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Abstract
Sonations are non-vocal acoustic signals whose production mechanisms have been rarely investigated in mammals. Since 
sonations are directly tied to specic anatomical characteristics, one issue in acoustic communication studies is estimating 
the morphological diversity of the structures responsible of sound emission. The nocturnal and social habits of the African 
crested porcupine make them an ideal model to address this issue. Both sexes bear highly specialised quills on their tail that, 
by colliding against each other, produce a sound (rattling). We measured the quills of 130 subjects and found that their mor-
phology did not vary in relation to season and sex. Compared to subadults (N = 39) and adults (N = 81), cubs (< 6 months, 
N = 10) have fewer and stubbier rattle quills that also dier in their length and diameter across the age classes. The pas-
sage from the cub to the subadult phase seems to sign the most important changes in the quill development. Although it is 
unknown when and how often a cub produces rattling, the presence of quills at a very early stage of life indicates that they 
can potentially be used. Although several hypotheses can explain the potential role of cub rattling, one of the most reason-
able is that, when olfactory and/or visual contacts are prevented, this sound can alert adults about potential predation risks 
on ospring. Matching morphological and acoustic data under dierent contexts will allow understanding the correlates at 
the basis of the potential roles of such a peculiar way of communication.
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Introduction

Sonations are communicative non-vocal sounds produced 
without the involvement of the vocal system (Bostwick and 
Prum 2003). While vocalisations have been studied exten-
sively in many vertebrate taxa, the literature on non-vocal 

acoustic communication remains scarce (Garcia et al. 2012; 
Clark 2016; Wright et al. 2021). However, many dierent 
mechanisms of sonation are achieved through various behav-
iours and/or specialised structures to which a single concep-
tual overview is not applicable (Clark 2016). Indeed, one 
issue in acoustic communication studies is understanding 
the relationship between morphological and acoustic char-
acteristics and their implications on behaviour. Most studies 
focused on sonations aimed to estimate the variation within 
species of their acoustic components (e.g., beak drumming 
of great spotted woodpeckers, Dendrocopos major; Budka 
et al. 2018; chest beating of mountain gorillas, Gorilla ber-
ingei beringei; Wright et al. 2021; beak cluttering of ori-
ental white storks, Ciconia boyciana; Eda-Fujiwara et al. 
2004). Some studies went a step further by experimentally 
conrming that sonations can function as alarm signals in 
crested pigeons (Ocyphaps lophotes; Murray et al. 2017) 
and as a binary recognition cue in banner-tailed kangaroo 
rats (Dipodomys spectabilis; Randall 1994). Only a few 
studies investigated the morpho-functional aspects linked 
to such variation. The stridulating organ of streaked tenrecs 
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(Hemicentetes semispinosus) is formed by dierentiated 
hollow quills that are rubbed together for producing a low-
frequency sound (Endo et al. 2010). The sonation produced 
by the golden-collared manakin (Manacus vitellinus) derives 
from the percussive collision of wings whose radius bone is 
highly dierentiated (Bodony et al. 2016). By manipulating 
alive individuals of hummingbirds and observing the behav-
iour of single (and grouped) feathers when interacting with 
an airow, Clark and Feo (2008) identied dierent modes 
of uttering, which were inuenced by the shape and num-
ber of feathers and their orientation in relation to airow. To 
describe this sonation, Clark (2014) borrowed the key terms 
from the Source Filter Theory. The source is the minimum 
structure that is both necessary and sucient to produce the 
sound; the lter is represented by the structures that are not 
necessary or sucient to produce the sound but that can 
modify it. In many species of birds, tonal sounds serve as 
“acoustic signatures” of utter, and even minor changes in 
feather morphology or behaviour can substantially alter the 
sound (Clark and Prum 2015). Knowing the morphological 
variation of a sound producing system is pivotal to under-
stand its evolutionary implications and functions (Clark 
2016). Sonations likely arise from locomotion induced 
sounds which may have become the target of selection and 
thus co-opted (Darwin 1871; Bostwick and Prum 2003), as 
it has been suggested for bird utter-induced acoustic signals 
that have evolved from involuntary avian ight mechanics 
(Clark and Prum 2015). Sonations can then acquire impor-
tant functions in a variety of behavioural contexts, being 
also used in concert with vocalisations (Bostwick and Prum 
2003). Still, identifying the function of a sound is not an 
easy task. Sounds can be considered as signals when they 
elicit a reaction in a receiver, implying that both the sound 
produced and the behavioural reaction have been selected 
for that function. But sounds can also be cues when only 
the receiver’s behavioural reaction is selected (Scott-Phillips 
2008). Sounds can also be honest signals (Fitch and Hauser 
2003) when conveying information about the sender such as 
size, condition, or class (Reby and McComb 2003; Wright 
et al. 2021).

Outside the African continent, crested porcupines (Hys-
trix cristata Linnaeus, 1758) are distributed only in Italy 
(Mori et al. 2013). They are semi-fossorial, primarily noc-
turnal rodents that live in family groups comprising a repro-
ductive pair, that mates for life, and their ospring (Santini 
1983; Felicioli et al. 1997; Amori et al. 2009; Mori et al. 
2016). Males and females show similar body sizes (Felicioli 
et al. 1997; Mori and Lovari 2014), cooperate in rearing 
ospring, and form stable pairs also outside the reproduc-
tive period (Mori et al. 2016). Copulations occur indepen-
dently of the female oestrus cycle (Mori et al. 2016; Coppola 
and Felicioli 2021) and are preceded by a complex court-
ship of aliative behaviours such as grooming and sning 

(Felicioli et al. 1997). The youngsters can stay with their 
parents for up to a year and help rear the younger siblings 
(Coppola and Felicioli 2021). Family members typically 
spend the night foraging together, but also show daytime 
activity (e.g., sunbathing) (Coppola et al. 2019). In the wild, 
the family groups seem to tolerate each other, with aggres-
sion occurring only if one family closely approaches the den 
of another family (Coppola et al. 2022).

Due to their nocturnal habits, intra-specic communica-
tion in porcupines mainly relies on olfactory and acoustic 
signals. Olfactory communication seems to be involved in 
individual recognition (Massolo et al. 2009) and in resource 
defence with animals marking their feeding sites by deposit-
ing perianal gland secretions (De Villiers et al. 1994). Mori 
et al. (2014) reported the production of acoustic signals, 
involving both vocalizations and sonations, in coincidence 
with the presence of hunting dogs.

All 11 species of the Hystricidae family possess long 
quills covering most of their body with 10 species, the 
most derived ones (Rovie-Ryan et al. 2017), showing spe-
cialised quills clustered on their tail (Fig. 1). These “rattle 
quills” are enlarged, hollow, and open at one end, allowing 
the production of the rattling sound when the tail is shaken 
(Mohr 1965; Amori et al. 2009; Mori et al. 2014). Newborns 
possess rattle quills, although these are softer and closed 
at the tip, which open and wear away later in life. Adults 
sometimes show closed, undeveloped rattle quills, sug-
gesting a possible periodic renovation of these structures, 
but the rate at which this occurs is unknown (Mohr 1965). 
Rattling is a typical defence display of the species, used 
as advertisement to prevent dangerous ghts with potential 
predators and competitors that may have learned to associ-
ate the sound with pain (Mori et al. 2014). In Hystrix spp. 
the younger individuals, and particularly cubs, are mostly 
subjected to predatory events (Mills and Shenk 1992; Mon-
etti et al. 2005). In Central Africa, common predators are 
terrestrial carnivores such as lions (Panthera leo), spotted 
hyenas (Crocuta crocuta), and African wild painted dogs 
(Lycaon pictus) (Breuer 2005). In Italy, H. cristata seems 
to be predominantly hunted by red foxes (Vulpes vulpes; 
Lucherini et al. 1995) and domestic dogs (Canis familiaris; 
Monetti et al. 2005). These predators can rely on acoustic 
cues, also to locate their preys especially under conditions 
of limited visibility (Österholm 1964; Faragó et al. 2010; 
Webster et al. 2010, 2012).

To our knowledge, the only study investigating the mor-
phological variation of rattle quills in the Hystricidae family 
was conducted by Corbet and Jones (1965). The researchers 
discovered notable distinction between various species and 
individuals of the same species, especially in the length of 
the hollow part of the quill and the diameter of the opening.

Given that porcupines’ nocturnal and social habits 
require acoustic-oriented communication, the species 
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is a valuable model for exploring sonations in rodents. 
Although we do not know how rattle quill variability 
aects the sound production, we aim to analyse the mor-
phology of quills to estimate intra-species variation in
populations of crested porcupines in Central Italy.

As a rst step, we hypothesise that the morphology of 
the quills is related to physical characteristics of the indi-
vidual engaging in rattling. Since porcupines show softer 
and closed at the tip quills at birth, we predict that along 
the development these structures can undergo further 
changes along the development, with cubs, subadults, and 
adults varying in the morphology and number of rattle 
quills (Prediction 1).

We do not expect dierences in the morphology and 
number of rattle quills according to the sex for both ana-
tomical and functional reasons (Prediction 2). Since the 
species lacks sexual dimorphism, there is no reason to 
suppose that males and females can dier in their sona-
tion apparatus. Moreover, if the sonations are involved 
in the defence of ospring that is an activity executed by 
both parents, both males and females need similar sona-
tion structures.

The data about reproductive seasonality of wild crested 
porcupines in Italy are still unclear. It seems that births can 
occur throughout the year (Santini 1980, 1983; Mori et al. 
2016; Coppola and Felicioli 2021), however a higher num-
ber of reproductive pairs having litters has been recorded 
in February and the maximum number of twins and triplets 
are reported in October (Mori et al. 2016). If the reproduc-
tive seasonality in term of number of ospring reects the 
necessity to increase the redundancy of the sonations, we 
would expect that the number and morphology of rattle 
quills in adults may change throughout the year and being 
larger and/or in higher number around October (Predic-
tion 3).

Methods

Data were collected from 130 subjects (adults, N = 39; sub-
adults, N = 81; cubs, N = 10) that were found dead in the 
provinces of Grosseto and Siena (Central Italy) between 
1993 and 2021 (one of the frequent causes of mortality in 
this species is car collisions; Amori and Capizzi 2002). 
Only corpses that were intact in all their body parts were 
sampled. For each individual, we collected information 
about sex and date of collection. The age class of each por-
cupine was estimated by examining their maxillary teeth 
eruption/replacement (Van Arde 1985; Pigozzi 1987). 
Each subject was assigned to either a cub (up to 6 months 
old), subadult (between 6 and 18 months old), or adult 
class (> 18 months old). We collected, counted and meas-
ured all the rattle quills for each individual. By using a 
Manual Vernier Caliper (0–100 mm), we took data on the 
length and diameter of the intact rattle quills and calcu-
lated the mean values by using the cm as unit of measure-
ment. We also evaluated the Standard Error (± SE). The 
operators (N = 6) counted and measured the quills three 
times each, and reported the mean value calculated on 
the three measurements. As for the number of quills, the 
dataset included entries from photographs of ve captive 
live subjects rescued by the “Centro Recupero Animali 
Selvatici della Maremma” (Semproniano, Grosseto).

We utilised Generalised Linear Mixed Models 
(GLMMs) to predict rattle quills’ number and morpho-
logical features. The variables sex, age class, and climate 
seasons for temperate environments (spring/summer/fall/
winter) were included as xed factors. Individual iden-
tity of the operators was included as the random factor to 
control the potential variability deriving from the dier-
ent operators. Our response variables were the number of 

Fig. 1  a Close up of an adult 
female’s tail, with the rattle 
quills clustered in the center; 
b Rattle quills collected from 
one adult individual (Credit: 
V. Schianini). These quills are 
translucent and are made by an 
enlarged and hollow portion 
and a peduncle that is embed-
ded in the skin. During the tail 
vibration, the emitted sound is 
produced when these structures 
hit against each other and/or 
against normal quills
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rattle quills (Poisson distribution), mean total length, mean 
total diameter, and the ratio between length and diameter 
means (Gaussian distribution). We ran all analyses in R, 
version 2024.04.1 (R Core Team 2024) using the glm-
mTMB package (Brooks et al. 2017). We inspected the 
Variance Ination Factor (performance package, Lüdecke 
et al. 2021) to check for collinearity among predictors. In 
all the models, the variables showed negligible collinearity 
(number rattle quills:  VIFMIN = 1.03;  VIFMAX = 1.06; mean 
total length,  VIFMIN = 1.04;  VIFMAX = 1.14; mean total 
diameter,  VIFMIN = 1.02;  VIFMAX = 1.14; the ratio between 
length and diameter,  VIFMIN = 1.03;  VIFMAX = 1.14). For 
each model, we evaluated the distribution of the residu-
als with the DHARMa package (Hartig 2022). Then, each 
full model was compared to a null model including only 
the random factor via the anova function (Chambers and 
Hasties 1992). We then computed the signicance of the 
single xed factors for each model with a likelihood ratio 
test using the drop1 function (Chambers 1992). Lastly, we 
used a Tukey–Kramer test to calculate dierences between 
groups of signicant predictors (emmeans package, Lenth 
2024).

Results

We collected a total of 130 cases. The mean for quill num-
ber was 13.93 (± 0.41 SE), for the total mean length 3.80 
(± 0.09 SE), for total mean diameter 0.38 (± 0.01 SE), for 
the total mean diameter/total mean length ratio (D/L) 0.10 
(± 0.003 SE).

All the full models signicantly diered from the null 
models (GLMMs: quill number, χ2 = 41.20, p < 0.001, num-
ber of cases = 130; total mean length, χ2 = 43.62, p < 0.001, 
number of cases = 92; total mean diameter, χ2 = 19.44, 
p = 0.003; D/L model, number of cases = 91, χ2 = 17.10, 
p = 0.009, number of cases = 90). Sex and season did not 
signicantly aect any of the response variables (Table 1). 
However, the age class had a signicant eect on all the 
response variables. In particular, cubs showed a lower num-
ber of quills (mean 7.70 ± 1.14 SE) than subadult (mean 
13.46 ± 0.57 SE) and adult individuals (mean 14.93 ± 0.51 
SE). The quills were shorter in cubs (cms) (mean 2.06 ± 0.14 
SE) that in subadults and adults and in subadults (mean 
3.72 ± 0.11 SE) than in adults (mean 4.07 ± 0.10 SE). 

The quill diameter differed between cubs (cms) (mean 
0.27 ± 0.02 SE) and adults (mean 0.41 ± 0.01 SE), with sub-
adults (mean 0.36 ± 0.02 SE) not showing any signicant 
dierence between the two other age classes scoring val-
ues in between. The diameter/length ratio was signicantly 
higher in cubs (mean 0.13 ± 0.01 SE) than in subadults 
(mean 0.10 ± 5 ×  10–3 SE) and adults (mean 0.10 ± 3 ×  10–3 
SE) that did not dier signicantly between each other. By 
the Tukey–Kramer post-hoc test we calculated dierences 
between groups of signicant predictors (see Fig. 2 for the 
results).

Discussion

The study of sonations in rodents is in its infancy and rep-
resents a challenge in the study of acoustic communication 
that deserves more attention. We studied the variability of 
rattle quills in African crested porcupines in Central Italy 
trying to address some issues on the possible function of 
sonations by analysing the acoustic apparatus producing 
sounds. Obviously, this is a preliminary step that needs to 
be further expanded through experimental and naturalistic 
observations. Our ndings show that the passage from the 
cub to the subadult phase signs the most important changes 
in the development of quills which seem to occur around 
the rst 6 months of life (Fig. 3). Overall, cubs have fewer 
(Fig. 2a) and stubbier rattle quills (Fig. 2d) compared to the 
other two age classes. Quills diered in their length across 
the three age classes (Fig. 2b), resulting in a quill length 
gradient. Finally, the diameter signicantly diered between 
cubs and adults, with subadults falling in-between (Fig. 2c).

As predicted, our results indicate no dierence between 
males and females in any of the rattle quill parameters con-
sidered. These data are in agreement with the lack of sexual 
dimorphism of Hystrix cristata. Finally, we also found that 
the season did not inuence the morphology of rattle quills 
thus conrming the stability over time of these structures 
once they reach a complete development.

Although it is still uncertain whether the morphological 
dierences observed in porcupines translate into acoustic 
dierences, our data satises the two conditions that enable 
a trait to be used as a recognition cue (Sherman et al. 1997; 
Dale et al. 2001; Tibbetts and Dale 2007). The trait must be 
distinctive between dierent categories (e.g., age class) and 

Table 1  Results of likelihood 
ratio tests for each model. LRT 
value and p-values for each 
predictor are shown

Quill number Tot. mean length Tot. mean diameter D/L

LRT p-value LRT p-value LRT p-value LRT p-value

Season 0.602 0.896 5.429 0.335 5.751 0.124 7.253 0.064
Sex 1.609 0.205 1.013 0.724 0.277 0.599 0.914 0.339
Age class 35.099 < 0.001 38.252 < 0.001 10.909 0.004 11.378 0.003
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Fig. 2  Distribution of quills’ a number, b total mean length, c total 
mean diameter and d mean diameter/total mean length ratio (D/L) 
across the three age classes. The number of observations for each 
group is reported on the x-axis. The thick line in each box corre-
sponds to the median, while the upper and lower limits of the boxes 

delimit the interquartile range. Signicance levels of p-values calcu-
lated with the Tukey–Kramer tests comparing age class groups are 
shown in the upper part of each plot (* p < 0.05; ** p < 0.01; *** 
p < 0.001). The number of observations is reported above each box

Fig. 3  a Close ups of a cub’s 
and b an adult’s tail, with (at 
least) 6 and 10 rattle quills, 
respectively. (Credits: V. Schi-
anini)
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remain stable over time (e.g., seasons). Acoustic analyses 
associated with playback experiments are needed to clarify 
whether animals are able to produce dierent sonations and 
use them as recognition cues. We can only speculate about 
the linkage of quill morphology and the production of the 
rattling sounds in porcupines’ communication.

The specialised morphology of rattle quills and the scarce 
variability between sexes and between subadults and adults 
support the hypotheses of the alerting and warning func-
tion of rattling. Since both male and female porcupines have 
similar roles in actively protecting and rearing ospring 
(Sever and Mendelssohn 1988; Mori et al. 2016; Coppola 
and Felicioli 2021), this can reect into the presence of simi-
lar anatomical adaptations in the defensive domain. Like the 
sonation-producing feather modications in crested pigeons 
(Ocyphaps lophotes), sexually monomorphic structures may 
produce sonations that are likely alarm signals (Murray et al. 
2017). This makes it reasonable to assume that rattle quills 
have not been subjected to sexual selection, with our current 
ndings providing support to this assumption.

In the light of the Source Filter Theory (sensu Clark 
2014), we do not have information about which parts of the 
quills function as source or as lter in the modulation of the 
acoustic features of rattling, but our results prompt us to 
ask further questions. One is whether and how exactly the 
number, length and diameter of rattle quills can inuence the 
rattling acoustic features. Their hollow and open portion can 
amplify the sound generated by quills colliding against each 
other. It is likely that having more, and larger rattle quills can 
aect the spectral features of the sound emitted. A way to 
assess how distinct anatomical features inuence particular 
characteristics of the sound is replicating the mechanism 
of production articially so that single anatomical param-
eters can be controlled (Clark 2016). Another possibility to 
produce dierent sounds could be due to the motor actions 
enacted by the subject during rattling: the same instrument 
can be played in dierent ways. The association with other 
sensory cues (e.g., vocalisations, postures) can enrich rat-
tling with other elements that can provide dierent functions 
to the sonation (multimodal communication; Bradbury and 
Vehrencamp 1998).

Although it is unknown when and how often a cub pro-
duces rattling, the presence of quills at a very early stage 
of life indicates that they can be used potentially to emit 
sounds. Therefore, a crucial question is, what could be the 
benet for a cub emitting sonations? The emission of rattling 
may not be adaptive for young individuals as the sound can 
be eavesdropped by potential predators (Peake 2005). The 
fact that porcupine cubs are equipped with morphologically 
distinct rattle quills does not necessarily imply that they emit 
rattling. While we know that newborns have softer rattle 
quills closed at the outer end (Mohr 1965) and that newborns 
are precocial and emerge relatively early from their burrows 

(Coppola and Felicioli 2021), no data are available regarding 
the ontogeny of porcupines’ multi modal defence display. 
Indeed, the development of porcupines’ defence behaviour 
might be interesting to investigate further.

A limitation of our study resides in the impossibility to 
determine the uniqueness of the rattle quill morphology 
among dierent individuals that would require repeated 
measurements on the same animal across different age 
stages. Gathering data on quill morphology of a given sub-
ject for an extended period and, simultaneously, collecting 
behavioural data is the only approach allowing to establish 
a link between the rattle quill morphological and acoustic 
characteristics thus understanding whether dierences at the 
individual level remain stable over time. Such an approach 
is obviously extremely challenging to carry out. Another 
limitation resides in the restricted number of individuals we 
were able to sample. Expanding the dataset, both in terms of 
number of subjects and geographical locations, would allow 
us to draw a more accurate picture of the variability of rattle 
quills in the Italian porcupine population.

Since Charles Darwin (1871)’s rst reports, the role of
bird sonations has been extensively explored. Yet, research 
on acoustic communication has only recently focused on 
mammal sonations that probably evolved numerous times 
independently, and this diversity allows exploring how 
acoustic communication systems emerged (Clark 2016). 
Expanding our focus on these numerous and diverse sound 
production mechanisms could provide a more comprehen-
sive understanding of vertebrate acoustic communication.
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