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1 Introduction

The idea of composing this book arose from the desire to enrich and systematise
the extensive state-of-the-art studies that were carried out within the framework of
AIM@SHAPE, a Network of Excellence funded by European Commission under
the FP6-IST !. The main goal of the network is to develop new methodologies for
modelling and processing knowledge embedded in digital shapes.

Current approaches to modelling are focused on the geometry of shapes, while
their semantics, e.g., meaning or functionality in a given context, is still overlooked.
This is partly due to the lack of methods for the automatic extraction of the se-
mantic content from digital shapes, known as the process of semantic annotation in
research areas related to the development of the Semantic Web, and partly to the
evolution of research on shape modelling which in the past years was highly focused
on the geometric aspects of shapes. The shift from a purely geometric to a semantic-
aware level of representation of digital shapes is the ultimate scientific objective of
AIM@SHAPE.

In this scenario, a crucial role is played by geometry processing methods that are
aimed to preserve and enhance shape information as well as to effectively capture
the structure of a shape by identifying relevant shape components and their mutual
relationships. Each chapter of the book provides a detailed state-of-the-art review
on a specific topic, which is crucial for shape analysis and structuring, contains a
classification of the techniques developed in the area, and discusses open problems.

Structural analysis play a fundamental role in the automatic extraction of seman-
tic information. While shapes are fully characterized by a specific geometry, shape
information is treated differently by the human brain with respect to several other
forms of information. At a geometric level, a digital shape is a computational struc-
ture which defines a geometric representation. Different types of geometric models
can be used to describe the same object. Examples are polygons, surface models
(e.g., splines, NURBS surfaces), or solid models (e.g., triangle or tetrahedral meshes,
boundary representations, constructive volumetric representations). The structural
level in the representation is reached by organizing geometric information to reflect,
or make explicit, the association between the various components of the shape. A
structural description is the basis for developing semantic-based shape representa-
tions, since it abstracts from the low-level, detailed, description provided by a geo-
metric model.

Several techniques have been developed in the literature for processing different
aspects of the geometry of shapes, in particular shape interrogation and re-meshing
techniques enhance a shape description with information which can be effectively
used to attach semantics to the shape. Shape interrogation is the process of extract-
ing information from a geometric model. Geometric models need to be analyzed
with respect to different aspects, such as visual pleasantness, technical smoothing,
geometric constraints, or surface intrinsic properties. The various methods devel-

! AIM@SHAPE, http://www.aimatshape.net



VI Introduction

oped in the literature are used to detect surface imperfections, to analyze shapes, or
to visualize different forms. Such methods are reviewed in Chapter one.

Re-meshing is often used for efficient shape approximation, and it consists of
repartitioning a set of primitives so that they best fit the original shape. Re-meshing
preserves the shape, in the sense that it still approximates the shape after re-meshing,
and it can be designed to enhance the shape. Every shape feature is locally fit with a
primitive that minimally characterizes the shape. In addition, some recent re-meshing
techniques operate through a careful analysis based on multi-scale discrete differen-
tial geometry so as to estimate the main (and detailed) axis of symmetry of the shape.
The shape is, thus, locally classified as spherical, parabolic, elliptic, and hyperbolic
in order to drive the re-meshing process. Such classification may be also used for
shape enhancement. Chapter two presents a survey on re-meshing techniques.

A first way of structuring shape information is provided by those techniques that
organize a geometric shape description defined by a function, by a mesh, or by a set
of points into a representation of the shape at different levels of resolutions, from
which concise and adaptive shape descriptions can be extracted. This topic has re-
ceived considerable attention in recent years in many fields of computer graphics,
geometric modelling and visualization, and numerous research efforts have been de-
voted to it. This book contains two chapters on focused on multi-resolution analysis,
and the other on subdivision surfaces.

Multi-resolution analysis provides a powerful tool for efficiently representing
functions at multiple levels of detail. Herein, a complex function is decomposed into
a coarser low-resolution part, together with a collection of detail coefficients, nec-
essary to recover the original function. Multi-resolution analysis has many inherent
advantages, including compression, progressive transmission, visualization and edit-
ing at different levels of detail. An overview of methods for multi-resolution analysis
is presented in Chapter three.

Subdivision surfaces define the basis for generating a smooth surface from a
coarse mesh, and, thus, they have bees extensively used in geometric modeling for
creating, editing and transmitting a shape. The surface is defined by the initial coarse
mesh plus a subdivision scheme to progressively subdivide the mesh by inserting
new vertices and connecting them to the edges and faces until a smooth surface is
obtained in the limit. Chapter four contains a review of surface subdivision schemes
and their application in geometric modeling.

The third part of the book is devoted to structural shape representations. In the
above framework, many research efforts have been devoted to study concise, struc-
tural representations of a shape based on skeletal structures, such as the medial axis,
or the Reeb graph. Skeletal structures provide an abstract shape representation by
idealized lines that retain the connectivity of the original shape. In advanced fields,
such as virtual human modeling, available modeling tools to represent structured
geometry focus on adding a skeleton to the 3D geometry in order to animate it and
provide different degrees of realism. A survey of different skeletal structures is pre-
sented in Chapter five.

Another class of structural representations is provided by morphology-based de-
scriptions for scalar and vector fields. There has been a considerable amount of work
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in the literature on extracting critical features (point, integral lines, etc.) from two-
dimensional scalar fields describing grey-level images and terrains, and, more re-
cently, some work has been done on volume data on extracting critical features and
for representing the topological structure of the field iso-surfaces. A survey of mor-
phological representations for two-dimensional and three-dimensional scalar fields
is presented in Chapter six.

Topological methods based on features, like critical points or separatrix lines,
have also been applied for the analysis of vector fields. The basic idea is to use such
features for segmenting the flow into areas of different flow behaviour, and use this
as a tool for understanding complex phenomena described by the vector fields. After
introducing topological features for two-dimensional and three-dimensional vector
fields, Chapter seven presents a survey of methods for extracting topological fea-
tures from vector fields and using them as visualization tools for complex flow phe-
nomena, represented both as static and dynamic fields. Applications of topological
methods for compressing, simplifying, comparing, and constructing vector fields are
also discussed.

The last part of the book, namely Chapter eight, provides a review on the use
of structural data for modelling shapes with a high semantic characterization, e.g.,
virtual humans. In this case, the structural model, called the control skeleton, has
by itself a specific role in the evaluation of the many different shapes associated
with all the possible postures that the body model can reach. The first part of the
Chapter discusses the control articulated skeleton structure and different approaches
to build skeletons and bind it to the shape geometry. The second part addresses the
generation of level-of-detail models for virtual humans, in terms of the geometry and
of the articulated skeleton.

We would like to acknowledge the work of all the authors of the various chapters
in this book, that contributed with their expertise and energy to assemble a substantial
part of state-of-the-art reports on a variety of interesting topics. Our special thanks go
to Bianca Falcidieno, the coordinator of the AIM@SHAPE Network of Excellence,
for her enthusiasm and support in this work and for having inspired much of the
motivations of this collection, and to all partners in AIM@SHAPE. Many people
contributed to the preparation of the book, and we would like to thank specifically
Emanuele Danovaro for his invaluable help in editing and preparation.

Finally, we would like to acknowledge the support of the European Network of
Excellence AIM@SHAPE, contract number 506766.

Leila De Floriani Michela Spagnuolo
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