
Using Apache Airavata and EasyGateway for the creation
of complex science gateway front-end

Antonella Galiziaa,∗, Luca Roverellia, Gabriele Zereika,
Emanuele Danovaroa, Andrea Clematisa, Daniele D’Agostinoa

aCNR-Institute of Appled Mathematics and Information Technologies “E. Magenes”,
via De Marini 6, 16149 Genova, Italy

{galizia,roverelli,zereik,danovaro,clematis,dagostino}@ge.imati.cnr.it

Abstract

The development of community-specific user interfaces of a science gateway can be a challenging task for
non-IT experts. This contribution proposes an original, easy-to-use solution to tackle this issue based on
EasyGateway. EasyGateway is a modern, lightweight solution for the development of science gateway able
to interplay with most toolkits. In this paper we present how EasyGateway can “dress” Apache Airavata
to manage experiment configurations and job submissions. We discuss the proposed approach considering
a real case application represented by the Weather Research and Forecasting Model (WRF), a community
model exploited by a large number of users in meteorology and climatology domains. The combined use of
EasyGateway and Apache Airavata leads to an improved user experience, enhancing the model configuration
phase with support in finding inconsistencies immediately, but also exploiting the possibility of accessing a
potentially large set of computational resources to perform model execution.

Keywords: Science Gateways; Apache Airavata; EasyGateway; WRF

1. Introduction

Science gateways represent ecosystems of services,
applications, and data for supporting activities in
many scientific, engineering and education fields. Ev-
ery community involved in the development of a sci-
ence gateway presents different requirements due to
the software and/or data it shares and the goals it
aims to achieve [1].

The needs and opinions of these communities were
investigated in 2014 with a survey having nearly 5,000
respondents [2]. The most relevant result, for the aim
of the present paper, is that at least 40% of the partic-
ipants indicated that some help by a service provider

∗Corresponding author

might be needed in adapting/choosing technologies
and usability services.

Most of the available toolkits and software frame-
works for science-gateway design decouple front-end
and back-end with an API-based interface. With
this approach, the gateway communities can focus
their effort in the designing of the front-end solution
[3, 4]. This leads to a “Platform-as-a-Service” sce-
nario, where a separation of the community-specific
presentation layer from the general-purpose middle-
ware and “fabric” layers represents an effective solu-
tion to assure the sustainability of existing and new
projects [5, 6]. An example is the Science Gateway
Platform as a Service1 (SciGaP) initiative.

1SciGaP, https://scigap.org

Preprint submitted to Future Generation Computer Systems June 6, 2022



However, also the task of developing domain-
specific User Interfaces (UI) may be challenging for
non-IT communities, and a wrong selection of the
front-end technology, combined with frequent devel-
oper turnover, can represent a major issue for the
gateway sustainability [2, 7, 8]. In the following, we
present how this problem can be effectively tackled
by EasyGateway, a science gateway toolkit able to in-
terplay with the major scientific platforms, as gUSE
[3] in Europe and Apache Airavata [9] in the US.

EasyGateway is based on PortalTS, a set of core
Web portal modules which was originally developed
for the refactoring of the DRIHM portal, a science
gateway for the hydro-meteorological community ex-
ploiting in its first release the gUSE framework [10].
Working on PortalTS we realized that its modular
and extensible architecture represents an effective
and general-purpose solution for web portal and sci-
ence gateways. For this reason, we developed further
modules providing basic science gateways functional-
ities, and the automatic generation of user friendly
configuration interfaces for scientific models. The re-
sult of this process has been called EasyGateway.

The focus of this paper is to present the EasyGate-
way architecture, which allows us to dress existing
platforms such as Airavata. This approach has the
major advantage of providing a user friendly front-
end toolkit for gateway development. A summary of
these topics was outlined in [11]. Here the techno-
logical aspects are presented in detail by analyzing
a real case of interplay between EasyGateway and
Airavata to support the execution of the Weather
Research and Forecasting Model (WRF) in a science
gateway. The adoption of EasyGateway as a front-
end for the development of a science gateway, coupled
with Apache Airavata, improves the user experience
with a twofold goal: the enhancement of the model
configuration phase with support to avoid possible er-
rors, and the possibility to access and exploit a poten-
tially large set of computational resources to execute
models. Moreover, thanks to the architectural design
of EasyGateway, the entire system can be configured
and personalized with very little effort, saving time
and money, while leaving the creation of the model
configuration interface to domain-expert users.

The paper is organized as follow: in the next Sec-

tion related works are outlined; in Section 3 we intro-
duce PortalTS and EasyGateway; the technological
aspects for the exploitation of Airavata services are
presented in details in Section 4; the analysis of the
advantages derived from the combined use of the two
tools are discussed in Section 5 by describing the ref-
erence user communities, the implementation of the
WRF interface, the configuration and the execution
of the WRF model; Section 6 concludes and presents
the future research directions.

2. Related Work

Creating a science gateway requires a wide spec-
trum of skills and technologies, ranging from low-level
interaction with heterogeneous computing resources
(e.g. supercomputers, clusters, Grid and Cloud in-
frastructures) to high-level workflow and data man-
agement systems. All the complexity should be hid-
den behind a user-friendly UI.

In the context of the Distributed Research Infras-
tructure for Hydro-Meteorology (DRIHM) project,
we adopted gUSE [12], a mature and feature-rich
framework, for the design of the science gateway.
gUSE extends Liferay by adding connectors to several
kind of computing resources, user credential manage-
ment and a workflow manager. The UI is portlet-
based, i.e. pluggable user interface software com-
ponents managed and displayed in web portal con-
tainers as Liferay, thus modular by design. There-
fore it supports the creation of science gateways with
three degrees of customization: the exploitation of
the gUSE general purpose UI, with simple config-
uration of existing modules; the customization of
the general purpose UI, e.g. for better supporting
the user in experiment configuration; the deep cus-
tomization of the UI and of the underlying service,
by connecting to the low-level APIs [13]. Unfortu-
nately deep customization of the UI, as required in
our project, was problematic [10]. For this reason we
extended our analysis to other toolkits for the devel-
opment of a science gateway UI.

In [14] the authors propose the adoption of ex-
cellent web front-end technologies, namely Twitter
Bootstrap and AngularJS, for the development of
a science gateway front-end. Such tools are widely

2



adopted (Bootstrap and AngularJS are used in 13.2%
and 8.9% respectively of top 10k websites2). While
AngularJS is now phasing out [15], it remains a solid
tool with a large ecosystem. The main downside of
this approach is the lack of high-level widget and fea-
tures designed for science gateways, leaving all the
effort to the gateway developers.

Rapid [16] has been designed to speedup the de-
velopment of portlets. Its main aim is to reduce the
development time of the UI and to promote an easy
way to share and maintain these portlets by domain
specialist themselves. Rapid can complement science
gateways framework based on the portlet technology
as gUSE.

The HUBzero platform [17] is an open source plat-
form for the creation of Cloud-based science gate-
ways. The main goal is to share legacy processing
tools, mostly presenting their own UI, among com-
munity members. HUBzero relies on the Rappture
toolkit [18] for wrapping the legacy UI through the
web browser and on the resources provided by the
Extreme Science and Engineering Digital Environ-
ment (XSEDE) for job execution. The derived hubs
have been able to grow to tens of shared tools (i.e.
nanoHUB), actually HUBzero excels in supporting
users willing to share a processing tool. It is also
available on the AWS marketplace, to further sim-
plify the creation of a new HUB. However, tools
configuration is not web-based since UI generated
by Rappture are stand-alone applications installed
client-side.

GenApp [19] is a framework for building complex
applications from a collection of executable modules.
It wraps executables, providing a UI for parameters
configuration and module composition. Each mod-
ule must accept and produce JSON inputs and out-
puts. Control files, defining module UI and I/O in-
terfaces are specified in JSON as well. GenApp may
generate a Qt/C++ GUI or a HTML5/PHP web
app. It has been extended to support local execu-
tion and submission as Airavata jobs. It is well suited
for wrapping JSON-centric applications, while it fails
handling large applications managing more complex

2https://trends.builtwith.com

data, i.e. binary datasets or large data files.
SEAGrid [20] is a production community cyberin-

frastructure resource developed under the NSF Mid-
dleware Initiative. Its initial focus was in Chemistry,
but presently it has evolved to encompass scientific
and engineering applications. SEAGrid provides a
desktop and a web browser based gateway access.
The latter represents a rather simple UI, composed
of basic form widgets, to interact with an Apache
Airavata instance [21] for creating, submitting and
managing experiments.

EasyGateway aims at providing a light yet elegant
web-based UI, as in [14]. Main benefits are: availabil-
ity of high level widgets, implemented as AngularJS
directives, as in desktop applications generated by
Rappture or GenApp; a web-based solution, reliev-
ing developers from the effort of supporting multiple
platforms, managing releases and updates; complete
freedom on the executable modules, without restrict-
ing to JSON I/O, which is problematic for those ap-
plications producing large binary data (i.e. WRF).

3. EasyGateway

EasyGateway is a modern, lightweight, toolkit for
the development of science gateway. It has been de-
veloped as a set of additional modules for PortalTS,
a web portal initially developed for the refactoring
of the DRIHM portal [22]. The project originally
focused on the design and the execution of forecast-
ing chains, composed by heterogeneous Meteorologi-
cal and Hydrological models, on heterogeneous com-
puting resources [23]. In particular, significant at-
tention has to be paid to the user experience during
workflow configuration, in order to avoid consistency
errors in the models composition. We realized in fact
that portlets, forbidding direct intra-portlets commu-
nication, were not the proper solution for the cross-
check of consistency errors. Therefore in PortalTS
we clearly decoupled server-side REST services (e.g.
persistence, provenance) and the experiment config-
uration UI, running client-side and able to support
the users in consistent parameter selection.

Another issue is represented by the fact that gUSE
is composed by tightly coupled modules, a re-deploy
may potentially require a long downtime. Updates

3



are performed on a best-effort policy and often are
not backward compatible, thus requiring demanding
update on the community-developed software com-
ponents.

In the following we discuss PortalTS architecture
and EasyGateway evolution.

3.1. PortalTS

PortalTS3 is a web Portal developed in Typescript
using the NodeJS and Express frameworks, back-
ended with MongoDB. It is composed by reusable
modules and implements standard features available
for a web site (e.g. user management and registra-
tion) along with other valuable characteristics (such
as a simple API for data persistence) that enable fast
development of custom modules. The PortalTS ar-
chitecture is depicted in Figure 1.

Figure 1: The PortalTS architecture.

First, let us define a module as a component that
implements and exposes a feature, and can also use
features exposed by other modules. It is a very gen-
eral component representing, for example, a set of
web pages, a web service, a web app (aka Single Page
Application), a set of static files like css files, images,

3https://portalts.it/

or something different. According to the NodeJS phi-
losophy, each module should be as simple as possible
and implement a single functionality.

PortalTS loads modules on the bootstrap phase,
using a configuration file to specify module loading
order. Since PortalTS and any module are developed
in Typescript, module error loading caused by typos
and other typical JavaScript errors (e.g. undefined
functions or undefined function arguments) is dra-
matically reduced, resulting in an improved software
reliability and stability. The most important modules
are briefly presented in the following.

The Database module defines and manages the
connection with the MongoDB database. Despite its
simplicity, this module has a core value since it is
exploited by higher-level modules for the communi-
cation with the database. MongoDB has been chosen
because it is extremely well integrated with NodeJS.
Moreover, there are some high level libraries, e.g.
mongoose4, that are stable and maintained, making
them usable in a production environment.

The User Management module defines an API
for a complete authentication system, including user
registration, login, and administration pages. It im-
plements also the concepts of role and group, at the
basis of the authorization mechanisms for the acces-
sibility and usability of pages, modules and other en-
tities.

The Persistence API module defines the inter-
face to store, retrieve and manage heterogeneous data
on the MongoDB database. It exposes both a REST-
ful public and a private API, that can be directly used
by other modules, as the Content Management
System (CMS) module described in the following.
The RESTful public API has the important role of
allowing the storage of data directly from a web app,
that can be built upon this modules. The Persistence
API defines entities and collections. A collection is a
set of entities, while an entity represents possibly het-
erogeneous data stored with some additional meta-
data, like creation time, update time, the owner and
the authorized users. Each entity can belong to a sin-
gle collection. Most common entities handled by the

4http://mongoosejs.com/

4



persistence API are model configuration namelists,
input datasets, etc., while huge dataset are stored as
regular files and just referred in the persistence API.
Relying on MongoDB, a document-based data store,
we do not pose constraints on the data structure. A
detailed description on the Persistence API is avail-
able on-line5.

The Persistence API relies on the User Manage-
ment Module to ensure security and user authenti-
cation on the data. By default, an entity is only
accessible by the owner, but the access policies can
be changed, using a group-based policy. The Persis-
tence API Module is fundamental since it allows to
store and retrieve persisted data without any effort,
enabling a ready-to-use persistence layer. Moreover,
this layer is integrated with an AngularJS library that
implements all methods necessary to give a quicker
and simpler access to the persistent data.

The CMS module defines web pages for user login
and registration, and it allows the creation of user-
defined web pages and menus. Each web page or
menu element can be publicly available or accessible
by a particular group of users, since the CMS mod-
ule uses the Persistence API module. Images and files
can be managed by using the Repository module, and
then exploited by the web pages. There are also some
further basic modules, like the Theme module, that
defines the web pages header and the footer to define
a standard look and feel of a portal instance, and the
Logging module for storing the requests received by
all modules, together with possible errors and excep-
tions.

Although PortalTS is a very young project (started
in January 2016), it has been already used as the base
for the development of the science gateway of the EU-
funded FP7 Exploring the X-ray Transient and vari-
able Sky (EXTraS) project6 [24]. The resulting portal
enables users to perform image analysis operations on
the database collected by the European Photon Imag-
ing Camera (EPIC) onboard the ESAs X-ray space
observatory XMM-Newton. EXTraS portal currently
supports periodicity and transient analyses [25]. In

5https://portalts.it/docs/webPersistenceAPI
6 http://portal.extras-fp7.eu

particular, the portal provides users with the possibil-
ity to create, submit and manage the different anal-
ysis experiments based on software developed within
the EXTraS project. This module is based on An-
gularJS and it is a complete web app, without any
server side code. It uses the Persistence API to store
and retrieve experiments data, and it activates the
other portal modules corresponding to the different
operations available.

3.2. EasyGateway modules

On the basis of this experience we decided to opti-
mize and re-engineer the modules developed ad-hoc
for the EXTraS portal. The aim was to provide them
as a general-purpose science gateway toolkit based
on PortalTS, named EasyGateway. Main areas of
improvement have been: experiment UI definition,
workflow management, computing resource interfac-
ing. With respect to PortalTS, EasyGateway pro-
vides much more flexibility on each one of these as-
pects. In particular, the new modules provide work-
flow configuration and submission, and the automatic
generation of possibly complex, yet user friendly, con-
figuration interfaces for scientific models. In details,
EasyGateway is composed by the Model Configura-
tion module, the Workflow Configuration module and
the Submission Handler module, shown in Figure 2.
Each module is a Single Page Web Application lever-
aging the ready-to-use components and APIs exposed
by PortalTS to enable users management, security
and to persist users data.

Figure 2: The EasyGateway architecture

The Workflow Configuration module provides
users with the possibility to design, configure, submit

5



and share experiments in terms of workflows, com-
posed of software tools provided within the science
gateway. It represents the main interface and it in-
teracts with the other modules for performing these
operations. Furthermore, it allows a user to retrieve
a previously saved or shared workflow, and to edit it,
before execution. The Workflow Configuration mod-
ule actually manages the design of a workflow and
the configuration of each single module by exploit-
ing the UI generated with the Model Configuration
module. The workflow, once configured, is submitted
on a selected set of resources; the monitoring of the
execution is performed by providing a full view of the
status results and logs of all models composing the
workflow.

In order to improve re-usability and maintainabil-
ity, the Workflow Configuration module delegates
submission and monitoring of jobs to the Submis-
sion Handler module, that has been conceived as
an independent component, to be customized for each
class of resource, middleware layer or job submis-
sion system that the gateway exploits for the work-
flow execution. It uses the typical decorator pattern,
in which the behavior of the Submission Handler is
extended and modified according to the underlining
middleware, without modifying the exposed API.

The Model Configuration module is an inno-
vative element, conceived for the automatic design
and support of suitable interfaces to collect the con-
figuration parameters of any software tool provided
within the gateway. This module is available only
for gateway developers because it allows to automat-
ically generate a form based model configuration in-
terface through a user friendly graphical interface,
the Json-GUI builder7. Moreover, it is possible to
easily define and manage model metadata, like names
or types, as well as the configuration parameters with
associated metadata, like field type (select, float, in-
teger, date/time, etc.), parameter default value, and
other specific properties (e.g. the possible options
for a select type). These features have been imple-
mented using Json-GUI8, a front-end library devel-

7https://github.com/portalTS/Json-gui-builder
8https://github.com/portalTS/Json-gui

oped as a set of reusable AngularJS directives that
allows the dynamic generation of full-featured form-
based web interfaces including validation and con-
straints. The interface is dynamically built starting
from the JSON file created by the Json-GUI builder,
that corresponds to the ability to modify the interface
by simply changing a configuration object. Once the
model interface has been defined, the model is auto-
matically added to the set of available models in the
Workflow Configuration module, and it is ready to
be instantiated and configured in a workflow.

4. The interplay with Airavata

Apache Airavata is a powerful middleware, sup-
porting the development of solid and feature-rich sci-
ence gateways, thanks to its support to long running
applications and workflows on distributed computa-
tional resources. The joint use of EasyGateway and
Apache Airavata leads to a rich user interface, with
support for submission on a large set of middleware
and queue managers. In this Section we firstly dis-
cuss the motivations and the beneficial points of the
work, and then we provide a complete description
about the strategy implemented to actually connect
EasyGateway and Apache Airavata.

4.1. Motivations

The interplay of EasyGateway and Apache Aira-
vata provides mutually beneficial elements that im-
prove the features of both the individual systems.
Starting from the EasyGateway point of view, this
approach brings the ability to inherit exploitation
of a large number of computational resources and
distributed computing infrastructures. On the ba-
sis of our previous experiences, this represents an
added value when developing science gateways aimed
mainly at the execution of multidisciplinary applica-
tions.

Moving to the Apache Airavata point of view, this
approach offers an enhanced graphical environment
that simplifies the configuration of a job. In fact, we
provide tools for handling a large set of parameters,
selection of custom parameters is supported by user-
defined AngularJS directives, consistency check of the

6



Table 1: The mapping implemented between the Apache Airavata and the EasyGateway Data Models

Apache Airavata EasyGateway
Project The same project for any experiment

Experiment Each workflow is mapped on an Experiment
Application Each Job of a workflow is mapped on an Application

parameters is performed on the fly and javascript
functions handle the generation of configuration files
required for jobs submission. Moreover, we exploit
EasyGateway for the management of authorization
and sharing policies.

Starting from the latter, EasyGateway provides ba-
sic functionalities for the management of users and
roles, along with a rich administrative interface; this
automatically provides Airavata with authentication
and, as a consequence, authorization handling. Thus,
it is straightforward for the administrator to grant
accessibility rights to single portal features, like per-
mitting only to specialized users to define applica-
tion interfaces. In this way, EasyGateway filters the
users also at the single application granularity, decid-
ing which user groups will be allowed to configure and
execute each application. Moreover, users have the
ability to limit/share their products: when a special-
ized user defines an application interface, she/he has
the ability to restrict its accessibility. Users can eas-
ily share their experiment configurations and results
with different groups or make them public. Subse-
quently, users can analyze the results of shared exper-
iments, without the need to execute again an appli-
cation with the same configuration or to use external
tools; moreover, they can derive their own configura-
tion, varying parameter values.

The second added value is represented by the au-
tomatic definition of enhanced application interfaces.
While Apache Airavata has basic features for pro-
viding application inputs, exploiting EasyGateway,
a specialized user can design an interface where the
input parameters: a) can be validated before exper-
iment submission; b) can be processed, to produce
complex configuration files at runtime. Beside the ba-
sic parameter types, there is the possibility to define
some more complex types: domains, datetime and
fileupload. The first allows to define geo-referenced

points and rectangular regions over a geographical
map; the datetime permits the definition of date and
time parameters, while the fileupload gives the user
the ability to upload one or more files. For each pa-
rameter, the module allows one to define different
constraints with different error messages, where each
constraint can be constituted by one or more condi-
tions. Moreover, within each condition, the user can
compare the value of the parameter with the value
of another one, and/or with a static value. It is also
possible to define an help text, in order to show to
the user a hint for the input completion.

The last added value is the ability to create con-
figuration files. Actually, when a GUI is used to con-
figure a model/job, it may be necessary to transform
the data inserted in the form into configuration files
that will be used for the run. The Workflow Config-
uration Module supports, by default, three different
file formats: a classical key-value format, JSON and
XML. It is also possible to define a custom function
for each field, that emits a transformed value of the
parameter. This feature is extremely useful when a
custom format is required. For example, the value of
a datetime parameter must be formatted in a specific
standard. Also the geographical domain may require
a specific projection into a different coordinate sys-
tem, as exemplified in Section 5. Finally, beside the
three standard file formats, it is possible to define a
custom function that generates the final configura-
tion file. In some case, this functionality is necessary,
since the configuration file expected by the model can
be very complex and different from the supported
standards. For example, the WRF model expected
a modified key-value configuration file, in which, for
some of the keys, the value shall be repeated for the
number of geographical domains drawn by the user.
This point is presented in the next Subsection.

7



	

Model	
Configuration	

Workflow	
Configuration	

Submission	
Handler	

Airavata	
API	Server	

PortalTS	

Workflow	
Interpreter	

Orchestrator	

Application	
Factory	

Messaging	
System	

EasyGateway	 Airavata	

Figure 3: The EasyGateway interaction with Apache Airavata.

4.2. Enabling application submissions

The exploitation of Apache Airavata services re-
quires to investigate four aspects: 1) the mapping
between the EasyGateway and Airvata data models;
2) the creation of a two-way communication channel
exploiting the available APIs exposed by Airvata; 3)
the communication of the input configuration files,
generated by the EasyGateway Workflow Configura-
tion module, to Apache Airavata; 4) the user man-
agement and data sharing.

As for the first point, Airavata implements a data
model defined by several entities: Project, User,
Group, Gateway and Experiment. We mainly fo-
cused on the Experiment data model that nicely
matches EasyGateway workflow, jobs and job de-
scriptions. In particular, as depicted in Table 1, a
unique Airavata Project is used to contain the work-
flows of all users. In our work, we decided to limit
workflow size to just one job, in order to directly use
Apache Airavata without the necessity of a workflow
manager. Each workflow is mapped to an Airavata
Experiment that is dynamically created. Finally, an
Airavata Application is used to map each Job.

As for the second point, we designed the customiza-
tion of the Airavata Submission Handler, able to ex-
ploit Apache Thrift-based API exposed by Apache
Airavata API Server. We use the Java implementa-
tion of the API, wrapping the submission and mon-
itoring of a job in a command-line Java application.
The Java application allows us to test the Apache
Airavata API independently from EasyGateway, and
the application is easily integrated in the Submis-
sion Handler developed in Typescript. A more effec-
tive implementation could be the direct integration of

the generated Typescript (or JavaScript) API stubs.
However, at the moment, the Apache Airavata repos-
itory contains scripts for the generation of the API
only in Java, Python and CPP. Use of the Java API
is straightforward. Starting from an applicationID,
it is possible to generate lists of inputs and outputs
needed. When the input list has been completed with
the necessary parameters, it is possible to setup a
new experiment using the applicationID and the in-
put list. Once the experiment has been created, it
is also necessary to create a new resource scheduling
model, which shall contain the ID of the chosen com-
putational resource, and also the common schedul-
ing parameters, such as number of CPUs, maximum
memory, wall time and so on. Finally, it is possible
to perform the launch of the configured experiment
that, if everything is correct, will return a new unique
experiment ID, that can be used to query Airavata
in order to check the experiment status.

As for the third point, the Submission Handler
Module retrieves the generated model configuration
files needed for execution of the experiment, and com-
municates files to Apache Airavata by exploiting the
input list defined in the API and exposed in the Aira-
vata API Server (Figure 3). In Airavata the user can
select the computing resource, among those granted
to a project that provide a specific application. In
our test case we preferred to support the users in
this phase by implementing a simple scheduling pol-
icy. Nevertheless, it is absolutely possible to let users
make this choice through EasyGateway.

With respect to the last point, user identity man-
agement and resource sharing are available either in
Airavata and in EasyGateway; so we had to chose

8



which service would have been responsible for user
management and resource sharing. The two options
were: Airavata services and data model behind Easy-
Gateway UI; or EasyGateway services for user man-
agement and data sharing and Airavata services for
job submission (with a community account). The
first approach, while providing a deeper integration,
required a major re-write of EasyGateway, so we de-
cided to use the EasyGateway facilities.

5. Testing the interplay with WRF

5.1. The user communities

As already mentioned in other parts of this pa-
per, the strategy presented is the result of in depth
interactions with two different scientific user commu-
nities that provided the initial set of requirements
and suggested progressive refinements and improve-
ments both for the user interface and for the set of
required functionalities. The two communities be-
long two different domains and are a group of Hydro-
Meteorological (HM) scientists and a group of As-
tronomy and Astrophysics (AA) scientists.

The first experience was driven by the requirements
of the HM community. Specific requirements of the
community were the use of distributed resources for
the execution of workflows combining meteorological
and hydrological models. The process started with
an extensive requirements collection [26] led to the
use of a previous version of the portal widely used
during the DRIHM project lifetime, and to successive
modifications to address specific needs derived from
further co-operations across the Atlantic Ocean to
study specific High Impact Weather Events [27].

The tools developed for the HM community were
adapted to the case of AA scientists. Here the most
important requirements are represented by an effec-
tive support to the continuous improvement of the
software, together with the possibility to share ex-
periment configurations and results. With respect to
the HM case, the software modules to perform the
experiments relies on common libraries and toolk-
its but are developed (and continuously updated) by
small research groups. The adoption of EasyGateway
resulted in a fast deployment of these modules and
corresponding UI.

There are a few dozen users registered in the EX-
TraS portal, having only been released and presented
to the AA scientific community in June 2017 [28].
The HMR community is composed of two hundred
users. Apart from the scientific communities, Por-
talTS has been adopted also in commercial products
and the most active commercial portal based on it
has several thousand active users.

5.2. The WRF case

To validate our approach and evaluate the actual
benefits of the integration, we ran a real case appli-
cation in the integrated environment. Specifically,
we consider the Weather Research and Forecasting
(WRF) model9, a numerical weather prediction and
atmospheric simulation system. It represents the ref-
erence model for a large community of users, and
can be defined as a flexible, state-of-the-art, portable
code with high computational requirements. Many
researchers investigated its use on parallel and dis-
tributed architecture [30], [31].

WRF is very complex, with different inputs and
input-types, an extremely large set of parameters and
not-trivial dependencies among such parameters. In
fact, a set of parameters not carefully tuned easily
results in unstable numerical predictions. WRF Por-
tal 10 offers a rich interface for WRF configuration,
supporting geographic domain definition and several
map projections. Unfortunately, it cannot support
the user in enforcing a coherent configuration. More-
over it is distributed as a desktop application that
requires installation and configuration, and job sub-
mission is barely supported.

Since the configuration of WRF is so error-prone,
we have developed a fully-featured web-based user in-
terface for the WRF model using EasyGateway, and
this process is described in the following. To enable
the model execution in potentially complex environ-
ment, we exploited Apache Airavata to hide the com-
plexity of these operations from the user. By adopt-
ing a web-based approach, the user is fully relieved
from the software installation duties.

9http://www.wrf-model.org
10https://esrl.noaa.gov/gsd/wrfportal/

9



Figure 4: The UI for define parameters

Figure 5: The UI to add constraint in the definition of a model.

5.2.1. Defining a GUI

Based on the experience gained through a long col-
laboration with domain experts, we designed the in-
terface for the WRF model, enriching the one pre-
sented in [29]. We group parameters in different
sections; for each section, the included parameters
have the same topic. We decided to prioritize the

most intuitive sections, positioning the most specific
ones in the bottom of the interface. The six sections
are: Domains, Time Control, Run Options, Physics
Options, Diffusion and Dynamics Options and Sub-
mission Options. For each parameter it is possible
to define the general behavior: a) whether the pa-
rameter is mandatory or not; b) the possible default

10



Figure 6: The UI to add constraint in the definition of a model.

value; c) whether the parameter value can be edited
or not. In addition, for the datetime parameter type,
it is also possible to specify whether the parameter is
composed of the date, the time or both. An exam-
ple of parameter definition for the Domains section
is depicted in Figure 4. Please note that the first
parameter is a type Domains; this corresponds to in-
tegration of the Google Map JavaScript library, en-
hanced with the possibility for the user to draw up to
three rectangles, each one representing a geographical
domain. Besides defining the parameters composing
the configuration interface, their types and their val-
ues, the Model Configuration module allows the user
to define some custom validations for the single pa-
rameter as well as for the dependences among them.
In the formalization of the WRF model interface, we
used this feature more than once: in the Time Con-
trol section, for example, we defined a constraint to
prevent a user from setting the Start Date parame-
ter older than the End Date parameter. Moreover,
in the Domain section, we would not allow a user to
draw siblings domains; thus, we defined a constraint
to only permit the drawing of nested domains.

These constraints can be defined very easily using
the Model Definition Module, as depicted in Figure
5.

5.2.2. Configuring the model through the GUI

Due to the design adopted for the interface, the
user is guided and supported in filling in the different
sections, with immediate feedback in case of an error
or inconsistencies in the various parameters. This
real-time feedback leads to an easier and less error-
prone interface, speeding up the setup time also for
very complex run configuration, and potentially sav-
ing computational resources.

As already mentioned, a very valuable aspect of the
interface is the ability to define the geographical do-
main using the modern Google Map-based interface.
A custom function has been defined to automatically
convert the Google Map domain, which uses the Mer-
cator projection, into Rotated Lat-Long projection
required by domain experts. This step relieves the
user from performing complex and error-prone cal-
culations to correctly set up the WRF configuration
file. The corresponding result is depicted in Figure

11



Figure 7: The UI to add constraint in the definition of a model.

6.

After domain selection, the user can move to
the following panels, and select the simulated time
frame (and related parameters), runtime parameters
(restart info, debug level) and the available physics
options. The last step is the selection of the diffu-
sion and dynamics options. Once the user has en-
tered a short description of the experiment, she/he
can save the configuration for a later execution or
review. If the consistency step is passed, the simu-
lation can be submitted for execution on the most
appropriate computational resource.

Our community of WRF users identified a set of
nearly 20 parameters, which are the most relevant
for event-based (simulation of a time range lasting
from a few days to a couple of weeks). Further pa-
rameter tweaking can be performed on the generated
namelist.

5.2.3. Submitting and Running WRF through Aira-
vata

The installation, configuration and execution of
the WRF model can be time-consuming and out
of the expertise of non-IT scientists, since it re-
quires the ability to access and use large parallel re-
sources, which are typically geographical distributed
and equipped with local schedulers. For these rea-
sons, we installed the WRF model on a PBS-based
cluster, and registered it in the Airavata Application
Factory. In this way, we have also enabled the abil-
ity to execute the WRF model through the Airavata
APIs. For testing purposes, we manually executed
the model through standard Airavata web interface,
using namelists manually created by expert meteorol-
ogists. The next step is the connection of the WRF
application defined in the Airavata Application Fac-
tory with the EasyGateway portal.

The WRF configuration files, in the form of two dif-
ferent namelists, are produced by the EasyGateway
UI through a custom routine specifically developed.

12



simpleExperiment = ExperimentModelUtil.createSimpleExperiment(gatewayId , projectId ,
userName , experimentName , experimentDesc , applicationId , experimentInputList );

scheduling = ExperimentModelUtil.createComputationResourceScheduling(resourceId , cpuCount ,
nodeCount , numberOfThreads , queueName , wallTimeLimit , totalPhysicalMemory );

userConfigurationData.setComputationalResourceScheduling(scheduling );
simpleExperiment.setUserConfigurationData(userConfigurationData );

experimentId = airavataClient.createExperiment(auth , gatewayId , simpleExperiment );
airavataClient.launchExperiment(auth , experimentId , gatewayId );

Figure 8: Airavata job submission

The namelist content is generated starting from the
parameters configured by the user through the GUI.
The generated namelists are then used by the Sub-
mission Handler and forwarded to the Apache Aira-
vata submission APIs. The whole Airavata Exper-
iment configuration and job submission is fully au-
tomated and handled by EasyGateway; in particu-
lar, the namelists are used to configure the input list
during the creation and configuration of the Apache
Airava experiment that is submitted, providing ap-
plication specific parameters (geographical domain,
timestep, etc.). Other user-defined parameters con-
tributes to the definition of the Airavata experiment,
namely the scheduling specific parameters like num-
ber of cores/nodes, amount of memory, etc. The time
required for namelist generation and job submission
is usually a fraction of a second.

The actual code performing the experiment defini-
tion and job submission is a short snippet (Figure 8).
The Job status is then monitored by the Submission
Handler, by querying the Airavata APIs, and notified
to the user is near-real-time. In our scenario (a lim-
ited number of long-lasting jobs) EasyGateway has
a negligible impact on performances, which are com-
pletely dominated by queuing and execution time.
Moreover EasyGateway UI is designed to scale hori-
zontally. The combination of an efficient UI, simple
to build, yet effective in addressing complex require-
ments such as data cross-validation and generation of
custom namelist, and a fully automated job submis-
sion managed by Airavata, has been extremely wel-
come from the Hydrologist and Meteorologist com-
munities.

6. Conclusions and Future Works

One of the most promising trends in the gateway
developer and user community is represented by the
approach to decouple provisioning of generic middle-
ware functionalities, common to many science gate-
ways, from the development of the custom interfaces
and features specific to each gateway reference com-
munity.

In this contribution we presented the architecture
and the main features of EasyGateway, a front-end
toolkit for science gateway development. EasyGate-
way represents a feasible solution to tackle domain-
specific tasks in particular for non-IT experts, and it
is able to interplay with the major scientific platforms
providing general-purpose middleware and “fabric”
layers. In particular we discussed how the joint use
of EasyGateway and Apache Airavata represents a
real coupling case showing the mutual beneficial el-
ements. This analysis has been carried out by pre-
senting a fully-featured user interface for the WRF
model. The configuration of WRF is very complex,
with different input and input-types. Therefore this
process can be very error-prone, since it is very easy
to set up an inconsistent run wasting CPU time due
to configuration mistakes. Thanks to EasyGateway
it was extremely easy to define constraints between
different parameters that lead to an immediately vali-
dation of the WRF configuration without writing any
line of code. The following tasks, i.e. resource alloca-
tion, job submission and monitoring, are fully auto-
mated. We are looking forward to enrich logging and
monitoring services, as performed in WRF4G [32].

The present work focused on the execution of sin-

13



gle, even if complex, applications. The main future
direction is represented by the provisioning of an en-
hanced accounting and resource management for op-
erational gateways and a full support for the Apache
Airavata workflows. In fact while EasyGateway is
already able to support full workflow execution for
other middleware and queuing systems, the work-
flow management in Airavata is a work in progress11.
Nevertheless, a pre-defined workflow, as for exam-
ple those considered in DRIHM, can be installed and
provided through Airavata as a “single application”
represented by a script orchestrating the execution
of software composing it. This strategy has the ad-
vantage to avoid temporary tricky, non-portable solu-
tion. Indeed the complexity of the solution is moved
to EasyGateway, that is is able to fully support work-
flow execution.

7. References

[1] G. Andronico, V. Ardizzone, R. Barbera, et al
(2011). E-Infrastructures for e-science: a global
view. Journal of Grid Computing, 9(2), 155-184.

[2] K.A. Lawrence, M. Zentner, N. Wilkins-Diehr,
J. Wernert, M. Pierce, S. Marru, S. Michael
(2015). Science gateways today and tomorrow:
positive perspectives of nearly 5000 members
of the research community. Concurrency and
Computation: Practice and Experience, 27(16),
4252-4268.

[3] Kacsuk, P. (Ed.) (2014). Science Gateways for
Distributed Computing Infrastructures: De-
velopment framework and exploitation by
scientific user communities. Springer. ISBN
9783319112671

[4] S. Gesing, J. Krger, R. Grunzke, S. Herres-
Pawlis, A. Hoffmann (2016). Using Science Gate-
ways for Bridging the Differences between Re-
search Infrastructures. Journal of Grid Comput-
ing, 14(4), 545-557.

11goo.gl/fhWd31

[5] M. Pierce, M. Suresh; M.A. Miller, A. Majum-
dar, B. Demeler (2013). Science Gateway Opera-
tional Sustainability: Adopting a Platform-as-a
Service Approach. Proceedings of the 11th Gate-
way Computing Environments Conference. Doi:
https://doi.org/10.6084/m9.figshare.790760

[6] N. Wilkins-Diehr, K.A. Lawrence (2010). Open-
ing science gateways to future success: The chal-
lenges of gateway sustainability. Proceedings of
the Gateway Computing Environments Work-
shop (GCE 2010), 1-10. IEEE.

[7] T. Piontek, B. Bosak, M. Cinicki, P. Grabowski,
P. Kopta, M. Kulczewski, et al.(2016). Devel-
opment of Science Gateways Using QCGLessons
Learned from the Deployment on Large Scale
Distributed and HPC Infrastructures. Journal of
Grid Computing, 14(4), 559-573.

[8] K.A. Lawrence, N. Wilkins-Diehr (2012).
Roadmaps, not blueprints: paving the way to
science gateway success. In Proceedings of the
1st Conference of the Extreme Science and Engi-
neering Discovery Environment: Bridging from
the eXtreme to the campus and beyond, 40.
ACM.

[9] M.E. Pierce, S. Marru, L. Gunathilake, D.K. Wi-
jeratne, R. Singh, C. Wimalasena, S. Ratnayaka,
S. Pamidighantam (2015). Apache Airavata: de-
sign and directions of a science gateway frame-
work. Concurrency and Computation: Practice
and Experience, 27(16), 4282-4291.

[10] D. D’Agostino, E. Danovaro, A. Clematis,
L. Roverelli, G.Zereik, A. Parodi, A. Galizia
(2016). Lessons learned implementing a science
gateway for hydrometeorological research. Con-
currency and Computation: Practice and Expe-
rience, 28(7), 2014-2023.

[11] D. D’Agostino, L. Roverelli, G. Zereik, E.
Danovaro, A. Clematis, A. Galizia (2017) Dress-
ing Apache Airavata services with automatically
user-generated interfaces. Proceedings of the
11th Gateway Computing Environments Confer-
ence. Doi: 10.6084/m9.figshare.4490006.v2

14



[12] A. Balasko, Z. Farkas, P. Kacsuk (2013). Build-
ing science gateways by utilizing the generic WS-
PGRADE/gUSE workflow system. Computer
Science, 14(2), 307.

[13] T. Kiss, G. Terstyanszky, P. Borsody, P. Kac-
suk, . Balasko (2014). Developing science gate-
ways at various levels of granularity using
WS-PGRADE/gUSE. In Science Gateways for
Distributed Computing Infrastructures, 111-
122. Springer International Publishing. ISBN
9783319112671

[14] V. Balasubramanee, C. Wimalasena, R. Singh
and M. Pierce (2013). Twitter bootstrap and
AngularJS: Frontend frameworks to expedite
science gateway development. In Cluster Com-
puting (CLUSTER), 2013 IEEE International
Conference on (pp. 1-1). IEEE.

[15] R. Parsons, M. Fowler et al. Thought-
Works Technology Radar vol. 16,
https://www.thoughtworks.com/radar

[16] J. van Hemert, J. Koetsier, L. Torterolo, I.
Porro, M. Melato, R. Barbera (2011). Generat-
ing webbased user interfaces for computational
science. Concurrency and Computation: Prac-
tice and Experience, 23(3), 256-268.

[17] M. McLennan, R. Kennell. (2010). HUBzero:
a platform for dissemination and collaboration
in computational science and engineering. Com-
puting in Science & Engineering, 12(2), 48-52.

[18] M. McLennan (2011). Creating and Deploying
Scientific Tools. Tutorial at the HUBbub Con-
ference.

[19] E.H. Brookes, N. Anjum, J.E. Curtis, S. Marru,
R. Singh, M. Pierce (2015). The GenApp frame-
work integrated with Airavata for managed com-
pute resource submissions. Concurrency and
Computation: Practice and Experience, 27(16),
4292-4303.

[20] S. Pamidighantama, S Nakandala, E.
Abeysinghe, C Wimalasena, S. Rathnayakae, S.
Marru, M. Pierce (2016). Community science

exemplars in seagrid science gateway: Apache
airavata based implementation of advanced
infrastructure. Procedia Computer Science, 80,
1927-1939.

[21] S. Nakandala, S. Pamidighantam, S. Yodage, N.
Doshi, E. Abeysinghe, C.P. Kankanamalage, S.
Marru, M. Pierce (2016). Anatomy of the SEA-
Grid Science Gateway. In Proceedings of the
XSEDE16 Conference on Diversity, Big Data,
and Science at Scale (p. 40). ACM.

[22] D. DAgostino, E. Danovaro, A. Clematis,
L. Roverelli, G. Zereik, A. Galizia (2016).
From Lesson Learned to the Refactoring of
the DRIHM Science Gateway for Hydro-
meteorological Research. Journal of Grid Com-
puting, 14(4), 575-588.

[23] D’Agostino, D., Clematis, A., Galizia, A.,
Quarati, A., Danovaro, E., Roverelli, L. et al.
(2014). The DRIHM project: a flexible approach
to integrate HPC, grid and cloud resources for
hydro-meteorological research. In Proceedings
of the International Conference for High Per-
formance Computing, Networking, Storage and
Analysis (SC14), pp. 536-546, IEEE Press.

[24] A. De Luca, R. Salvaterra, A. Tiengo, D.
D’Agostino, M.G. Watson, F. Haberl, J. Wilms
(2016). Science with the EXTraS Project: Ex-
ploring the X-Ray Transient and Variable Sky.
In The Universe of Digital Sky Surveys, 291-295.
Springer, Cham.

[25] D. D’Agostino L. Roverelli, G. Zereik, G. La
Rocca, A. De Luca, R. Salvaterra, A. Belfiore,
G. Lisini, G. Novara, A. Tiengo (2017). A Sci-
ence Gateway for Exploring the X-Ray Transient
and Variable Sky Using EGI Federated Cloud.
Submitted for publication to Future Generation
Computing Systems.

[26] Q. Harpham, O. Gimeno, A. Parodi, D.
DAgostino, (2017). A stakeholder consulta-
tion into hydro-meteorological e-science environ-
ments. Earth Science Informatics, 10(2), 219-
234.

15



[27] A. Parodi, D. Kranzlmueller, A. Clematis, E.
Danovaro, A. Galizia, L. Garrote, et al. (2017).
DRIHM(2US): an e-Science environment for
hydro-meteorological research on high impact
weather events. Bulletin of the American Meteo-
rological Society, in press. DOI: 10.1175/BAMS-
D-16-0279.1

[28] A. De Luca, R. Salvaterra, A. Tiengo, D.
D’Agostino, M.G. Watson, F. Haberl, J. Wilms
(2017) EXTraS: Exploring the X-Ray Transient
and Variable Sky. The X-ray Universe 2017 Sym-
posium abstract book, 197.

[29] E. Danovaro, L. Roverelli, G. Zereik, A. Galizia,
D. D’Agostino, A. Quarati, A. Clematis, et al.
(2014). Setting up an hydro-meteo experiment
in minutes: the DRIHM e-Infrastructure for HM
research. In IEEE 10th International Conference
on e-Science, 1, 47-54. IEEE.

[30] J. Michalakes, J. Hacker, R. Loft, M.O. Mc-
Cracken, A. Snavely, et al. WRF nature run.
(2008). WRF nature run. In Journal of Physics:
Conference Series, 125(1), 012022. IOP Publish-
ing.

[31] J. Ploski, G. Scherp, T.I. Petroliagis, O.
Büchner, W. Hasselbring (2009). Grid-based de-
ployment and performance measurement of the
Weather Research & Forecasting model. Future
Generation Computer Systems, 25(3), 346-350.

[32] V. Fernández-Quiruelas, J. Fernández, A.S.
Cofiño, C. Blanco, M. Garćıa-Dı́ez, M. Mag-
ariño, L. Fita, J.M. Gutiérrez (2015) WRF4G:
WRF experiment management made simple,
Geosci. Model Dev. Discuss., in review. Doi:
10.5194/gmdd-8-6551-2015

16


	Introduction
	Related Work
	EasyGateway
	PortalTS
	EasyGateway modules

	The interplay with Airavata
	Motivations
	Enabling application submissions

	Testing the interplay with WRF
	The user communities
	The WRF case
	Defining a GUI
	Configuring the model through the GUI
	Submitting and Running WRF through Airavata


	Conclusions and Future Works
	References

