢f the
requests. Relatlons such as "more deterministic” have been formalised as
mathematical relations between processes in the framework of CSP (Brookes la,
De Nicola &3a). We think that such formal relations, together with
equivalences, have to be taken into account in any formal method for the
specification of concurrent software, in order to describe properly how
different phases of of a formal specification development are related

6 ACKNOWLEDGMENTS

The author would like to thank H.H. Lgpvengreen for many helpful
.eriticisms and suggestions, and D. Bjegerner and A.P, Ravn for useful
discussions. The final version of this report has benefited also of the
careful revisions by R. De Nicola and A. Tocher,

©. 7 REFERENCES

(Astesiano 84a) E.Astesiano, E.Zucca, "Parametric Channels via Label
Expressions in CCS", to appear in Theoretical Computer
Science, 1984,

(Brookes 84a) S.D.Brookes, C.A.R.Hoare, k.D.Roscoe, A Theory of
Communicating Sequential Processes", Journal of ACM, vol.31,
n.3, pp.560-599, July 1984,

(Biprner 78a) D.Bjgrner, C.B.Jones, "The Vienna Development Method: The
Meta~-Language", Lecture Notes in Computer Sciences, 61, 1978
(Bigrner 82a) D.Bjgrner, C.B.Jones, "Formal Specification and Software

Development"™, Prentice-Hall, 1982
(De Nicola 83a) R.De Nicola, "Two complete Axiom Systems for a Theory of

Communicating Sequential Processes™, Internal Report
CSR~154~63, University of Edinburgh, 1683. A short version
also in "Foundations of Computation Theory", Lecture Notes in
Computer Science, 158, pp.115-126, 1983,

(Doeppner 83a) T.W.Doeppner, A.Giacalone, "A Formal Description of the Unix
Operating System", Proceedings of the 2nd Symposium on
Principles of Distributed Computing, pp.241-253, Montreal
1983

(Folkj&r B0a) F.Folkjdr, D.Bjgrner, "A Formal Model of Generalized CSP-1ike

Language", Proceedings IFIP'80, pp.95-99, Tokyo 1980
(Lgvengreen 80a) H.H.Lgvengreen, "Parallelism in Ada"™, in D.Bigrner, O.,N.Oest

eds., "Towards a formal Description of Ada"™, Lecture Notes in

Computer Sciences, 98, Springer-Verlag, pp.309~432, 1980.

{(Milner 80a) R.Milner, "A Calculus of Communicating Systems", Lecture
Notes in Computer Sciences, 92, Springer~Verlag, 1980

(Shields 83a) M.W.Shields,M.J.Wray, "A CCS Specification of the 0SI Network
Service™, Internal Report CSRE-136~83, University cf

Edinburgh, 1983,

