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ABSTRACT
Satellite Interferometric Synthetic Aperture Radar (InSAR) is widely used for topographic, 
geological and natural resource investigations. However, most of the existing InSAR studies 
of ground deformation are based on relatively short periods and single sensors. This paper 
introduces a new multi-sensor InSAR time series data fusion method for time-overlapping and 
time-interval datasets, to address cases when partial overlaps and/or temporal gaps exist. A 
new Power Exponential Knothe Model (PEKM) fits and fuses overlaps in the deformation curves, 
while a Long Short-Term Memory (LSTM) neural network predicts and fuses any temporal gaps 
in the series. Taking the city of Wuhan (China) as experiment area, COSMO-SkyMed (2011– 
2015), TerraSAR-X (2015–2019) and Sentinel-1 (2019–2021) SAR datasets were fused to map 
long-term surface deformation over the last decade. An independent 2011–2020 InSAR time 
series analysis based on 230 COSMO-SkyMed scenes was also used as reference for comparison. 
The correlation coefficient between the results of the fusion algorithm and the reference data is 
0.87 in the time overlapping region and 0.97 in the time-interval dataset. The correlation 
coefficient of the overall results is 0.78, which fully demonstrates that the algorithm proposed 
in our paper achieves a similar trend as the reference deformation curve. The experimental 
results are consistent with existing studies of surface deformation at Wuhan, demonstrating 
the accuracy of the proposed new fusion method to provide robust time series for the analysis 
of long-term land subsidence mechanisms.
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1. Introduction

Consolidation and compression of soft soil layers 
under the joint action of natural and human factors 
(Bagheri-Gavkosh et al. 2021) can cause irreversible 
damage to urban infrastructure, including buildings 
(Abidin et al. 2011), roads (Chen et al. 2021), and 
underground pipelines (Perissin, Wang, and Lin  
2012). This is a common engineering geological pro-
blem in major cities all over the world (Ding et al.  
2021; Herrera-García et al. 2021), requiring detailed 
characterization and monitoring, as well as develop-
ment of mitigation measures to reduce impacts on 
urban assets.

Traditional monitoring tools (e.g. leveling, Global 
Positioning System – GPS), and other field observa-
tion methods used for urban subsidence monitoring, 
are mostly point-based methods with typically low 
spatial (and partly temporal) density of observations, 
long sampling time interval and limited applicability 
for large-scale monitoring (Han et al. 2020; Zhou et al.  
2022). With the continuous development of remote 
sensing technology, Interferometric Synthetic 
Aperture Radar (InSAR) techniques have the 

advantage of high spatial and temporal resolution 
and wide coverage of SAR imagery (Zebker and 
Goldstein 1986). Therefore, these techniques have 
been widely used in urban surface deformation mon-
itoring since the 1990s and have now become well- 
established subsidence monitoring tools (Cigna and 
Tapete 2021; Haghshenas Haghighi and Motagh  
2019; Zhou et al. 2022; Ma et al. 2022; Orhan 2021; 
Orhan et al. 2021; Sun et al. 2016; Zhu et al. 2015), 
providing outputs of suitable accuracy (Cigna, 
Ramírez, and Tapete 2021). In the process of applica-
tion, the traditional Differential InSAR (DInSAR) has 
gradually developed into advanced multi-temporal 
methods, such as Persistent Scatterer InSAR (PS- 
InSAR) (Ferretti, Prati, and Rocca 2000, 2001) and 
Small Baseline Subset (SBAS) (Berardino et al. 2002; 
Lanari et al. 2004).

Due to the generally limited nominal lifespan of a 
single SAR satellite (e.g. 5–7 years) and observation 
scenarios by which long SAR time series over the 
same area on the ground are possible but not always 
available, most existing InSAR studies cover a limited 
time period only (mostly short-term studies of 1–5  
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years). Taking the city of Wuhan, China, as an exam-
ple of a fast-expanding city where land subsidence is 
strongly related to urban development and, as such, 
was repeatedly investigated by the InSAR community, 
Costantini et al. (2016) and Zhou et al. (2017) all used 
image datasets with a length of one year to monitor 
short-term subsidence and analyze the spatio-tem-
poral features and causes of deformation. Han et al. 
(2020) used the PS-InSAR method to process Envisat 
2008–2010, ALOS-1 2007–2010, and Sentinel-1 (S1) 
2015–2019 images, and analyzed the effects of urban 
construction, changes in Yangtze River and ground 
water levels, on the subsidence patterns and trends 
across the city. Although multiple datasets were 
included, these data are not continuous and thus pro-
cessed and analyzed in segments. Hu et al. (2021) used 
the SBAS method to analyze consolidation of soft soil 
and karst collapse hazards in Wuhan using TerraSAR- 
X (TSX) imagery collected in 2013–2017 and S1 ima-
gery in 2015–2017. The segmental processing 
approach was employed, however, thus only revealing 
short-term change and not exploring long-term 
changes over time. The longest InSAR study of land 
subsidence in Wuhan based on a continuous time 
series is the analysis by Jiang et al. (2021) using 
COSMO-SkyMed (CSK) data from 2012 to 2019. 
However, for a slowly developing geologic hazard 
like surface subsidence, observations spanning over a 
decade would be recommended to accurately deter-
mine long-term trends and the induced risk level on 
urban infrastructure, especially in cities where multi-
ple processes and different timings of urban develop-
ment may occur. Therefore, time series fusion of 
InSAR datasets derived from multiple satellite plat-
forms is of strategic importance (Chen et al. 2021).

Several studies have focused on multi-sensor data 
fusion. Samsonov and D’Oreye (2012) used singular 
value decomposition (SVD) combined with Tikhonov 
regularization to fuse multi-sensor SBAS subsidence 
results. Deng et al. (2016) used nonlinear deformation 
model constrained SBAS analysis to fuse multi-sensor 
data. Pepe et al. (2016) regularized the underdeter-
mined system of linear equations to get the minimum 
acceleration of (unknown) 3-D deformation compo-
nents to complete the fusion of multi-sensor data. Sun 
et al. (2016) merged different InSAR results by con-
sidering the offset over overlapping areas. Haghshenas 
Haghighi and Motagh (2019) fused InSAR datasets by 
assuming that different time series follow the same 
trend line. Yastika, Shimizu, and Abidin (2019) used 
a hyperbolic method for multi-sensor data fusion. 
Chen et al. (2021) fused SBAS results from two sensors 
using a time series approach based on the minimum 
gradient difference. These methods either exploit 
model-constrains or assume a linear trend of the sub-
sidence curve. However, the long-term subsidence 
curves might be influenced by various factors and 

often show nonlinear characteristics (e.g. in Wuhan 
(Jiang et al. 2021), Aguascalientes (Cigna and Tapete  
2021)). In addition, depending on the input data col-
lected, there may be overlaps and/or gaps between the 
different datasets composing the time series. Both 
circumstances can impact data fusion.

In this paper, a nonlinear PS-InSAR method is used 
to process three SAR image datasets separately, and a 
multi-source and multi-case InSAR deformation data 
fusion method combining the Power Exponential 
Knothe Model (PEKM) (Chen et al. 2018) with the 
Long Short-Term Memory (LSTM) neural network 
(Chen et al. 2022, 2021; Ding et al. 2021; Qu, Yang, 
and Chang 2019) is proposed to fuse the datasets, to 
obtain the longest deformation time series results for 
the city. The method preserves the nonlinear charac-
teristics in the long-term deformation curve. The tests 
were undertaken by simulating two cases, i.e. when 
InSAR time series from different sensors partially 
overlap in time, and when there is a temporal gap of 
data in between, to prove that the method is also 
suitable for “multi-case” implementation. The new 
method enables obtaining long deformation time ser-
ies from multi-sensor datasets.

2. Methodology

PS-InSAR is used to process SAR single look complex 
images using SARPROZ software to obtain PS datasets 
with associated line-of-sight (LOS) displacement time 
series and velocities for the research area. These are 
the inputs that are used for the fusion experiments. 
Two main aspects need to be accounted for before 
fusion:

(1) The coordinate systems of the PS datasets 
resulting from the processing of multi-sensor 
SAR imagery are different, and so are the inci-
dence angle, spatial resolution, and other para-
meters of the images. Simple calculation of the 
algebraic sum of deformation values measured 
by multiple sensors may cause errors. 
Therefore, the unification of the reference 
datum (e.g. all datasets are projected to the 
WGS84 geographic reference system) is 
required before multi-source SAR data can be 
fused.

(2) Land subsidence often evolves by following a 
nonlinear trend. As a consequence, the simplest 
linear time series fusion approach may give 
poor fusion performance. Therefore, a non-
linear model needs to be incorporated into the 
fusion workflow.

In the next sections, we explain how we first unify the 
coordinates of the different PS datasets, and post-pro-
cess them to retrieve vertical time series deformation. 
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The two cases of data fusion methods (namely, when 
the time series show overlapping periods, and when 
they exhibit temporal gaps) are then discussed in 
depth.

2.1. PS-InSAR analysis and post-processing

The standard PS-InSAR (Ferretti, Prati, and Rocca  
2000, 2001) technique and SARPROZ (Perissin, 
Wang, and Lin 2012; Roccheggiani et al. 2019) soft-
ware are used to process the datasets. The quality 
parameters describing signal stability of radar tar-
gets are combined to get PS points. Height and 
velocity parameters are estimated by means of a 
strong first-order network comprising a sub-selec-
tion of PS candidates (PSC) (with amplitude stabi-
lity index, ASI > 0.8), where atmospheric phase 
components are detected and removed. The LOS 
deformation rate and time series are estimated for 
each point using a nonlinear trend model. The out-
put dataset resulting from the high resolution sen-
sors (onboard TSX and CSK) are resampled to the 
result of the low-resolution sensor (S1) to a same 
final resolution of 30 m.

PS deformation values in the LOS direction is 
shown in Equation (1): 

DLOS ¼ cos θ � DU þ sin θ � sin φ � DN

� sin θ cos φ � DE
(1) 

where DU ¼ DU1 ;DU2 ; . . . ;DUn½ �, DN ¼ DN1 ;DN2 ;½

. . . ;DNn �, DE ¼ DE1 ;DE2 ; . . . ;DEn½ � are the three- 
dimensional cumulative deformation components 
along the vertical, north-south and east-west direc-
tion, respectively. The value θ represents the inci-
dence angle of the sensor, and φ represents the 
corresponding orbit azimuth angle. The SAR image 
orbit is near-polar, therefore the sensitivity of the 
estimations to the north-south motion is quite lim-
ited. Meanwhile, assuming that the east-west defor-
mation component can be neglected, the vertical 
deformation component can be obtained from the 
LOS measurement as: 

DU ffi
DLOS

cos θ
(2) 

2.2. Data fusion approach

2.2.1. Case 1: time series overlaps
Non-linear deformation behavior dominates in long 
time series of urban surface subsidence because of 
various influences, such as human activities and nat-
ural factors; therefore, the general linear model may 
not always meet the specific needs of a subsidence 
study. The a priori model can be derived from the 
urban deformation characteristics. During the initial 

stage of surface settlement, cumulative deformation 
grows relatively rapidly, and the settlement velocity 
increases with time. This means that the surface set-
tlement acceleration is positive at this stage. During 
the following stage, the settlement velocity gradually 
reaches the maximum. But the settlement accelera-
tion gradually decreases to 0. During the decay stage 
of surface settlement, cumulative deformation con-
tinues to increase, but increases slowly. Thus, the 
settlement velocity gradually tends to 0 at this stage. 
Hence, the acceleration of subsidence gradually 
changes from a negative value to 0 (Stramondo et 
al. 2008; Pratesi et al. 2016; Lei et al. 2018; Xinru and 
Yuchan 2012).

From this analysis, it can be concluded that the 
whole stage morphology follows a roughly S-shaped 
curve. Therefore, we combine the nonlinear features 
of the surface settlement process, using the Power 
Exponential Knothe Mode (PEKM) model, which 
can better fit this deformation feature to completely 
capture the entire process (Lei et al. 2018; Xinru and 
Yuchan 2012). The surface subsidence in PEKM is 
shown in Equation (3): 

WðtÞ ¼Wmax 1 � e� ctð Þ
k (3) 

where WðtÞ represents the cumulative deformation at 
time t, Wmax is the predicted maximum deformation, 
and c, k are the shape parameters to be estimated. By 
deriving the model, the deformation velocity vðtÞ and 
acceleration aðtÞ can be expressed as (Liu, Cao, and 
Liu 2009): 

vðtÞ ¼Wmaxkce� ct 1 � e� ctð Þ
k� 1 (4) 

aðtÞ ¼ � Wmaxkc2e� ct 1 � e� ctð Þ
k� 1

þWmaxkðk � 1Þc2e� 2ct 1 � e� ctð Þ
k� 2 (5) 

In order to show more intuitively that the model 
expresses the surface deformation process, the cumu-
lative deformation, its velocity and acceleration curves 
over time as depicted by the PEKM model are dis-
played in Figure 1. This figure indicates that the model 
fits the subsidence curves for each stage of subsidence 
using different parameter settings.

The nonlinear least squares method combined with 
a genetic algorithm (GA) is used to estimate the three 
parameters (Wmax, c, k) of the PEKM. The nonlinear 
least squares fitting algorithm is a local polar algo-
rithm, which can quickly obtain a local polar solution, 
but not a global polar solution (Xing et al. 2022). A GA 
is a model for constructing artificial systems by imitat-
ing the mechanism of biological evolution. The 
method is self-organizing, self-adaptive, self-learning 
and essentially parallel, and has advantages when sol-
ving multi-dimensional, multi-peaked, and global 
optimization problems (Yao and Sethares 1994).

GEO-SPATIAL INFORMATION SCIENCE 3



A GA algorithm does not require much local infor-
mation in order to determine the global optimal 
search direction, starting from the initial population, 
and evolving generation by generation to identify the 
optimal solution according to the natural biological 
evolution principle of survival of the fittest and super-
iority. In each generation, individuals are selected 
according to the magnitude of their fitness in the 
problem domain, and operations such as replication, 
exchange, and mutation are used to keep executing on 
and gradually approximating the global optimal solu-
tion (Xing et al. 2022).

Combining the PEKM and the GA simultaneously 
improves the global and convergence accuracy of the 
algorithm to obtain the global optimal solution. The 
fitness function is constructed from the 2-norm of the 
model residuals Wres at time t, which can be expressed 
as (Chen et al. 2021): 

Fitness ¼ ΔWresðtÞk k
2
2¼ min (6) 

The main steps of the proposed method can be 
described as follows.

(1) Initialization. We determine the population 
size, hybridization probability, mutation rate, 
and termination iteration criterion, and then 
the number of individuals in the initial popula-
tion randomly from them.

(2) Population evolution. Using the fitness func-
tion, we calculate the fitness of each individual 
in the population and assign a reproductive 
probability to each individual based on this 
fitness, and then perform genetic operations 
based on the set hybridization probability and 
mutation probability to form a new generation 
of population.

(3) Termination judgment. If the pre-set iteration 
termination criterion is satisfied, the computa-
tion is stopped and the optimal population of 
individuals is outputted and used as the final 
optimal parameter and the algorithm ends. If 
not, we return to step 2.

(4) The output approximate global optimal solu-
tion is brought into nonlinear least squares to 
obtain the global optimal solution.

2.2.2. Accurate determination of fusion time
After building fitting curves for the two time series 
datasets to fuse, we consider a more precise method to 
determine the fusion time t for the two curves. In 
many data fusion methods, this key issue is usually 
ignored, and the fusion time is randomly chosen or 
simply by the start/end time of the two datasets, which 
may affect the accuracy of fusion to a certain extent 
(Chen et al. 2021). Therefore, we determine the fusion 
time t by calculating the gradient of the two curves in 
the overlapping region, i.e. the minimum value of the 
velocity. The deformation curve trends are nearly the 
same when the gradient difference between the two 
curves is minimal, therefore that time was chosen as 
the fusion point. Thus, the fusion time t can be 
expressed as: 

t ¼ arg min d
0

1 tið Þ � d
0

2 tið Þ
�
�

�
�

n o
; ti 2 t1 [ t2 (7) 

where d1 and d2 are the fitting curves of the subsidence 
time series of the two input datasets.

2.2.3. Case 2: temporal gaps
Unlike overlapping series, when there are temporal 
gaps between the two time-series to fuse, we consider 
an alternative fusion strategy. We employ an LSTM 
network to predict the subsidence trend during the 
gap and fuse it with the subsequent subsidence curves. 
LSTM is a particular kind of Recurrent Neural 
Network (RNN) (Sherstinsky 2020), which can effec-
tively avoid the problem of gradient disappearance 
and explosion, which can occur when using RNNs 
due to their inability to transmit long-term informa-
tion, as there is no gating mechanism (Gers, 
Schmidhuber, and Cummins 1999; Hochreiter and 
Schmidhuber 1997). Furthermore, LSTM efficiently 
stores information and provides more precise access 
to historical information. The network structure of 
LSTM is largely the same as that of RNN. However, 
unlike RNN, LSTM contains an external self-looping 
module, as well as an implicit layer that adds a “cell 
state”. This layer contains several storage cells and 
three different gates module: input, forget, and output 
gates. These control historical information, collect 
external data, filter internal data, and control the 
retention of information (Qu, Yang, and Chang  

Figure 1. The influence of the shape parameter k in PEKM on (a) deformation value, (b) velocity and (c) acceleration.
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2019). The gate module is controlled by a nonlinear 
activation function with a value between (0,1), indicat-
ing the proportion of information allowed to pass, 
which can be controlled to accumulate useful informa-
tion over a longer period while selectively forgetting 
useless historical information. The interior of the cell 
state of the LSTM is shown in Figure 2.

As shown, the LSTM determines whether to forget 
or remember information from the previous cell state. 
The decision is made by the sigmoid layer “forget gate 
layer”. The gate will read hidden state ht� 1 at moment 
t-1 and the input xt , and will output a value between 0 
and 1, with 1 indicating completely retained and 0 
indicating fully forgotten information (Qu, Yang, 
and Chang 2019). 

ft ¼ σ Wf � ht� 1; xt½ � þ bf
� �

(8) 

where σ represents the sigmoid activation function, 
Wf and bf are the weights and deviations of the for-
getting gate, respectively. After completing its judg-
ment of the previous cell state, the LSTM determines 
what new information will be stored in the current cell 
state, which will be done by the input gate (Sherstinsky  
2020).

The input gate controls the information xt that is 
transmitted from the input of the network at moment 
t and hidden state at the final moment ht� 1 to the cell 
state ~Ct . The “input gate layer” sigmoid layer identifies 
the values to update. Then, a hyperbolic tangent acti-
vation function (tanh) layer generates a vector of new 
candidate values to add to the state, which can be 
expressed as (Gers, Schmidhuber, and Cummins  
1999): 

it ¼ σ Wi � ht� 1; xt½ � þ bið Þ (9) 

~Ct ¼ tanh WC � ht� 1; xt½ � þ bCð Þ (10) 

where Wi and bi correspond to the weights and the 
deviations of the sigmoid activation function in the 
input gate. WC, refers to weights, while bC represents 
the deviations of tanh in the input gate. The output of 
the two parts are multiplied together to get the 
updated cell state. To update the cell state, the old 
state is multiplied by ft , thus forgetting what was 

forgotten earlier, and then it is added to the updated 
state to obtain it � Ct, and the cell state updating result 
Ct is obtained. The updating process can be expressed 
as (Gers, Schmidhuber, and Cummins 1999): 

Ct ¼ ft � Ct� 1 þ it � ~Ct (11) 

The LSTM neural network will decide what to output 
by running output gates to control the retention or 
non-retention of information in the current cell state. 
A sigmoid layer that decides what parts of the cell state 
to output is run. The cell state pushes the values 
between þ1 and � 1 through the tanh activation func-
tion, and multiplies it by the output of the sigmoid 
gate, consequently only outputting predetermined 
parts of the information. The calculation can be 
expressed as (Sherstinsky 2020): 

Ot ¼ σ WO � ht� 1; xt½ � þ bOð Þ (12) 

ht ¼ Ot � tanh Ctð Þ (13) 

The values WO and bO are the weight and deviation of 
the output gate, respectively.

The specific workflow of time series prediction 
combining PS-InSAR monitoring results and LSTM 
include:

(1) Data processing. Time series deformation data 
is first derived from PS-InSAR. It is trans-
formed into an equal time interval data set 
using interpolation. Normalization of this data-
set is carried out.

(2) Training the network. The first 90% of the 
dataset is used as the training set and the last 
10% is kept as the test set. The Adam optimiza-
tion function is used as the optimizer to update 
the network weights and initialize the model 
parameters. The mean square error is chosen 
as the model loss function, means of which are 
used to determine the reasonableness of the 
parameters.

(3) Prediction output. The trained network is used 
to predict the surface deformation and output 
the prediction results.

Figure 2. The basic computing unit structure of the LSTM model (Chen et al. 2021).
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3. Study area and datasets

The city of Wuhan (Figure 3), where land subsidence 
induced by urban development is a well-known pro-
cess affecting the urban landscape and infrastructure 
(Jiang et al. 2021; Hu et al. 2022), was selected as 
experiment area. Using different datasets to simulate 
overlapping and gap regions in time series, these 
were then fused using the proposed algorithm, and 
combined to obtain the longest time-series deforma-
tion curves for Wuhan. Comparisons with existing 
studies are carried out to assess the quality of the 
results.

3.1. Study area

Wuhan is the largest city located in central China, with 
a resident population of about 13.6 million. The city is 
at the eastern edge of the Jianghan Plain, where the 
Yangtze River and its largest tributary, the Han River, 
divide it into three major urban areas, namely 
Hankou, Wuchang, and Hanyang (Tan et al. 2014; 
Wang, Balz, and Liao 2016).

Hankou is a major subsidence center in Wuhan, 
which has a history of subsidence for more than 10  
years (Luo and Shen 2018; Zhou et al. 2017). Within 
this region, the Houhu area is the area most affected 
by ground deformation. This area has typical binary 
structure, with soft clay on top and sand below cover-
ing a thickness of 30–60 meters (Jiang et al. 2021; Hu 
et al. 2022). Subsidence in Hanyang and Hongshan 
has started to become apparent in recent years. In 

addition, soluble carbonates are widely distributed in 
most parts of these three districts and, together with 
human activities and other factors, the Wuhan area 
has been in a state of uneven settlement for a long 
time (Hu et al. 2021; Wang et al. 2020a). Figure 4 
shows some examples of the structural impact caused 
by the subsidence process, gathered during our field 
investigations in Wuhan. If left unchecked, the con-
tinuous development of uneven settlement may pose 
a serious threat to urban properties of the city’s 
inhabitants.

3.2. Input data

To explore the long-term subsidence trend in Wuhan, 
we collected three SAR data stacks composed of: 230 
CSK images from the Italian Space Agency (ASI), 51 
TSX images from the German Aerospace Center 
(DLR), and 30 S1 images from the European Space 
Agency (ESA), with coverage as shown in Figure 3 and 
detailed parameters listed in Table 1. It is worth noting 
that many more images (e.g. S1) were available in the 
archives and to the authors, but were intentionally not 
included in our experiment design.

The rationale was therefore to simulate different 
scenarios of data availability, overlaps and gaps. To 
this aim, we manually split the CSK dataset to stop at 
the end of 2015 and include only the first 89 scenes. 
As shown in Figure 5, there is a data overlap in the 
time series between the CSK and TSX datasets (i.e. 
January to December 2015), and a temporal gap 

Figure 3. Research area of Wuhan, with outlined coverage of the three SAR data stacks used in this work (green polygon: COSMO- 
SkyMed – CSK; pink polygon: TerraSAR-X – TSX; and red polygon: Sentinel-1 – S1) and the regional boundaries of Wuhan (cyan 
polygons). The yellow rectangle with a red dot represents the selected study area. Key landmarks and place names are indicated 
onto Google Earth satellite imagery. The orange points are the 60 leveling benchmarks selected for accuracy verification.
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between the TSX and S1 datasets (i.e. February to 
June 2019).

Additionally, a longer 2011–2020 CSK dataset of 
230 scenes was also processed with the nonlinear PS- 
InSAR method, and used as a reference for 
comparison.

The 30 m resolution SRTM Digital Elevation Model 
(DEM) was used in the PS-InSAR processing to sub-
tract the topographic phases. A total of 60 leveling 
benchmarks observations measured by the Wuhan 
Geomatics Institute in 2013–2014, 2015–2016, and 
2019–2020 with about 2 mm of precision were selected 
to validate the InSAR-derived results. Optical images 
from Google Earth were exploited to match the period 
of the deformation time series.

4. Results and discussion

4.1. InSAR accuracy assessment

4.1.1. External compliance accuracy
To ensure comparability of the three processed data-
sets, we selected a similarly located PS point at the 
International GNSS Service (IGS) station to act as the 
reference point. To verify the accuracy of the PS- 
InSAR results, the estimated subsidence rates from 
the CSK, TSX and S1 datasets were compared with 
60 leveling benchmark measurements (i.e. BM1- 
BM60) at corresponding times. Since the level points 
did not correspond exactly with the PS point positions, 
Kriging interpolation was first used to derive the sub-
sidence record corresponding to each leveling point. A 

Figure 4. Field investigation showing noticeable cracks and discontinuities in the roads and building walls caused by the 
settlement. Photographs taken in September 2020; (b), (e) and (f) are from (Jiang et al. 2021).

Table 1. Key parameters of the three SAR datasets used for the data fusion analysis.
Satellite COSMO-SkyMed TerraSAR-X Sentinel-1

Orbit direction Ascending Ascending Ascending
Looking angle 23° 33.9° 36.9°
Ground resolution 3m 3m 30m
Band (wavelength) X-Band (3.1 cm) X-Band (3.1 cm) C-Band (5.5 cm)
Number of images 89 51 30
Temporal coverage 29/05/2011–12/26/2015 14/01/2015–14/12/2018 13/06/2019–27/04/2021

Figure 5. The three satellite datasets selected for the experiment.
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linear regression was applied to the subsidence rates 
from the PS-InSAR analysis and the corresponding 
leveling measurements (Figure 6(a–c)), and the 
RMSE was calculated for the difference between the 
leveling and PS points (Figure 6(d–f)) by each of the 
three time periods.

The experiment proved that the three resulting data-
sets have a high correlation with leveling data with 
correlation coefficients (R) exceeding 80%, as shown 
in Figure 6(a–c). The differences between the InSAR 
and leveling data are mostly concentrated between −5  
mm and +5 mm, as shown in Figure 6(d–f). Some 

Figure 6. Comparison of leveling records and InSAR results. (a–c) Regression analysis between leveling observations and InSAR 
results. (d–f) Difference between leveling observations and InSAR results.
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individual errors are larger. This is mainly caused by 
three factors. The InSAR results corresponding to the 
level point obtained by interpolation method are not 
completely consistent with the true value of the point, 
and the InSAR monitoring results are annual average 
rates over a period, which might be affected by seasonal 
variations. Moreover, the observation interval of the 
leveling data is one year, therefore the annual subsi-
dence rates derived from leveling are only based on the 
difference between two epochs. Anyway, the observed 
maximum Root Mean Square Error (RMSE) of the 
three tests is only 2.85 mm, which demonstrates the 
high overall agreement between the InSAR results and 
the leveling data.

4.1.2. Internal compliance accuracy
The surface deformation of the three datasets was 
obtained by independent processing. Therefore, 
besides the accuracy assessment of each group of 
InSAR results and leveling points, the consistency of 
the subsidence results among the three datasets is also 
an important task in the accuracy assessment in order 
to prevent the influence on the accuracy of the fusion 
because of the observation error of processing each 
dataset separately. We extracted 60 targets of corre-
spondence points, selected CSK observations through-
out the fusion time range as the benchmark, and 
carried out error and standard deviation calculations 

with the observations of TSX and S1, and the accuracy 
evaluation results obtained are shown in Tables 2 
and 3.

The TSX results for 2017–2019 were used to test 
against the CSK results. The precision evaluation is 
shown in Table 2. The maximum error is 4.99 mm, the 
minimum error is −4.88 mm, and the standard devia-
tion is 2.9132 mm. The comparison results of S1 were 
slightly worse than TSX, which was related to its lower 
resolution. As shown in Table 3, with a maximum 
error of 9.81 mm, a minimum error of −3.69 mm, 
and a standard deviation of 3.3592 mm. This shows a 
strong overall agreement between the three indepen-
dently processed datasets.

4.2. Results and discussion

4.2.1. Overlapping period
The deformation curve and fitting curve of a selected 
PS point in the CSK and TSX datasets are shown in 
Figure 7(a–b). The three parameters (Wmax, c, k) of the 
PEKM estimated by nonlinear least squares method 
combined with GA are indicated in the figure. The 
Coefficient of Determination (R2) for the two datasets 
is 0.9851 and 0.9812, which demonstrates the accuracy 
of the fit of the PEKM. As shown in Figure 7(c), the 
time t (02/12/2015) was identified as the minimum 
value of the gradient difference between the fitting 

Table 2. Accuracy assessment of TSX and CSK deformation results from 2017–2019.

Point

CSK  
Cumulated  

deformation  
(mm)

TSX  
Cumulated  

deformation  
(mm)

Error 
(mm) Point

CSK  
Cumulated  

deformation  
(mm)

TSX  
Cumulated  

deformation  
(mm)

Error 
(mm)

1 −27.35 −25.46 −1.89 31 −24.56 −22.51 −2.05
2 2 −21.97 −17.46 −4.51 32 −9.13 −8.93 −0.2
3 3 5.65 4.63 1.02 33 −6.63 −8.65 2.02
44 6.17 4.37 1.8 34 5.56 2.11 3.45
5 5 −5.38 −2.63 −2.75 35 −4.03 −5.6 1.57
6 6 −1.56 −3.7 2.14 36 9.47 7.62 1.85
77 −3.85 −5.58 1.73 37 −23.24 −18.42 −4.82
8 8 3.77 5.59 −1.82 38 3.02 0.48 2.54
99 0.99 0.89 0.1 39 −5.91 −7.24 1.33
110 −12.26 −10.58 −1.68 40 −15.08 −13.42 −1.66
111 −17.99 −13.97 −4.02 41 3.78 0.65 3.13
112 7.08 3.95 3.13 42 −21.1 −18.76 −2.34
113 −0.56 0 −0.56 43 6.85 3.17 3.68
114 −32.69 −28.52 −4.17 44 −18.59 −13.71 −4.88
115 −20.75 −18.24 −2.51 45 −2.75 0.58 −3.33
116 −2.56 −0.84 −1.72 46 −23.21 −19.48 −3.73
117 3.01 3.26 −0.25 47 −18.53 −20.71 2.18
118 2.8 7.59 −4.79 48 −12.73 −14.67 1.94
119 −32.04 −36.79 4.75 49 2.02 −1.75 3.77
220 −6.37 −9.45 3.08 50 −0.85 0 −0.85
221 −24.07 −27.51 3.44 51 −0.42 −0.45 0.03
222 7.11 5.89 1.22 52 7.79 6.15 1.64
223 −7.8 −5.32 −2.48 53 −3.12 −8.11 4.99
224 −15.07 −12.72 −2.35 54 −4.55 −4.85 0.3
225 −7.85 −10.26 2.41 55 −3.52 −1.16 −2.36
226 −2.08 −6.02 3.94 56 −7.94 −11.88 3.94
227 −19.22 −17.2 −2.02 57 −10.64 −8.1 −2.54
228 4.45 4.11 0.34 58 −19.98 −15.23 −4.75
229 −14.55 −11.66 −2.89 59 −7.72 −2.97 −4.75
330 −32.22 −33.16 0.94 60 −10.16 −14.88 4.72
Standard Deviation (mm) 2.9132
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Table 3. Accuracy assessment of S1 and CSK deformation results from 2019 to 2021.

Point

CSK  
Cumulated  

deformation  
(mm)

S1  
Cumulated  

deformation  
(mm)

Error 
(mm) Point

CSK  
Cumulated  

deformation  
(mm)

S1  
Cumulated  

deformation  
(mm)

Error 
(mm)

1 −6.67 −0.31 6.36 31 −6.97 2.17 9.14
2 2 −10.27 −0.46 9.81 32 −5.26 −2.06 3.2
3 3 −3.84 −3.84 0 33 −2.71 −2.87 −0.16
4 4 −3.14 −1.78 1.36 34 −0.09 −2.19 −2.1
5 5 −8.43 −4.64 3.79 35 −3.45 −3.62 −0.17
6 6 −2.64 −0.45 2.19 36 −3.05 −3.42 −0.37
7 7 −3.39 −0.8 2.59 37 −11.06 −5.07 5.99
8 8 −6.63 −2.89 3.74 38 −2.23 −2.47 −0.24
9 9 −4.45 −1.49 2.96 39 −3.77 −0.56 3.21
110 −6.14 −2.39 3.75 40 −5.95 −2.29 3.66
111 −9.62 −1.1 8.52 41 −1.37 −0.18 1.19
112 −1.62 −3.28 −1.66 42 −7.13 −0.85 6.28
113 −5.7 −1.19 4.51 43 0.87 −1.14 −2.01
114 −10.22 −1.28 8.94 44 −12.59 −5.36 7.23
115 −7.81 −2.32 5.49 45 −9.06 −1.17 7.89
116 −6.49 −2.09 4.4 46 −9.57 −7 2.57
117 −5.31 −0.28 5.03 47 −2.37 −0.42 1.95
118 −11 −2.16 8.84 48 −2.92 −2.24 0.68
119 3.69 0 −3.69 49 1.33 1.65 0.32
220 −1.73 −0.74 0.99 50 −5.79 −5.52 0.27
221 −1.26 −1.93 −0.67 51 −4.87 −4.07 0.8
222 −3.78 −0.51 3.27 52 −3.43 −1.27 2.16
223 −7.26 −3.28 3.98 53 4.65 5.36 0.71
224 −7.14 −7.1 0.04 54 −4.42 −0.39 4.03
225 −2.27 −0.1 2.17 55 −7.26 −3.89 3.37
226 2.06 0.37 −1.69 56 2.55 0.07 −2.48
227 −6.82 −1.22 5.6 57 −8.11 0.02 8.13
228 −3.95 −2.71 1.24 58 −10.32 −2.69 7.63
229 −8.49 −5.9 2.59 59 −10.88 −2.6 8.28
330 −3.95 −2.85 1.1 60 3.49 2.66 −0.83
Standard Deviation (mm) 3.3592

Figure 7. Overlapping period fitting and fusion results. (a) Fitting curve of COSMO-SkyMed, (b) fitting curve of TerraSAR-X, and (c) 
fusion result.
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curves for the two input datasets. The deformation 
curves were fused at that point in time to obtain the 
fused series from 2011 to 2019.

To further verify the accuracy of the proposed 
algorithm, reference points were selected for compara-
tive experiments. The fusion curves of PEKM and the 
conventional fusion algorithm were compared to the 
long-term deformation time series obtained by pro-
cessing the whole 2011–2020 CSK dataset. The fused 
time series matches well with the reference 2011–2019 
deformation curve (Figure 8). In contrast, traditional 
algorithms do not precisely consider the fusion point, 
and usually simply pick up the end time of the pre-
vious dataset or the start time of the second dataset as 
the fusion point. The traditional fusion method also 
follows the same trend of the reference curve, but does 
not take precise account of the fusion points. In this 
paper, the start time t (14/01/2015) of TSX, the second 
dataset, was chosen as the fusion point. It can be seen 
that the fusion point has a clear deformation offset 
which resulted in a cumulative error of more than 10  

mm between the final fused and the reference curve. If 
multiple fusions are carried out, the errors will likely 
accumulate and gradually deviate from the reference 
value. Thus, there might be significant discrepancies 
starting in the year when the data are fused (i.e. 2015), 
developing with time and accumulating on the final 
generated settlement map, thus potentially causing a 
bias in the overall settlement magnitude and trend. 
Therefore, it is necessary to accurately consider the 
fusion point in the overlapping period to reduce the 
fusion error.

4.2.2. Temporal gaps
Based on the deformation curves obtained for the 
overlapping periods, the LSTM neural network pre-
diction model predicts across temporal gaps, where 
data are missing. The cumulative vertical subsidence 
over t consecutive time periods (13 in this paper: 
X1; X2; . . . Xt in the first input block in Figure 9) is 
used as input in order to ensure that the deep learning 
model could learn reliable contextual features. For any 
moment after t such as t+1, the inputs to the model are 
the t continuous cumulative deformation values used 
to predict the deformation at t+1, and the output is the 
predicted deformation value Xt+1. In a recurrent 
neural network, the predicted value is then added to 
the input dataset to form a new input dataset with 
predictions of the subsidence at the next moment t+2. 
The specific prediction process is shown in Figure 9.

In each LSTM layer, the number of neurons was set 
to 50. The mean squared error (MSE) was used as the 
loss function. The gradient of MSE loss increases as 
the loss increases, and decreases when the loss tends to 
0. Therefore, it has the property of fast convergence 
and accurate training results. We chose the computa-
tionally efficient Adam as the optimizer and the epoch 
was set to 70. The Adam algorithm records the First 
Moment Estimation of the gradient, i.e. the average of 
all past gradients and the current gradient, so that at 
each update, the gradient of the previous update is not 

Figure 8. Comparison of the time series fusion results using 
the PEKM and conventional method with the full 2011–2019 
time series obtained by processing the whole CSK dataset.

Figure 9. Network structure of the LSTM model to predict surface subsidence across temporal gaps in time series.
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too different from the current update, i.e. the gradient 
has a smooth and stable transition that can accommo-
date unstable objective functions. Meanwhile, in order 
to verify the model accuracy, 70% of the data was used 
for training and 30% for testing. The accuracy of the 
model was evaluated as shown in Table 4. The quanti-
tative evaluation metrics of the LSTM all proved that 
the method was effective in predicting time series 
deformation.

The LSTM was then used to predict the missing 
data from February to June 2019 (after the end of the 
TSX time series; see Figure 5) and combine these 
results with the following S1 data using the minimum 
gradient method to obtain a complete longest time- 
series deformation curve of the test PS points from 
2011 to 2021 as shown in Figure 10.

We observed that the predictions of the algorithm 
showed high consistency with the reference PS-InSAR 
deformation curve and no outliers were found, show-
ing the reliability of the algorithm. The fusion time 
point chosen by the method of minimum value of the 
gradient difference also makes the whole fusion curve 
very smooth. The comparison between the 2011–2021 
fusion results and the CSK 2011–2020 reference time 
series is shown in Figure 11. The fused deformation 
curve basically matches the reference curve, which 
demonstrates that the algorithm achieves accurate 
fusion results.

4.3. Time-lapse subsidence over Wuhan

The subsidence map derived at city scale from the 
fused subsidence time series is shown in Figure 12, 
illustrating the yearly cumulative subsidence from                    

2012 to 2021, where the changes in subsidence trends 
in the Wuhan area can be clearly seen. The study 
shows that the subsidence in Wuhan is influenced by 
both human and geological factors. The geological 
map of Wuhan area is shown in Figure 13. 
Subsidence in the Hankou area began to occur and 
gradually increase in 2013, reaching its maximum set-
tlement and becoming stable in 2017–2018. This is 
mainly due to the soft soil consolidation in this area, 
accompanied by a certain amount of anthropogenic 
influence due to the construction of large buildings 
and subways which we previously reported in our 
study (Jiang et al. 2021). However, benefiting from 
the longer subsidence time series obtained in this 
paper, it can be seen that subsidence in the area has 
stabilized in 2018. Subsidence in the Wuchang and 
Hongshan Districts started later, around 2016–2017, 
and was still ongoing in 2021. This is because the area 
is geologically influenced by carbonate karstification 
and soft soils consolidation, and because these two 
districts are residential, therefore the extraction of 
groundwater during building construction and also 

Table 4. Accuracy evaluation of LSTM model.
Evaluation Index LSTM Model/(s)

RMSE (mm) 1.2296
MSE (mm) 1.1601
R2 0.9437
MAE (mm) 1.4527

Figure 10. Temporal gap prediction and fusion result.

Figure 11. Comparison of the fused 2011–2021 time series 
obtained using the PEKM and LSTM proposed algorithm with 
the 2011–2020 reference deformation curve.
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for living is a major anthropogenic factor contributing 
to the settlement process. This can be found in the 
studies by Jiang et al. (2021), Han et al. (2020) and 
Tapete et al. (2021) with a corresponding illustration.

Additionally, in the years in which the two algo-
rithms fused the datasets (2015 across the overlapping 
period, and 2019 for the temporal gap), our algorithms 
did not reveal a cumulative error similar to that 

Figure 12. Time-lapse of subsidence in Wuhan based on the fused results, from 2012 (a) to 2021 (j). (k) Vertical motion of the 
reference point IGS stations (wuhn) from 2011 to 2019 (Han et al. 2020). The station underwent antenna replacement on 
September 21, 2016 due to antenna failure, and the replacement led to the abrupt changes, which was later restored to stability. 
Therefore, we chose this point as the reference point (data source: https://files.igs.org/pub/station/log_9char/wuhn00chn_ 
20191209.log).
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generated by the traditional algorithm in Figure 8. 
Based on the test undertaken over Wuhan, it is envi-
saged that the proposed method could be used to keep 
fusing data acquired continuously to update the sub-
sidence data with further predictions, thus 

overcoming the potentially limited lifetime of a satel-
lite mission, and further extending the series for a 
number of additional dates in the future. However, 
this will not enable the prediction of any nonlineari-
ties, accelerations or decelerations in the deformation 

Figure 13. Simplified geological map of Wuhan, where units are grouped by age (modified from (Wu et al. 2020)). HK, HY and WC 
in the red rectangular, i.e. research area, are the abbreviations of Hankou, Hanyang and Wuchang, respectively. (b) Typical cross- 
section of Wuhan’s geological structure, with details on lithologies and their thickness (reproduced from (Wang et al. 2020b)). 
Figure reproduced from (Jiang et al. 2021).
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trend that might occur due to other triggers and fac-
tors, such as accelerated subsidence due to new engi-
neering works or augmented groundwater pumping, 
which cannot be predicted by the fusion method or 
anticipated in such a highly dynamic urban environ-
ment. Therefore, if a more refined study is needed, 
more influencing factors such as changes in ground-
water, urban infrastructure construction, rainfall, and 
changes in land type need to be incorporated in the 
model. And the relevant analysis needs to be com-
bined with engineering geological investigations.

5. Conclusions

A method is proposed for fusing InSAR deformation 
time series datasets from different SAR missions and/ 
or time periods, which tackles the practical difficulties 
that typically arise when multi-sensor data are col-
lected and analyzed to assess long-term land subsi-
dence. The proposed method combines the PEKM 
with the LSTM neural network to fuse datasets where 
there are overlapping periods and temporal gaps in the 
multi-sensor time series. The algorithm was applied to 
fuse CSK, TSX, and S1 datasets collected over the city 
of Wuhan, which has been used as experiment area to 
model long-term deformation. A comparison of these 
results with a reference deformation time series and 
with subsidence trends reported in existing studies 
(Jiang et al. 2021; Hu et al. 2022; Han et al. 2020), 
shows the reliability of the proposed method. 
Experiments demonstrate that the method is an effec-
tive and complete algorithm for fusing multi-sensor 
InSAR deformation data to obtain long time series 
from historical data. It also serves as a means to update 
recent data to extend the series to embed future dates, 
essentially attempting to solve the problems associated 
with the limited length of some datasets. The method 
significantly improves the length of time series data 
for observed fast-evolving subsidence urban areas like 
Wuhan and provides a more effective basis for related 
subsidence mechanism studies.
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