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Abstract The implementation of an authorization system is a critical and
error-prone activity that requires a careful verification and testing process. As
a matter of fact, errors in the authorization system code could grant accesses
that should instead be denied, thus jeopardizing the security of the protected
system. In this paper, we address the testing of the implementation of the Pol-
icy Decision Point (PDP) within the PolPA authorization system that enables
history-based and usage-based control of accesses. Accordingly, we propose two
testing strategies specifically conceived for validating the history-based access
control and the usage control functionalities of the PolPA PDP. The former is
based on a fault model able to highlight the problems and vulnerabilities that
could occur during the PDP implementation. The latter combines the stan-
dard technique for conditions coverage with a methodology for simulating the
continuous control of the PDP during the runtime execution. Both strategies
are implemented within a testing framework supporting the automatic genera-
tion and execution of security test suites. Results produced by the application
of this testing framework to a real case study are presented.
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1 Introduction

Security is a crucial aspect of modern pervasive ICT systems. The managed
resources, e.g., data, machines or services, can be sensitive and valuable, and
hence proper means must be put in place to protect them against unauthorized,
malicious, improper or erroneous usage. To this purpose, authorization systems
enable the specification of security policies that rule various protection aspects
such as: the level of confidentiality of data, the procedures for managing data
and resources, the classification of resources into category sets with different
security requirements. Several authorization system models have been defined
in scientific literature, and some implementations of these systems, both aca-
demic and commercial, are currently available, such as the SUN’s XACML
engine1 or the WSO2’s Balana one2.

Among the several existing systems, in this paper we focus on the PolPA
authorization system, which has been defined in [14]. PolPA exploits a process
algebra-based security policy language that supports history-based control and
Usage Control (UCON). Hence, the PolPA authorization system can control
the sequence of security relevant actions performed by the user so to prevent
the execution of an action when a policy is not satisfied. Moreover, it allows
policy makers to express conditions that control the usage of resources, i.e.,
these conditions are continuously evaluated all along the access time, so that
an access right can be revoked as soon as they are violated. The PolPA au-
thorization system has been successfully adopted in several scenarios, such as
the Grid [14], mobile devices [7], and Next Generation Networks [9].

From an architectural point of view (as further described in the next sec-
tion), the PolPA authorization system includes several components, such as:
the Policy Enforcement Point (PEP), which enforces the policy decisions, the
Policy Decision Point (PDP), which performs the decision process to deter-
mine whether (according to the defined security policies and to the current
values of the attributes of the users, resources and environment) an access
should be granted or denied, the Policy Information Point (PIP), which is in
charge of retrieving the attributes of users, resources, and environment, and
the Policy Administration Point (PAP), which supports the editing and the
storing of the different policies.

All the above components are critical from a security point of view and
would require careful verification and testing. In particular, this paper focuses
on testing the PDP. In traditional access control systems, the PDP imple-
mentation is already a difficult and crucial activity for developers since it is
always under the threat of unintended points of vulnerability, or of missing
or misrepresented access policies. The PolPA PDP is even more complex be-
cause, besides the support for traditional access control, it also includes the
history-based and the usage control functionalities. Hence, its implementation
is more error-prone and subject to vulnerabilities.

1 http://sunxacml.sourceforge.net/
2 http://xacmlinfo.com/category/balana
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To prevent potential flaws, a rigorous and accurate verification and test-
ing process must be adopted. Available solutions for testing PDPs are usually
focused on standard access control models and more popular access control
languages, such as OrBAC, RBAC or XACML, and cannot be easily trans-
ferred into the UCON environment. To the best of our knowledge, there are
no suitable testing technologies for validating the PDP implementation of con-
tinuous control of the user accesses. Hence, in this paper we propose a testing
framework customized for the PolPA language, specifically designed to deal
with history-based UCON security policies.

Thus, focusing on the PDP that evaluates PolPA security policies described
in [14], we present:

– a fault model that highlights the problems, vulnerabilities and faults that
could occur when the PDP evaluates the access history;

– a history-based test case generator for the automatic generation of a test
suite that covers the fault model. The test case generation relies on an
original domain specific testing methodology proposed in this paper;

– a test generator for continuous policy enforcement specifically conceived for
addressing the dynamic runtime behavior of the PDP required for prompt
access revocation;

– an automated oracle able to determine whether a test has passed or failed
for the continuous policy evaluation.

This paper refines and expands our preliminary proposal for a PolPA test-
ing framework presented in [4], where the tested PDP only supports history-
based security policies. Here, instead, we propose the complete process covering
both history-based and continuous policy enforcement testing. The process has
been automated and applied to an illustrative case study.

The rest of this paper is structured as follows. Section 2 briefly introduces
the PolPA authorization systems. Section 3 motivates the proposed approach.
In Section 4 we present the proposed testing framework and then detail its
components in Sections 5, 6, 7, 8, the fault model, the test case generator, the
test driver and the test oracle respectively. In Section 9 we provide results of the
application of the proposed testing framework to a real PDP implementation
and we discuss about the test cases effectiveness. Section 10 puts our work in
context of related work and Section 11 concludes the paper.

2 PolPA Authorization System

PolPA is a process algebra-based language for specifying history-based secu-
rity policies according to the Usage Control (UCON) model [14]. The UCON
model [20,22] is an extension of the traditional access control models that,
besides authorizations, introduces new factors in the decision process, namely:
obligations, conditions, and mutable attributes. Mutable attributes are paired
with subjects and objects, and their values are updated as a consequence of
the decision process. Hence, the attributes that have been evaluated by the
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Fig. 1 Authorization System Architecture

security policy to initially grant an access to a resource could change their
values while the access is in progress in such a way that the access right does
not hold anymore. In this case, the access should be interrupted to preserve
the system security. For this reason, UCON policies specify whether a deci-
sion factor must be evaluated before and/or during the usage of the resource
(continuous policy enforcement).

The PolPA security policy exploits some composition operators to define
the allowed behavior, i.e., the order in which security relevant actions can be
performed. Roughly speaking, these operators allow to represent a sequence
of actions, the alternative choice among a set of actions, the parallel execution
of a set of actions, and the iterative or replicated execution of actions. For
example, two or more actions must be executed in the same order they appear
in the policy if they are composed through a seq operator. Two or more actions
can be executed alternatively or in parallel if they are related to an or or par
composition operator, respectively. Moreover, PolPA allows to specify some
predicates involving action’s parameters and attributes of the user, of the
resource and of the environment that need to be satisfied in order to proceed
with the action execution. For a more detailed description of PolPA language
refer to [14].

The architecture of the authorization system that enforces PolPA policies,
as most common authorization systems, is based on a Policy Enforcement
Point (PEP), a Policy Decision Point (PDP), a Policy Information Point (PIP)
and a Policy Administration Point (PAP), as shown in Figure 1.

The PEPs should be integrated in the software components that imple-
ment security relevant actions to intercept their execution. When the user
tries to execute a security relevant action, the PEP sends to the PDP the
tryaccess(s, o, r) command, where s is a string that represents the name of the
user, e.g., a X.509 Distinguished name such as “C=IT, L=Pisa, O=CNR-IIT,
CN=paolo mori”, o is the string that represents the name of the resource, e.g., a
web service such as “http://node3.iit.cnr.it/axis2/services/MyTestService”and
r represents the actions along with their parameters, e.g., the operations ex-
posed in the web service interface.
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For the sake of simplicity, in the following we will use some short place-
holders to represent users’ and resources’ names, such as U and V or R1 and
R2, respectively, and to represent actions, such as A(x1,x2), B(x3), C(x4,x5)
and D(x6).

The PEP allows the execution of the action only after a positive response
from the PDP, represented by the permitaccess(s, o, r) command. Once an ac-
tion has been permitted, the PEP should be able to detect when it terminates
to issue the endaccess(s, o, r) command to the PDP. The PDP is the compo-
nent of the architecture that performs the usage decision process. The PDP,
at first, gets the security policy from the repository managed by the PAP,
and builds its internal data structures for the policy representation. When the
PDP receives the tryaccess(s, o, r) command from a PEP, it checks the re-
quested action against the security policy. To this aim, the PDP collects fresh
attribute values from the PIP. Consequently, either the permitaccess(s, o, r)
command is sent to the PEP, that executes the action, or the PDP returns
denyaccess(s, o, r) to the PEP, that enforces it by skipping the execution of the
access. Since it must keep track of the actions that are in progress, the PDP is
also invoked by the PEP when an action that was in progress terminates, with
the endaccess(s, o, r) command. In fact, the PDP is always active because, if
required by the policy, the PDP continuously evaluates a set of given autho-
rizations, conditions and obligations while an action is in progress. It could
request the PEP to terminate this access through the revokeaccess(s, o, r)
command. Again, the PDP exploits a subscription mechanism to collect up-
dated attribute values from the PIP. This is a main novelty of the UCON
model with respect to prior access control work, where the PDP is usually
only passive, i.e., it simply answers to the access requests received from PEPs.
To enforce the revokeaccess(s, o, r) command, the PEP should be able to
interrupt an action that is in progress.

Table 1 shows a very simple example of PolPA policy. In this example we
have two resources, represented by R1 and R2, and four actions, A, B, C, and
D.

The policy defines a sequence of actions where action A on resource R1
must be firstly executed, then either action B or C can be executed on resource
R2, and finally action D can be executed on resource R1. Lines 1-4 of the
policy regulate the execution of action A on resource R1, imposing a control
on the value of parameter x1 (line 2), and requiring that action A terminates
(line 3) before allowing the execution of the other actions. Line 1 does not
impose any constraint on the identity of the user that executes the action,
which is represented by the variable user id. Lines 5-21 allow the alternative
execution of action B or action C on resource R2, due to the or composition
operator in line 12. Action B can be executed only if the value of the attribute
role related to the user that required the execution of the action is equal
to “admin”, as stated in line 6 of the policy. Instead, for executing action
C, line 14 imposes a constraint on the parameter x4 of the action itself. In
both cases, the endaccess commands (lines 7 and 15) are combined through
an or operator with the revokeaccess commands (lines 9 and 18), in order
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Table 1 Example of PolPA security policy

( tryaccess(user id, R1, A(x1,x2)). 1
[(sequal(x1,“val1”))].permitaccess(user id, R1, A(x1,x2)). 2
endaccess(user id, R1, A(x1,x2)) 3

). 4
( ( ( tryaccess(user id, R2, B(x3)). 5

[(sequal(attr(role,user id),“admin”))].permitaccess(user id, R2, B(x3)). 6
( endaccess(user id, R2, B(x3)) 7
or 8
([(lessthan(attr(reputation,user id),85))].revokeaccess(user id, R2, B(x3))) 9

) 10
) 11
or 12
( tryaccess(user id, R2, C(x4,x5)). 13
[(iequal((x4,“val2”))].permitaccess(user id, R2, C(x4,x5)). 14
( endaccess(user id, R2, C(x4,x5)) 15
or 16
([((lessthan(attr(reputation,user id),75))and(morethan(attr(workload,R2),70)))]. 17
revokeaccess(user id, R2, C(x4,x5))) 18

) 19
) 20

). 21
( tryaccess(user id, R1, D(x6)). 22
[(iequal(x6,“val3”))].permitaccess(user id, R1, A(x6)). 23
endaccess(user id, R1, D(x6)) 24

) 25
) 26

to implement continuous control. Hence, the policy states that either these
actions finish normally, and the endaccess commands are issued, or they are
interrupted by the authorization system because the predicates that precede
the revokeaccess commands (i.e., the ones in line 9 and line 17) are verified.
In particular, the predicate in line 17 exploits the user attribute reputation,
which is an integer that ranges from 0 to 100, and the resource attribute
workload, which is an integer that ranges from 0 to 100 as well. When the
execution of the action C is in progress on resource R2, it could be interrupted
by the revokeaccess command in line 18 of the policy because the value of the
user reputation is too low (below 75) and the workload of the resource R2 is
too high (above 70). Finally, lines 22-25 allow the execution of action D on
resource R1, again imposing a constraint on the value of action’s parameter
x6.
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3 Motivations and Key Ideas

The PDP is a key component of the PolPA authorization system since it is
responsible for the decision process, i.e., it determines whether an access can
be granted or not. Any error in the PDP implementation could alter the PDP
decision, such as authorizing accesses that should be forbidden, or not inter-
rupting accesses whose execution rights are no longer valid, as well as denying
accesses that should instead be authorized, or erroneously revoking an ongoing
access. Hence, any error could have a serious impact on the decision process
and consequently on the integrity and on the availability of the protected
system.

We focus on the PDP implementation, because the other components of
the authorization system (as shown in the previous section) are typically de-
pendent on the specific scenario where the authorization system has been
embedded. On the contrary, the PDP is scenario independent, because it in-
teracts only with the other components of the authorization system, i.e., it
does not interact directly with entities that are specific to a scenario.

An important aspect in test cases generation is clearly identifying the tar-
get of the test cases, i.e., the problems and the weaknesses that the test cases
should detect. Considering the nature of the authorization system, test cases
generation can be focused either on the history-based control or on the con-
tinuous policy enforcement. In the next subsections we motivate the testing
strategies addressing two kinds of faults. Specifically, we distinguish test cases
designed to detect faults related to the passive behavior of the PDP (see Sub-
section 3.1), and those focusing on the problems related to the mutability of
attributes during the execution of accesses that require an active PDP (see
Subsection 3.2).

3.1 Motivations for history-based testing

The testing of the history-based access control functionality of the PDP relies
on a sort of fault model, which can be exploited for test case derivation. The
generated test cases are designed and customized to cover the fault model and
then to detect the system faults with the advantages of reducing the number
of executed test cases and the test effort. In particular, the testing strategy
we consider includes three different steps:

– identify the main problems of the PDP implementation concerning the
history-based access control functionality, i.e. the fault model;

– derive from a given policy (gold policy), a set of faulty policies according
to the defined classes of problems;

– generate the test cases able to detect the seeded faults, i.e. select the access
requests able to evidence a misinterpretation of access rules.

Many common approaches for test cases derivation work in the other way
round: first a test strategy is defined considering specific testing aspects, usu-
ally not related to a specific fault model; then test cases are generated and
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executed on a system under test; only at the end of the testing phase, either
the coverage of a test criterion is considered or the fault detection effectiveness
of the executed test suite is measured, usually by the application of mutation
testing. According to this process, a fault model is implicitly conceived just for
the definition of mutant operators useful for the evaluation of the test suite
effectiveness, but usually not directly defined for test cases derivation pur-
poses. We refer to [10] for a recent and extensive survey of mutation testing
approaches and their application.

The peculiarity of the proposed process is that the generated test cases
assure the coverage of the fault model and the ability to identify the main
problems of the authorization system. However, from a practical point of view,
the testing process we propose cannot be easily adopted without automated
support. Thus the focus of this paper is a framework that automatically gen-
erates the test cases, i.e. authorization requests, starting from a defined fault
model.

For the implementation of our testing framework we had to solve two main
issues: i) how to automatically derive the set of faulty policies reflecting the
problems defined in the fault model; ii) how to automatically derive a set of
test cases able to detect the faults.

Each element of the policy (such as composition operators, predicates, con-
trol commands, and so on, see Section 2) is directly related to the PDP mod-
ule that implements it, which is executed when security actions are evaluated
against the relevant policy. Every modification of the PolPA policy represents
in a natural way a potential failure of the behavior of the PDP component, as
it could result in a verdict (allow, deny access) different from the correct one.
Thus our idea is to define the fault model in terms of changes applicable to
the PolPA policy, so that the modified policy versions can be used for testing
purposes.

The other key idea derives from the analysis of the PolPA policies. In gen-
eral a PolPA policy can be seen as the behavioral authorization scheme for the
various actors accessing the resources of the system. It contains the composing
elements, their relations and the algorithms that have to be applied to eval-
uate an access, thus the policy defines the input domain and its evaluation.
Our idea is that of parsing a PolPA policy in agreement to its rules, collect-
ing the information and systematically deriving the combination of elements
and values representing the different user’s access modes, i.e test cases. Thus,
given a PolPA policy, the testing framework first generates the faulty policies
according to a PolPA specific fault model; then, parsing the policy and its
mutated versions, it generates the tests set able to cover the fault model so to
exercise some specific aspects of the policy interpretation and to highlight the
misbehavior of the PDP implementation.
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3.2 Motivations for continuous policy enforcement testing

In order to test the continuous policy enforcement functionality of the PDP,
we need to focus on the mutability of attributes, and specifically on the ability
of the PDP to promptly react to any attribute change during the execution
of an access. The PIP interacts with the PDP for managing the attribute
values. Notice that the PDP can provide different replies to distinct evalua-
tions of the same authorization request, just depending on the values of the
attributes, which dynamically change over time. The influence of the external
environment, expressed in terms of mutability of attributes, has therefore a
key role in the continuous policy enforcement. The PDP misinterpretation of
these attributes changes could have critical consequences on the overall policy
enforcement and on the system security. Possible erroneous situations could
be:

– Before the evaluation of an authorization request, the PDP asks the PIP
for the updated values of the attributes required to perform the decision
process. However, an error occurs in the attribute value exchange phase,
so the PDP does not authorize the access to the resource. For instance, the
PDP used a corrupted attribute name in the attribute value request, or it
performed an error extracting the new attribute value from the response
received from the PIP.

– During the execution of an authorized access, the PIP notifies the PDP of
the change of some attributes that, according to the policy, should cause
the revocation of this access. However, the PDP does not manage the PIP
message correctly, so the access is not interrupted and the user keeps on uti-
lizing the resource although the corresponding right is not valid any more.
For instance, the PDP performed an error extracting the new attribute
value from the message received from the PIP, or did not keep trace of the
ongoing accesses correctly.

Both above examples are extremely critical from a security point of view so
they should be strongly avoided. Moreover, the examples show that only the
prompt acquisition of the updated values of the attributes can assure correct
enforcement of the security policy by the PDP. Since the PDP malfunction-
ing is mainly related to faults in evaluating predicates that involve corrupted
attribute values, we propose a testing strategy based on predicate coverage
criteria. The strategy should derive a set of test cases suitable for covering
all cases in which the attributes values could be modified during the access
life cycle, i.e., from the access request to the access termination. Specifically,
a test case should stimulate the PIP for changing the value of one (or even
more) attribute so to enforce the PIP and PDP to interact for exchanging the
new attribute value, re-evaluating the PolPA policy predicates, and possibly
enforcing the revocation of one (or more) access(es). In PolPA, a predicate is
a boolean expression with one or more conditions logically connected, where
each condition is, in turn, a boolean expression involving the values of muta-
ble attributes related to the user, to the resource or to the environment. For
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example, the predicate in line 17 of the policy presented in Table 1 includes
two conditions. The first of the two conditions involves the value of the rep-
utation, which is a mutable attribute of the user, while the second condition
involves the value of the workload, which is a mutable attribute paired with
the resource.

The proposed test strategy combines the standard technique for conditions
coverage with a methodology for simulating all the possible ways in which
attributes can change during the access life cycle. Therefore a same predicate
can have different PDP evaluations depending on when PIP component notifies
the PDP of the attributes change. The analysis of PolPA policy execution
allows us to define exactly the moments in which a new attribute value can be
sent by the PIP to the PDP during the evaluation of an access request. For
aim of simplicity, avoiding the complex details about the exact access request
execution, these moments are:

– before the access request evaluation: The attribute value changes just before
the evaluation of the access request against the security policy. In this case,
the new value is exploited to evaluate such request. If the requested access
is authorized, but the evaluation of a predicate associated to a revocation
command (such as the one in line 17 of the policy presented in Table 1)
returns true, the PDP must revoke the previously authorized access.

– during the access execution: The access request is evaluated against the
security policy and the access is granted, and the PDP subscribes to receive
attribute updates from the PIP. If, during the execution of the access, the
PIP notifies the PDP of the attribute changes and the evaluation of the
predicate associated to a revocation command with the new value results
to be true, the PDP must revoke the user access.

– after the access execution: The access request is evaluated against the secu-
rity policy and the access is granted. The access is executed and terminates
normally. Only after the access termination the PIP notifies the PDP of
the attribute changes. In this case, independently from the evaluation of
the predicate associated to a revocation command, the PDP goes ahead
with the evaluation of the next request.

The proposed testing strategy derives test cases aimed at covering all the
value combinations of the conditions associated to a revocation command as
well as the simulation of the runtime interaction between PIP and PDP. More
details about the strategy are in Section 6

4 Testing Framework

With reference to the architecture in Figure 1, this work is aimed at testing the
PDP implementation, specifically at verifying that the PDP actually enforces
the security policy that it gets as input. To do this, the testing framework
needs to emulate the behaviour of a possible PEP by issuing the tryaccess and
endaccess commands to the PDP and of a possible PIP component by changing
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on the fly the values of the attributes. The subject of the testing is the PDP,
while we assume that the input policy is correct, i.e., that it does not contain
errors or conflicting rules and properly expresses the security requirements of
the resource owner who wrote it.

The derivation of adequate test cases is an expensive task in software test-
ing, especially for software systems whose inputs have a complex structure
such as the requests entered to the PolPA authorization system. These re-
quests consist of a variable number of commands with their parameters inter-
leaved according to a set of rules specified in the policy. Manually preparing
such test cases is expensive, difficult and error-prone. In traditional access con-
trol systems, combinatorial approaches for derivation of test cases have been
proposed [5,2], which generate all different combinations of commands and
parameters values. Such approaches are not suitable for application to PolPA
policies, since they do not specifically address the order in which the request
commands are submitted to the PDP.

We propose in this paper a testing framework able to exercise the function-
alities of the PDP involved both in the history-based access control and in the
continuous policy enforcement. Specifically, for the former case the generation
technique involves the design of a fault model along with the corresponding
set of mutation operators, and their application for generating the test cases
(see further details in Subsection 6.1). In the latter, we take inspiration from
the traditional condition coverage testing strategy [15], which requires that all
possible outcomes from every boolean decision in a program are exercised at
least once. We adapt it to simulate the runtime attributes modification and
the sequence of access requests (see further details in Subsection 6.2).

In this section, we describe the testing framework implementing the above
strategies, which consists of the following components (see Figure 2):

Fault Model Manager (FMM). This component is involved in the test-
ing of history-based access control. It manages a predefined collection of possi-
ble types of faults that can occur during the evaluation of a PolPA policy due
to incorrect implementation of commands, guards or compositional operators.
See Section 5 for more details.

Policy Test Set Manager (PTSM). This component collects the set of
PolPA policies useful for testing purposes. The polices can be given as an input
by the user or taken from a predefined collection memorized into an internal
dataset. In this last case a set of PolPA policies are specifically conceived
to highlight the functionality of the PDP and exercise the different available
features. The PTSM is also in charge of the interaction with the PAP for
the correct configuration of the PDP with the policy that is used for testing
purposes.

Faulty Policies Generator (FPG). This component is involved in the
testing of history-based access control. It takes as input a policy and the fault
model and derives a set of faulty policies by seeding the faults defined in the
fault model into the policy itself. Each of the faulty policies represents a faulty
implementation of the PDP.
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Test Cases Generator (TCG). This component derives the set of test
cases for history based and continuous policy enforcement testing. In the for-
mer case, for each of the available policies (i.e. the policy and its faulty ver-
sions) TCG automatically derives the test cases in terms of (sequence of) access
requests. Again, in case of continuous testing, TCG derives the sequence of
access requests; in addition it interleaves them with specific commands called
PIPCommand. See Section 6 for more details.

Mutable Attribute Updater (MAU). This component manages the at-
tributes of the user, resource and environment. In particular, it simulates the
PIP behavior by interacting with the PDP both for receiving requests of at-
tributes subscription and for updating the values of the attributes involved in
a predicate of a revokeaccess(s, o, r) command during the test case execution.
See Section 7 for more details.

Test Driver (TD). This component coordinates test execution. By col-
laborating with the TCG, it selects one by one the available test cases and, by
simulating the PEP behavior, transforms each test case in the opportune se-
quence of tryaccess(s, o, r), and endaccess(s, o, r) commands. Moreover, dur-
ing the execution of a test case, TD interacts with the MAU, by means of a
PIPCommand so to set the values of mutable attributes specified in the test
case. See Section 7 for more details.

Test Oracle (TO). This component is responsible for the collection of the
PDP responses (permitaccess(s,o,r), revokeaccess(s,o,r) or denyaccess(s,o,r))
caused by a test execution. TO also compares the obtained results with the
correct authorization replies associated to each of the generated (set of) test
cases. For this TO interacts with TCG for having the policy and the derived
set of test cases. It is important to specify that in the current implementation
only the functionality for the evaluation of the continuous policy enforcement
test results is automated. We are evaluating and defining possible solutions
for the analysis of history-based test results. See Section 8 for more details.

In the next sections we detail the defined Fault Model, the Test Case
Generator, the Test Driver and the Test Oracle components.

5 Fault Model

The fault model is specifically conceived for PolPA language. The approach
is inspired by mutation testing techniques [10]. Here mutation operators are
not used for test adequacy measurement as is more commonly the case, but
for test cases generation. Existing mutation operators are adapted in order to
describe modification rules that introduce faults into PolPA policies, so that
each faulty policy represents a syntactic fault that could occur during the PDP
implementation.

The considered mutation operator classes focus on faults concerning the
policy behavior, i.e. the execution of the different commands or their order, and
faults in the evaluation of satisfiability of the parameters of each command, i.e.
the string parameters and integer parameters. Note that the faults introduced
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Fig. 2 Testing Framework

exercise only static behavior of the PDP and do not consider the continuous
policy enforcement due to the runtime mutability of the attributes. As said,
this specific task is addressed into the continuous policy enforcement testing
activity as described in Section 6.2.

In the following a detailed description of the classes is given:
Change Composition Operator (CCO). This class implements a viola-

tion of the order of execution of the commands sent by the PEP (tryaccess(s, o, r)
and endaccess(s, o, r)); it is implemented by changing the composition oper-
ator. Specifically, let CO be the bag of different occurrences of composition
operators (·, or, par)3 included in the policy: ∀ci ∈ CO, change ci with each
cj such that cj ∈ CO \{ci}. The number of mutants derived by this class is
equal to the number of composition operators that are in CO times 2. Note
that in case of the history-based testing, this class is not applied to the or
operator involving a revokeaccess(s, o, r) and a endaccess(s, o, r) command,
because the derived mutants would be semantically equivalent.

Change Command (CC). This class implements faults in the execution
of a command sent by the PEP; it is implemented by changing the com-
mand. Specifically, let C be the bag of different occurrences of commands
(tryaccess(s, o, r) and endaccess(s, o, r)) included in the policy: ∀ci(si, oi, ri) ∈
C, change ci(si, oi, ri) with each cj(sj , oj , rj) such that cj(sj , oj , rj) ∈ C \
{ci(si, oi, ri)} and si = sj , oi = oj , ri = rj . The number of mutants derived
by this class is equal to n where n is the cardinality of C.

Change Guard String Operator (CGSO). This class implements a
wrong management of the values of string parameters; it is implemented by

3 Where the dot represents the seq composition operator.
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changing the arithmetic operators involving string parameters. Specifically, let
S be the bag of different occurrences of PolPA arithmetic operators involving
string parameters (sequal, startwith, scontains) included in the policy: ∀si ∈
S, change si with each sj such that sj ∈ S \{si}. The number of mutants
derived by this class is equal to the number of arithmetic operators involving
string parameters that are in the policy times 2.

Change Guard Integer Operator (CGIO). This class implements a
wrong management of the values of integer parameters; it is implemented by
changing the arithmetic operators involving integer parameters. Specifically,
let I be the bag of different occurrences of PolPA arithmetic operators involving
integer parameters (iequal, morethan, lessthan) included in the policy: ∀ii ∈ I,
change ii with each ij such that ij ∈ I \{ii}. The number of mutants derived
by this class is equal to the number of arithmetic operators involving integer
parameters that are in the policy times 2.

Change Logical Operator (CLO). This class implements a wrong man-
agement of logical operators contained in the PolPA predicate; it is imple-
mented by changing a logical operator with another PolPA logical operator.
Specifically, let L be the bag of different occurrences of PolPA logical operators
(and, or) included in the policy: ∀ii ∈ L, change ii with each ij such that ij ∈
L \{ii}. The number of mutants derived by this class is equal to the number
of logical operators that are in the policy.

The fault model is used by the Faulty Policies Generator for deriving
faulty policies. As an example, by applying the mentioned mutation oper-
ator classes to the policy of Table 1, we derive thirty-seven faulty policies.
Specifically, applying the CCO class we derive fourteen faulty policies because
the policy includes six seq and one or composition operators related to the
tryaccess(s, o, r) and endaccess(s, o, r) commands. Applying the CC class we
obtain eight faulty policies, because there are four actions (A, B, C, D), each
one having a tryaccess(s, o, r) and a endaccess(s, o, r) command. Finally, ap-
plying the CGSO class to the two arithmetic operators (line 2 and 6) that are
in the policy we obtain four faulty policies, applying the CGIO class to the
five integer predicates (line 9, 14, 17 and 23) we derive ten more faulty policies
whereas applying the CLO class to the logical operator of line 17 we obtain
one faulty policy.

6 Test Cases Generator

In this section we present the Test Case Generator component that manages
the history-based and the continuous policy enforcement test case generation.
The former aims at testing the interaction between the PEP and the PDP
by generating test cases specifically conceived to target possible faults in the
PDP implementation. The latter instead is focused on the runtime execution
of the policy and therefore on the interaction between the PDP and the PIP.
In this latter case, the test cases focus on modifications of the attributes so
to stimulate the continuous policy enforcement. These modifications do not
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concern attribute updates triggered as a consequence of the evaluation of the
PolPA policy performed by the PDP.

Before detailing the history-based and the continuous policy enforcement
test case generation, we introduce the definition of the PIPCommand that is
sent from the test driver to the MAU component for updating the values of
the attributes of the user, resource and environment. Using the PIPCommand
we simulate in the testing framework the runtime modification of attributes
values.

Definition 1 (PIPCommand(C)). Given a policy P and a predicate p (hav-
ing a set of attributes A) of a tryaccess(s, o, r) or revokeaccess(s, o, r) com-
mand, called C, we define a PIPCommad(C), as a command update whose
parameter is a set of pairs (a, v), where, a∈ A and v is a proper typed value
for a.

6.1 History-based test cases generation

The Test Cases Generator implements a testing procedure specifically con-
ceived for a PolPA policy and for each faulty policy derived from it. This
strategy (previously presented in [4]) consists of four main steps:

(i) parsing of the policy. The parsing output is a binary tree preserving the
hierarchy of the composition operators and the related commands of the
policy;

(ii) parameter values assignment. The action parameter values and the PIP-
Commands are generated such that the result of the evaluation of predicate
associated to the tryaccess(s, o, r) command is true while that of the as-
sociated revokeaccess(s, o, r) command (if any) is false;

(iii) visit depth-first of the tree. For each node k derive the multi set MSk =
{S1, · · · , Sn}, where Si is a ordered set of commands, as in the following:
– if the node k is the command named a1, MSk = {{a1}};
– if the node k is the or composition operator, MSk = MS1∪MS2 where

MSi∈{1,2} is the multi set derived for the node i that is child of node
k ;

– if the node k is the · composition operator, and MSi1 and MSi2 are the
multi sets associated to i1 and i2 that are children of k, MSk contains
all the ordered combinations of the elements of MSi1 and MSi2;

– if the node k is the par composition operator, and MSi1 and MSi2

are the multi sets associated to i1 and i2 that are children of k, MSk

contains all combinations of the elements of MSi1 and MSi2 in each
possible order;

(iv) test case derivation. For each element Si of MSr where r is the root node,
derive a test case containing the ordered sequence of commands of Si, the
associated parameters values and the defined PIPCommads.

For instance a test case generated from the policy of Table 1 applying the
testing procedure described above is:
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th = {update((U.reputation, 76), (R2.workload, 69)), tryaccess(U, R1, A
(“val1”, “val2”)), endaccess(U, R1, A(“val1”, “val2”)), tryaccess(U, R2, C
(“val3”, “val4”)), endaccess(U, R2, C(“val3”, “val4”)), tryaccess(U, R1, D
(“val5”)), endaccess(U, R1, D(“val5”))}

This test case contains a PIPCommand (update((U.reputation, 76), (R2.work-
load, 69)) that sets the evaluation of the predicate associated to the revokeac-
cess(s, o, r) command at lines 17 and 18 of Table 1 to false, then stimulates
the execution of: the tryaccess(s, o, r) and endaccess(s, o, r) at lines 1 and
3 respectively; the tryaccess(s, o, r) and endaccess(s, o, r) at lines 13 and 15
respectively and finally the tryaccess(s, o, r) and endaccess(s, o, r) at lines 23
and 25.

We recall that, for the sake of simplicity, we use the placeholders U ,
R1 and R2 to represent the real names of the user and of the resources,
that in our example could be, respectively: “C=IT, L=PISA, O=CNR-IIT,
CN=paolo mori”, “http://node3.iit.cnr.it/axis2/services/MyTestService”and
“http://node3.iit.cnr.it/axis2/services/AnotherService”.

6.2 Test cases generation for continuous policy enforcement

In this section we define the strategy adopted for the generation of test cases
specifically conceived for addressing the dynamic runtime behavior of the PDP
due to the mutability of attributes. Similarly to those generated for history
based testing (see Section 6.1), these additional test cases (requests) consist of
a sequence of commands (tryaccess(s, o, r) and endaccess(s, o, r)) for the PDP.
In addition, they include a set of commands for Mutable Attribute Updater
(MAU) component in order to change the attributes values. This modification
of attributes is performed during the execution of a test case and could inval-
idate the access rights causing the access revocation according to the PolPA
policy. Note that the continuous policy enforcement testing involves only the
PolPA policy and not the faulty policies derived from it.

The testing strategy defined in this section is based on the Multiple Condi-
tion Coverage (MCC) approach [15]. A multiple condition is made up from one
or more conditions, which are combined by logical operators (and, or, not). To
get 100% of the coverage, for each multiple condition, all combinations of true
and false for its involved conditions have to be evaluated4. PolPA language al-
lows for specifying some multiple conditions, called predicates and defined as
regular expressions involving the parameters of the actions and the attributes
of users, resources and environment. Thus, to get 100% of the coverage of a
single PolPA predicate, all combinations of true and false for parameters of
the actions and for the attributes of the users, resources and environment have
to be considered. By iterating the process for every predicate, the 100% of the
coverage of a PolPA policy is reached when the 100% of the coverage of all its
predicates is achieved.

4 Note that the term condition in this section does not refer to the environment conditions
specified in the UCON model.
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In the rest of this section we first provide some definitions and then the
proposed test cases generation procedure.

6.2.1 Definitions

The continuous policy enforcement testing focuses on predicates associated to
a revokeaccess(s, o, r) command, therefore we introduce the following defini-
tions, involving a PolPA predicate, useful for the testing strategy specification:

Definition 2 (BeforeCondition(RA)) Given a policy P and a predicate p
that immediately precedes a revokeaccess(s, o, r), called RA, in P, a Before-
Condition(RA), shortened into BC(RA), is a tuple < PC, tryaccess(s, o, r),
endaccess(s, o, r) > where PC is a PIPCommand(RA) and tryaccess(s, o, r)
and endaccess(s, o, r) are the commands in P that RA refers to.

Definition 3 (DuringCondition(RA)) Given a policy P and a predicate p
that immediately precedes a revokeaccess(s, o, r), called RA, in P, a During-
Condition(RA), shortened into DC(RA), is a tuple < PC1, tryaccess(s, o, r),
PC2, endaccess(s, o, r) > where PC1 an PC2 are PIPCommand(RA)s and
tryaccess(s, o, r) and endaccess(s, o, r) are the commands in P that RA refers
to.

Definition 4 (AfterCondition(RA)) Given a policy P and a predicate p
that immediately precedes a revokeaccess(s, o, r), called RA, in P, an After-
Condition(RA), shortened into AC(RA), is a tuple < PC1, tryaccess(s, o, r),
endaccess(s, o, r), PC2 > where PC1 an PC2 are PIPCommand(RA)s and
tryaccess(s, o, r) and endaccess(s, o, r) are the commands in P that RA refers
to.

Considering the policy of Table 1, and the predicate at line 17 that immedi-
ately precedes the revokeaccess(user id, R2, C(x4, x5)) at line 18, called RA2,
the corresponding PIPCommand(RA2) is equal to update((U.reputation, v1), (R2.work-
load, v2)) where v1 and v2 are two possible integer values for reputation and
workload attributes respectively.

Moreover, for the same revokeaccess(user id,R2, C(x4, x5)) we have:

– BeforeCondition(RA2) = <update((U.reputation, v1), (R2.workload, v2)),
tryaccess(U, R2, C(“val3”, “val4”)), endaccess(U, R2, C(“val3”,“val4”))>;

– DuringCondition(RA2) = <update((U.reputation, v1
1), (R2.workload, v1

2)),
tryaccess(U, R2, C(“val3”, “val4”)), update((U.reputation, v2

1), (R2.work-
load, v2

2)), endaccess(U, R2, C(“val3”,“val4”))>;
– AfterCondition(RA2) = <update((U.reputation, v1

1), (R2.workload, v1
2)),

tryaccess(U, R2, C(“val3”, “val4”)), endaccess(U, R2, C(“val3”,“val4”)),
update((U.reputation, v2

1), (R2.workload, v2
2))>;

where U.reputation and R2.workload represent the reputation and work-
load attributes of the user U and resource R2 respectively whereas v1

1 , v
1
2 , v

2
1

and v2
2 are possible integer values for these attributes.
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Definition 5 (MultipleBefore(RA)) Given a policy P and a predicate p
that immediately precedes a revokeaccess(s, o, r), called RA, in P, a Mul-
tipleBefore(RA), shortened into MB(RA), is a set of BC(RA) such that it
guarantees 100% Multiple Condition Coverage (MCC) of p.

Definition 6 (MultipleDuring(RA)) Given a policy P and a predicate p
that immediately precedes a revokeaccess(s, o, r), called RA, in P, a Mul-
tipleDuring(RA), shortened into MD(RA), is a set of DC(RA)i= < PC1i,
tryaccess(s, o, r), PC2i, endaccess(s, o, r) > such that PC1i guarantees that
p is false and

⋃
i PC2i guarantees 100% MCC of p.

Definition 7 (MultipleAfter(RA)) Given a policy P and a predicate p
that immediately precedes a revokeaccess(s, o, r), called RA, in P, a Mul-
tipleAfter(RA), shortened into MA(RA), is a set of AC(RA)i= < PC1i,
tryaccess(s, o, r), endaccess(s, o, r), PC2i > such that PC1i guarantees that
p is false and

⋃
i PC2i guarantees 100% MCC of p.

Considering the policy of Table 1, and the predicate at line 17 that im-
mediately precedes a revokeaccess(user id, R2, C(x4, x5)) defined at line 18,
called RA2, we have:

MultipleBefore(RA2)(MB(RA2))= {<update((U.reputation, 74), (R2.
workload, 71)), tryaccess(U, R2, C(“val3”, “val4”)), endaccess(U, R2, C
(“val3”, “val4”))>, <update((U.reputation, 74), (R2.workload, 69)), try-
access(U, R2, C(“val3”, “val4”)), endaccess(U, R2, C(“val3”,“val4”))>,
<update( (U.reputation, 76), (R2.workload, 71)), tryaccess(U, R2, C(“val3”,
“val4”)), endaccess(U, R2, C(“val3”,“val4”))>, <update((U.reputation,
76), (R2. workload, 69)), tryaccess(U, R2, C(“val3”, “val4”)), endaccess(U,
R2, C (“val3”, “val4”))>};

MultipleDuring(RA2)(MD(RA2))= {<update((U.reputation, 76), (R2.
workload, 69)), tryaccess(U, R2, C(“val3”, “val4”)), update((U.reputation,
74), (R2.workload, 71)), endaccess(U, R2, C(“val3”,“val4”))>, <update(
(U.reputation, 76), (R2.workload, 69)), tryaccess(U, R2, C(“val3”, “val4”)),
update( (U.reputation, 74), (R2.workload, 69)), endaccess(U, R2, C(“val3”,
“val4”))>, <update( (U.reputation, 76), (R2.workload, 69)), tryaccess(U,
R2, C(“val3”, “val4”)), update((U.reputation, 75), (R2.workload, 71)), en-
daccess(U, R2, C(“val3”, “val4”))>, <update((U.reputation, 76), (R2.work-
load, 69)), tryaccess(U, R2, C(“val3”, “val4”)), update((U.reputation, 75),
(R2.workload, 69), endaccess(U, R2, C(“val3”, “val4”))>};

MultipleAfter(RA2)(MA(RA2))= {< {update((U.reputation, 76), (R2.
workload, 69)), tryaccess(U, R2, C(“val3”, “val4”)), endaccess(U, R2, C
(“val3”, “val4”)), update((U.reputation, 74), (R2.workload, 71))>, <up-
date((U.reputation, 76), (R2.workload, 69)), tryaccess(U, R2, C(“val3”,
“val4”)), endaccess(U, R2, C(“val3”, “val4”)), update((U.reputation, 74),
(R2.workload, 69))>, <update((U.reputation, 76), (R2.workload, 69)), try-
access(U, R2, C(“val3”, “val4”)), endaccess(U, R2, C(“val3”, “val4”)),
update(U.reputation, 75), (R2.workload, 71)>, <update((U.reputation, 76),
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(R2.workload, 69)), tryaccess(U, R2, C(“val3”, “val4”)), endaccess(U, R2,
C(“val3”, “val4”)), update((U.reputation, 75), (R2.workload, 69))>}.

Definition 8 (Multiple Coverage Domain) Given a policy P and given
SRA the set of the revokeaccess(s, o, r) commands of P, the Multiple Coverage
Domain (MCD) is the multiset of MB(RA), MD(RA), and MA(RA) such that
RA ∈ SRA.

The policy of Table 1 has two revokeaccess(s, o, r) commands called RA1
and RA2 (line 9 and 18 respectively). The MCD for that policy is equal to
{MB(RA1),MD(RA1),MA(RA1),MB(RA2),MD(RA2),MA(RA2)}.

Following the standard approaches for multiple condition coverage [15] we
define the following adequacy criterion:

Definition 9 A test suite T for a policy P is considered adequate with respect
to the Multiple Coverage Domain (MCD), iff for every element in MCD there
exists at least one test case t ∈ T that covers it.

The Test Cases Generator implements a testing procedure specifically con-
ceived for deriving a test suite T that guarantees the above adequacy criterion.

6.2.2 Test cases generation procedure

Similarly to the history-based approach, the test cases generation procedure
consists in the following steps:

(i) parsing of the policy;
(ii) assignment of parameter values:

– for each revokeaccess(s, o, r) command called RA preceded by predi-
cate p, the sets MultipleBefore(RA), MultipleAfter(RA), MultipleDur-
ing(RA) as defined in Section 6.2.1 are derived. For each of these sets
a table, called PIPTruthTable, is derived that contains: the truth val-
ues of its PIPCommands and the result of the evaluation of the overall
predicate p;

– the action parameter values and the PIPCommands are generated such
that the result of the evaluation of predicate associated to the try-
access(s,o,r) command is true (see step (ii) of the testing procedure
described in Section 6.1);

(iii) visit depth-first of the tree. For each node k, the multi set MSk as de-
scribed in Section 6.1 is derived;

(iv) pruning of the tree. For each revokeaccess(s, o, r) command, called RA,
the shortest subtree rooted in the · composition operator, involving RA and
containing the tryaccess(s, o, r) and endaccess(s, o, r) commands, is re-
placed by a leaf containing the set MSRA = {MB(RA),MD(RA),MA(RA)};

(v) test case derivation. For each element Si of MSr where r is the root node,
a test case is derived that contains the ordered sequence of commands of
Si and the associated parameters values.

For instance, applying the testing procedure described above to the policy
of Table 1 and considering in particular the revokeaccess(user id, R2, C(x4,x5))
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defined at line 18, called RA2, we have that MSRA2 = {MB(RA2),MD(RA2),
MA(RA2)}, where MB(RA2), MD(RA2) and MA(RA2) are listed at the
end of Section 6.2.1, and a possible generated test case is the following: tc=
{tryaccess(U, R1, A(“val1”, “val2”)), endaccess(U, R1, A(“val1”, “val2”) ),
<update((U.reputation, 76), (R2.workload, 69)), tryaccess(U, R2, C(“val3”,
“val4”)), update((U.reputation, 74), (R2.workload, 71)), endaccess(U, R2, C
(“val3”, “val4”))>, tryaccess(U, R1, D(“val5”)), endaccess(U, R1, D(“val5”))}

Note that this test case is derived considering the first element of MD(RA)
and stimulates the execution of the tryaccess(s, o, r) and endaccess(s, o, r) at
lines 1 and 3 respectively; then it defines the PIPCommands (update((U.reputation,
76), (R2.workload, 69))),(update((U.reputation, 74), (R2.workload, 71)))) and
stimulates the execution of the the tryaccess(s, o, r) and endaccess(s, o, r) at
lines 13 and 15 and finally stimulates the tryaccess(s, o, r) and endaccess(s, o, r)
at lines 23 and 25.

We outline that the proposed test cases generation procedure does not
deal with attributes updates triggered as a consequence of the evaluation of
the PolPA policy on the PDP. The only attributes modifications we consider
here are those related to the external environment and managed by the PIP
component.

7 Test Driver

The Test Driver (TD) executes the test cases derived both according to the
history-based strategy and for the continuous policy enforcement.

In the former case, the TD simulates the PEP behavior while interacting
with the PDP for executing the sequence of tryaccess(s, o, r) and endaccess(s, o, r)
commands specified in the test case. In addition, before the execution of the
test case, The TD interacts also with the MAU to update the attributes val-
ues. In particular, the MAU is in charge of managing the mutable attributes
such that all predicates of the revokeaccess(s, o, r) commands in the executed
policy are false. This guarantees that any revokeaccess(s, o, r) command is
not thrown during the test case execution.

For instance, during the execution of th test case, the TD before sending
tryaccess(U, R2, C(“val3”, “val4”)) to the PDP, interacts with the MAU in
order to update the values of reputation and workload attributes such that
the predicate at line 17, i.e., the one that triggers the revokeaccess(s, o, r)
associated to the action C, results false.

In case of continuous policy enforcement, the TD simulates, as before, the
behavior of the PEP and sends the PIPCommands to the MAU. Specifically,
the TD executes the ordered sequences of commands in each test case. If the
command is a tryaccess(s, o, r) or endaccess(s, o, r), the TD interacts with the
PDP. If a PIPCommand is specified in the test case, the TD interacts with
the MAU in order to update the value of each attribute with the proper typed
value and consequently to warn the PDP about mutable attributes changes.
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Fig. 3 Test case execution

For instance during the execution of tc test case presented at the end of
Section 6.2, the sequence of performed actions, as showed in Figure 3, includes:

– the TD sends tryaccess(U, R1, A(“val1”, “val2”)) and endaccess(U, R1,
A(“val1”, “val2”)) to the PDP;

– the TD sends the PIPCommand = update((U.reputation, 76), (R2.workload,
69)) to the MAU so to guarantee that the evaluation of the predicate of
the revokeaccess(s,o,r) associated to the action C will result false when the
tryaccess(U, R2, C(“val3”, “val4”)) will be allowed;
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– the PDP sends to the MAU the subscription for U.reputation and R2.workload
attributes;

– the TD sends the PIPCommand = update((U.reputation, 74), (R2.workload,
71)) to the MAU to update the attributes values. The MAU changes the
U.reputation and R2.workload attribute values and notify the PDP about
this runtime change that triggers the revokeaccess(U, R2, C(val3,val4))
command given back from the PDP to the TD;

– the TD executes endaccess(U, R2, C(“val3”,“val4”)) command that will
trigger a deny access because the access for the action C has been revoked;

– finally the TD sends tryaccess(U,R1, D(“val5”)) and endaccess(U, R1, D(
“val5”)) to the PDP.

8 Test Oracle

The test oracle interacts with the Test Case Generator to retrieve the policy
and the derived set of test cases. It collects the PDP responses (permitac-
cess(s,o,r), revokeaccess(s,o,r) or denyaccess(s,o,r)) caused by a test execu-
tion and compares the obtained results with the correct authorization replies
associated to each of the generated test cases. The oracle relies on a prede-
fined verdicts table that collects the detailed set of couples (test case / (set of)
expected response(s)). In the current implementation, for the history-based
testing, this verdict table is manually derived. We are evaluating and defining
possible solutions for speeding up the derivation and analysis of the history-
based test results.

On the contrary, in case of continuous policy enforcement testing, the
derivation and evaluation of the expected test results is fully automated.
Specifically, the oracle analyzes the test case structure and performs the fol-
lowing actions:

1. it extracts the sequence of commands before an element of a MultipleBe-
fore(RA) (MultipleDuring(RA) or MultipleAfter(RA)) included in the test
case, where RA is the addressed revokeaccess(s, o, r) command, and ig-
nores the replies of the PDP associated to these commands: these are not
the target of the continuous policy enforcement testing5. Note that in the
rest of this section with the sentence ignores the replies of the PDP we mean
that the oracle ignores the permitaccess(s, o, r) and denyaccess(s, o, r)
that can be received from PDP. In case of error or delay of the replay,
the PDP replay is considered erroneous, the test case execution is termi-
nated and the overall verdict is fail. For aim of completeness, we recall
here that the element of a MultipleBefore(RA) (MultipleDuring(RA) or
MultipleAfter(RA)) included in the test case is a BeforeCondition(RA)
(DuringCondition(RA) or AfterCondition(RA));

5 Indeed in this evaluation we suppose that the correctness of these PDP replies has been
validated during a previously executed phase of history-based testing.
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2. it lists the PIPcommand(RA)s of the BeforeCondition(RA) (DuringCondi-
tion(RA) or AfterCondition(RA)) included in the test case, extracts from
the policy the single conditions defined for the predicate preceding RA,
and uses the values of the PIPcommand(RA)s to evaluate them. Thus for
each PIPcommand(RA) the list of the boolean values is derived;

3. it maps the list of the boolean values of the PIPcommand(RA)s with the
proper row of the PIPTruthTable of the MultipleBefore(RA) (MultipleDur-
ing(RA) or MultipleAfter(RA)) at which BeforeCondition(RA) (During-
Condition(RA) or AfterCondition(RA)) belongs to and gets the associated
overall boolean evaluation of the predicate preceding RA;

4. if the evaluation of the predicate preceding RA is false, it ignores the
PDP replies for the tryaccess(s, o, r) and endaccess(s, o, r) commands in-
volved in the BeforeCondition(RA) (DuringCondition(RA) or AfterCondi-
tion(RA));

5. if the evaluation of the predicate preceding RA is true:
– in case of BeforeCondition(RA), it ignores the reply associated to the

tryaccess(s, o, r) command specified in the BeforeCondition(RA) and
the expected reply is a revokeaccess(s, o, r) command;

– in case of DuringCondition(RA), it ignores the reply associated to the
tryaccess(s, o, r) command specified in the DuringCondition(RA) and
the expected reply is a revokeaccess(s, o, r) command;

– in case of AfterCondition(RA), it ignores the replies associated to the
tryaccess(s, o, r) and endaccess(s, o, r) commands specified in the Af-
terCondition(RA). No revokeaccess(s, o, r) command is allowed;

6. it extracts the sequence of commands after the BeforeCondition(RA) (Dur-
ingCondition(RA) or AfterCondition(RA)) included in the test case and
ignores replies of the PDP associated to these commands that are not the
target of the continuous policy enforcement testing.

9 Empirical Evaluation

In this section we detail the application of the proposed framework to the
exploratory policy of Table 1. In particular, we simulate a generic situation
in which the system under test (SUT) is the PDP implementing a policy
specification that is considered correct. Considering the architecture presented
in Figure 1, in this testing scenario the real PEPs and the PIP have been
substituted by our testing framework, the PAP is supposed to be correct and
the SUT is the PDP implementation exploited in [14].

We performed the assessment in two steps, the former to validate the static
behavior of the PDP focusing on the history-based aspects of the PolPA lan-
guage, the latter to assess the continuous policy enforcement. We describe
both steps in the next sections.
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9.1 First step

Following the approach described in Section 6.1, by applying the fault model
to the policy of Table 1, the FPG component derived 37 mutated policies (as
motivated at the end of Section 5). We report the number of derived mutated
policies for each mutant class in the second column of Table 2. Successively,
from each of the available policies, the TCG component derived the corre-
sponding set of test cases by the application of the procedure described in
Section 6.1. Specifically, TCG generated 2 test cases from the original policy
and 45, 16, 8, 20 and 2 test cases from the policies mutated according to the
CCO, CC, CGSO, CGIO and CLO mutant class respectively (see Table 2 third
column) for a total of 93 test cases. It is worth noticing that, when the test
strategy described in Section 6.1 is applied to the mutated versions of a PolPA
policy, there is the possibility to derive the same test case several times. In
this exploratory example the amount of redundant test cases is 7 over the 93
derived, where 4 are in the set derived from the policies mutated according
to CC mutant class and 3 in the rest. However, since this redundancy does
not compromise the effectiveness of the methodology, in the current version of
the testing framework we did not include techniques to eliminate this problem;
this is part of our future work. Finally, each of the test cases has been executed
on the PDP and obtained responses have been collected and compared with
the expected ones.

Table 2 reports the comparison results in the last column. We saw that all
the responses obtained from the PDP were the same of those expected, except
those related to the test cases derived from the policies mutated according to
the CC mutant class (thus a 0 in the column labeled # Faults). This means that
the PDP implementation compliant with the gold policy, did not contain any
of the related faults. A different situation has been experienced for test cases
derived from the policies mutated according to the CC mutant class. In this
case, for 1 over the 16 executed test cases, the response obtained was not the
expected one. In particular, we noticed that the fault was always detected by
the test case derived by the mutant having two tryaccess(s, o, r) commands
involving the first action allowed by the policy (i.e., action A in the policy
of Table 1). This behavior is not compliant with what explicitly specified in
the policy of Table 1, because after the first request for executing action A,
represented by the tryaccess(s, o, r) command in line 1, the PDP only allows
the corresponding endaccess(s, o, r) command in line 3, that represents the
end of action A. Thus, the detected anomaly in the test case response pointed
out a problem in the PDP implementation. Talking with the developers, they
said that the implementation they provided for the test allows users to behave
as stated by the policy an arbitrary number of times, even in parallel, because
this was a specific requirement of the scenario the tested implementation was
developed for. This explains why the tests in which the user tries to execute
the first action of the policy for a second time returned a result that was
not the expected one. For a generic release of the PDP this feature should
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Table 2 Experimental DATA for history-based testing

# Mutants # TS1 # Faults
Policy - 2 0

Mutation Class

CCO 14 45 0
CC 8 16 1

CGSO 4 8 0
CGIO 10 20 0
CLO 1 2 0

Total 37 93 1

Table 3 Experimental DATA for continuous policy enforcement testing

# MB(RA) # MD(RA) # MA(RA) # TS2 # Faults
RA1 2 2 2 6 4
RA2 4 4 4 12 0

Total 18 4

be modified, and if a same tryaccess(s, o, r) command in a row is issued, it
should be denied6.

The discovered fault showed an important limitation of the considered
PDP implementation and confirmed the effectiveness of the proposed testing
framework.

9.2 Second step

For the continuous enforcement testing, we applied the approach described
in Section 6.2 to each revokeaccess(s, o, r) command of the policy of Table 1.
Specifically, as showed in Table 3, for the revokeaccess of line 9 ((lessthan(attr
(reputation, user id), 85)).revokeaccess(user id, R2, B(x3))), here called RA1,
we derived the sets MB(RA1), MD(RA1) and MA(RA1), each with cardinal-
ity 2, guaranteeing the Multiple Condition Coverage (MCC) of the predicate
that immediately precedes RA1. Following the procedure described in Section
6.2.2 we derived a test case for each element of MB(RA1), MD(RA1) and
MA(RA1), for a total of 6 test cases.

We performed the same steps for the revokeaccess of line 17 and 18 ((less-
than(attr(reputation, user id),75))and(morethan(attr(workload,R2),70)).revo-
keaccess (user id,R2, C(x4, x5))), here called RA2, and we derived first the
sets MB(RA2), MD(RA2) and MA(RA2), each with cardinality 4, and then
we derived a total of 12 test cases.

6 Note that the same error was also detected in a previous experiment described in [4].
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Each of the 18 test cases derived for the overall policy, has been executed
on the PDP and the obtained responses have been automatically evaluated by
the test oracle component as described in Section 8. For 4 of the 18 test cases,
two of them derived from the elements of MD(RA1) and two from those of
MA(RA1), the obtained responses were not the expected ones. Specifically, for
these test cases the obtained result was the same error message. This error was
due to the fact that the PDP subscribed to a corrupted attribute name. In more
detail, the PDP in the storing of the U.reputation name in its local memory,
used a corrupted name of the attribute due to an internal error. Thus when
PDP subscribed to the MAU component, it did not recognize U.reputation
name and consequently sent an error to the PDP. The PDP in this case was
not able to perform the decision process and returned an error to the TD and
TO components. Reporting this error to the developers, they found out that
in the integration of the functionalities for the continuous policy enforcement,
they introduced an error in the attributes memory allocation (please notice
that the PDP has been implemented using the C language). For the remaining
14 test cases the obtained results were the expected ones.

9.3 Time Evaluation

In this section we provide some details about the time required for complet-
ing the history-based and continuous policy enforcement testing phases of the
above proposed experience. Specifically, we run the PDP implementation ex-
ploited in [14] and the proposed testing framework on the same PC having
an Intel(R) Pentium(R) 4 CPU (2.00 GHZ), 1,5 GB of Memory and Linux
Ubuntu Release 10.04, Kernel 2.6.32-43-generic, as operating system. We run
20 times the history-based and continuous policy enforcement testing on the
PolPA policy of Table 1, and we computed the average completion times. In
the following, we summarize the results about the main phases of the proposed
testing approach:

for history-based testing:

– around 3 minutes for completing the execution of Fault Model Manager
and Test Cases Generator components;

– around 10 seconds for completing the execution of Test Driver component;
– around 4 hours for completing the execution of Test Oracle component

(note that this time includes the manually derived verdicts table).

for continuous policy enforcement testing:

– around 12 seconds for completing the execution of Test Cases Generator
component;

– around 6 seconds for completing the execution of Test Driver and Test
Oracle components.
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The obtained results evidenced that the history-based testing took more
time than the continuous policy enforcement testing. This was due mainly
to the manual derivation of the verdicts table. However, also the generation
and execution of test cases for the history-based testing were longer than the
corresponding ones for the continuous policy enforcement testing. This was due
to the generation of the fault model and the derivation of a higher number of
test cases, as showed in Tables 2 and 3 (the history-based testing included 93
tests cases while continuous policy enforcement testing 18 test cases).

9.4 Discussion

The conclusions we can draw from this case study must be taken in light of the
threats to validity of the performed experiment. The presented study relates
to a real policy and one PDP implementation, then further experimentation
involving more policies and PDP implementations would be required. The pro-
posed fault model represents a subset of possible mutation operators, further
mutation classes introducing for instance modifications inside a single PolPA
command should be included and evaluated in the testing framework.

The proposed testing strategy for continuous usage control is based on
modifications of the attributes performed by external entities to the PDP and
does not deal with updates of attribute values triggered as a consequence of
the runtime evaluation of the PolPA policy performed by the PDP. Additional
test cases aimed at forcing specific PDP behaviors and policy evaluation states
of the PDP should be derived.

Finally, the expected results for history-based testing are currently derived
in non automated way, requiring additional labor from the user of the testing
framework. Except for possible faults in our testing framework implementa-
tion, for the rest all steps have been carried out in automated way, so we do
not see other internal threats.

Without neglecting the above limitations, this case study confirmed the
applicability of the proposed testing strategy to real PolPA policies and the
effectiveness of the implemented testing framework for evaluating the run-
time PDP behavior. Although simple, this exploratory example provided the
possibility of deriving an effective automated oracle. Moreover, it gave the op-
portunity of applying the multiple condition coverage approach even in case of
predicates preceding revokeaccess(s,o,r) commands involving more than one
attributes, so to extensively explore all the different PDP behaviors in the
continuous policy enforcement.

10 Related Work

Our proposal in inspired by approaches of software testing, specifically by test
cases derivation and mutation analysis. As surveyed in [18], in literature several
works propose fault models, based on FSM or LTS, for test case derivation.
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In the context of access control systems, that is our domain of research,
the work in [11] defines a fault model and a set of mutation operators for
XACML access control policies. The defined mutation operators manipulate
the predicates and logical constructs of target and condition elements, emulat-
ing syntactic and semantic faults introduced in the policy. The main differences
with our approach are: i) the defined mutation operators are used to evaluate
the fault-detection capability of a test suite and its relation with the structural
coverage achieved by the same test suite and not for test cases derivation; ii)
the fault model and the defined mutation operators are specifically conceived
for XACML language and they do not address PolPA language peculiarities.
In [16] the authors try to extend the mutation operators of [11], focusing on
specific security aspects and relying on the use of a metamodel that allows to
simulate the faults in the security models independently from the used role-
based formalism (R-BAC or OrBAC). Finally, the work in [3] includes and
enhances the mutation operators of [11] and [16] addressing specific faults of
the XACML 2.0 language and providing a tool for the derivation of XACML
mutation operators and their application to XACML policies. Differently from
our proposal, also in this work mutation analysis is performed for test ade-
quacy and not for test cases generation.

Few works address mutation analysis for test case derivation as in our
proposal. Specifically, the authors of [21] propose data mutation to generate
a larger test suite from a few seed test cases. Mutation operators are applied
not to the program under test or the specification of the software but to the
input data with the aim of varying a test case in order to produce another one.
One of the closest works to our proposal is that of [6]. In this paper, security-
specific mutation operators are used to introduce leaks into communication
protocols models so to evidence a correlation between model-level mutants
and implementation faults. In particular, the protocol model is modified in
order to violate a security property in a specific way that is related to a
common mistake at the implementation level, the traces of the mutated model
are collected, and the counter-examples (test cases) for the specified security
property are derived accordingly. Our work differs in the definition of the fault
model, which is based on PolPA language, and on the methodology for test
cases derivation. We also provide a testing framework to automatically derive
the mutants and the test cases and to execute the test cases on the PDP.

Other approaches focus on test cases derivation and use already defined
mutation operators for assessing the effectiveness of the proposed testing strat-
egy [5,12,19,13]. Specifically, the X-CREATE framework [5] and the Targen
tool [12] generate test inputs using combinatorial approaches of the XACML
policies values and the truth values of independent clauses of policy values, re-
spectively. The work in [19] deals with model model-based testing and provides
a methodology for the generation of abstract test cases to be then refined into
concrete requests for the PDP. Also in this work, combinatorial approaches of
the elements of the model (role names, permission names, context names) are
used to derive test cases. However, combinatorial approaches are not suitable
for testing the potentialities of PolPA policies because they do not deal with
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the semantic of the commands composition and do not take into account the
history of the previous accesses and more in general the Usage Control mech-
anisms. Alternatively, the Cirg [13] approach applies change-impact analysis
for test cases generation starting from policy specification. Specifically, it pro-
vides a framework able to synthesize two versions of the policy under test:
the original version and a modified policy version in which, for instance, a
decision rule is negated. The same framework applies change impact analysis
in order to output counterexamples that evidence semantic difference between
the two policies. Each counterexample represents a request that when exe-
cuted with the two policies gives two different responses. These requests with
the associated responses represent the test cases generated by the proposed
framework.

Considering the Usage Control model, there are not proposals similar to
ours for testing this specific type of authorization systems, to the best of
our knowledge. Available solutions, such as [1], propose proactive mechanisms
for preventing possible policy violations and present a combination of run-
time monitoring and self-adaptation to simplify the autonomic management
of authorization infrastructures. In recent years, as surveyed in [17], testing
of authorization systems has been focused on evidencing the appropriateness
of the UCON enforcement mechanisms, focusing on performance analysis or
establishing proper enforcement mechanisms by means of formal models. By
proposing a framework for testing PDP implementation, our approach nicely
complements the existing works.

A comparison of our proposal with related works and their critical analysis
are presented in Table 4. For each reference, we provide a short description
in the last column of the table and we classify it according to seven dimen-
sions: if the specification of a fault model is provided (column labeled FM ); the
usage of mutation analysis either for evaluating the test suite effectiveness (col-
umn labeled Test Adequacy) or for deriving test cases (column labeled Input
Derivation); the provided strategy for tests case derivation (column labeled
Test Generation Strategy), the considered system under test (column labeled
SUT ), if the reference provides a framework implementing the proposed ap-
proach (column labeled Framework) and finally if the reference provides a case
study for validating the results (column labeled Case Study).

Table 4 evidences that many of the analyzed references use mutation anal-
ysis for assessing the effectiveness of a test suite, among them few proposals
define new mutation operators while most works use existing mutation ap-
proaches for evaluating the proposed testing strategy. Our proposal, as some
of the analyzed works, focuses on mutation of the model for deriving test cases.
Specifically, we define a fault model and a fault seeding strategy of the PolPA
policy for deriving test cases. Many of the analyzed works deal with test cases
generation strategies for access control systems specified by XACML policies
or RBAC models: most of them are based on combinatorial approaches of the
input or model data, other ones on change impact analysis. Differently from
these works, the testing strategy proposed in this paper is based on the cov-
erage of the derived fault model for the history based testing and on Multiple
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Condition Coverage methodology for the continuous policy enforcement test-
ing. However, to the best of our knowledge, our proposal is the only existing
solution for testing the UCON system specified by PolPA policy. Finally, most
of the analyzed references provide a framework and a case study whereas some
of them define a fault model.
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Table 4: Comparison of our proposal with main related work.

Mutation Analysis
Ref FM Test Input Tests Generation SUT Framework Case study Description

Adequacy Derivation Strategy
[18] fault model FSM Annotated bibliography

X - - coverage - - of test cases generation
approaches from fault model

[21] by data fault seeding CAMLE A generic approach for
- - mutation of test inputs modeling - X generating test cases

language by data mutation
[11] mutants XACML A set of mutation

X definition - - policies X X operators
for XACML policies

[3] mutants XACML A tool for mutation
X definition - - policies X X analysis

of XACML policies
[5] mutants combinatorial XACML A tool for XACML

- usage - on the input set policies X X requests generation
[12] mutants combinatorial on XACML A tool for XACML

- usage - truth values of policies X X requests generation
independent clauses

[19] mutants combinatorial extended A model-based approach to
- usage - on the elements RBAC X X derive test cases for

of the model model access control requirements
[13] mutants change XACML A tool for generation of

- usage - impact policies X X XACML requests
analysis and responses

[6] by security attack security A test generation
X - model traces protocol - - strategy from

mutation derivation security properties
this by fault seeding fault model PolPA A testing framework

paper X - of PolPA coverage PDP X X for UCON
policy and MCC systems
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11 Conclusions

In this paper we proposed a framework aimed at the automated generation and
execution of test cases, for testing of the PolPA-based PDP implementation.
We proposed two test cases generation strategies focused on the main features
of the PDP: the history-based control and the usage control. In the former,
the test cases cover a defined fault model and target the main problems and
vulnerabilities of the passive PDP implementation. The latter is specifically
conceived for addressing the dynamic runtime behavior of the PDP due to
the mutability of attributes. It is based on the standard technique for multiple
condition coverage and integrates a methodology for simulating all the possible
ways in which attributes can change during the runtime execution of PolPA
commands. For testing the continuous policy enforcement functionality, we
also provided a fully automated facility for the derivation and evaluation of
the expected test results.

We have evaluated both strategies on a real policy and PDP implementa-
tion and showed the effectiveness of the proposed approach in revealing faults.
From the obtained results, we concluded from one side that the automated
tests generation guided from the fault model represents a valid contribution
for detecting static behavioral problems of a PDP implementation. From the
other side, a methodology based on the coverage of attributes values condi-
tions extensively explores all the different runtime PDP behaviors during the
usage control.

A preliminary evaluation confirmed the applicability of the proposed test-
ing strategy to real PolPA policies and the effectiveness of the implemented
framework for testing the runtime PDP behavior.

We are currently working in several directions: in developing a methodology
for automatically deriving the expected results in history-based testing; in
improving the mutation classes in the fault model; in reducing the number of
redundant test cases while keeping the same test effectiveness; in defining a
set of PolPA policies that can be used as conformance test suite.

Future work will also include further experimentation and the application
and adaptation of the proposed testing framework to other usage control sys-
tems based on different policy specification languages such as U-XACML [8].
We have seen that our approach is efficient for the presented PolPA policy, but
when policies have a high structural complexity it might yield a high number
of test requests When the test budget is limited we need to consider ways to
reduce the generated test suite or to prioritize the derived test requests. A way
for reducing generated test cases could be to consider weaker coverage criteria
of the PolPA commands predicates than Multiple Condition Coverage, such
as Modified Condition/Decision Coverage (MC/DC) or Decision Coverage.
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Appendix

Acronym Expanded Version
AC(RA) AfterCondition(revokeaccess(s, o, r))
BC(RA) BeforeCondition(revokeaccess(s, o, r))

CC Change Command
CCO Change Composition Operator
CGIO Change Guard Integer Operator
CGSO Change Guard String Operator
CLO Change Logical Operator

DC(RA) DuringCondition(revokeaccess(s, o, r))
FMM Fault Model Manager
FPG Faulty Policies Generator

MA(RA) MultipleAfter(revokeaccess(s, o, r))
MAU Mutable Attribute Updater

MB(RA) MultipleBefore(revokeaccess(s, o, r))
MCC Multiple Condition Coverage
MCD Multiple Coverage Domain

MD(RA) MultipleDuring(revokeaccess(s, o, r))
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point

PTSM Policy Test Set Manager
SUT System Under Test
TCG Test Cases Generator
TD Test Driver
TO Test Oracle

UCON Usage Control


