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Abstract 
NLP4RE (Natural Language Processing for Requirements Engineering) is an area of research and development that seeks to apply natural language 
processing (NLP) techniques, tools and resources to the requirements engineering (RE) process, to support human analysts to carry out various 
linguistic analysis tasks on textual requirements documents, such as detecting language issues, identifying key domain concepts and establishing 
requirements traceability links. This article reports on a mapping study that surveys the landscape of NLP4RE research to provide a holistic 
understanding of the field. Following the guidance of systematic review, the mapping study is directed by five research questions, cutting across 
five aspects of NLP4RE research, concerning the state of the literature, the state of empirical research, the research focus, the state of tool 
development, and the usage of NLP technologies. Our main results are as follows: (i) we identify a total of 404 primary studies relevant to NLP4RE, 
which were published over the past 36 years and from 170 different venues; (ii) most of these studies (67.08%) are solution proposals, assessed by 
a laboratory experiment or an example application, while only a small percentage (7%) are assessed in industrial settings; (iii) a large proportion of 
the studies (42.70%) focus on the requirements analysis phase, with quality defect detection as their central task and requirements specification as 
their commonly processed document type; (iv) 130 NLP4RE tools (i.e., RE specific NLP tools) are extracted from these studies, but only 17 of 
them (13.08%) are available for download; (v) 231 different NLP technologies are also identified, comprising 140 NLP techniques, 66 NLP tools 
and 25 NLP resources, but most of them – particularly those novel NLP techniques and specialized tools – are used infrequently; by contrast, 
commonly used NLP technologies are traditional analysis techniques (e.g., POS tagging and tokenization), general-purpose tools (e.g., Stanford 
CoreNLP and GATE) and generic language lexicons (WordNet and British National Corpus). The mapping study not only provides a collection of 
the literature in NLP4RE, but also, more importantly, establishes a structure to frame the existing literature through categorization, synthesis and 
conceptualization of the main theoretical concepts and relationships that encompass both RE and NLP aspects. Our work thus produces a conceptual 
framework of NLP4RE. The framework is used to identify research gaps and directions, highlight technology transfer needs, and encourage more 
synergies between the RE community, the NLP one, and the software and systems practitioners. Our results can be used as a starting point to frame 
future studies according to a well-defined terminology and can be expanded as new technologies and novel solutions emerge.  
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1 Introduction 
The important role of natural language (NL) in requirements engineering (RE) has long been established [1], [2]. In a survey published in 

1981, aimed at providing an overview of techniques for expressing requirements and specifications, Abbott and Moorhead stated that “the best 
language for requirements is natural language [3].” While it is difficult to prove that NL is actually the best option, empirical evidence over the 
years has shown that it is at least the most common notation for expressing requirements in the industrial practice. The online survey of 151 
software companies in the early 2000s by Mich et al. [4] concluded that in 95% percent of the cases requirements documents were expressed in 
some form of NL. This dominance of NL was confirmed by a recent survey of Kassab et al. [5], which involved 250 practitioners. The majority 
of the participants (61%) in that survey stated that NL was normally used in their companies for describing and specifying software and system 
requirements. Therefore, based on the past and current empirical evidence, we can safely assume that NL will continue to serve as the lingua 
franca for requirements in the future as well. 

Inspired by the close relationship between NL and requirements, since the early 1980s researchers have been attempting to develop natural 
language processing (NLP) tools and methods for processing requirements texts [2]. However, for almost three decades, this research was 
hindered by inadequate NLP technologies, which did not work well enough at that time to support applications outside NLP research [6]. The 
situation has been changing dramatically since the late 2000s. Huge improvements and advances in NLP technologies, particularly the widely 
availability of NLP tools and resources [7], made it possible for researchers to explore a range of NLP enabled tools and methods for RE tasks 
[8], [9]. Research in NLP for RE, or NLP4RE for short, has since grown into an active, full-fledged research area [8], attracting researchers from 
the wider RE community. Today, research in NLP4RE is thriving and has a dedicated annual workshop, called NLP4RE [9]. There is now a great 
potential to develop effective NLP4RE tools that can serve the real-world practice of RE. This is particularly needed, as RE tasks are still 
manually performed in industrial practice, as witnessed by the data of the NaPiRE survey that shows that only 16% of the companies are using 
automated techniques for requirements analysis [10]. 
During this long history of NLP4RE research, many researchers have made landmark leaps in advancing our knowledge in this area and some of 
these unique contributions are briefly recorded here. 

The first papers on NLP4RE research were published in 1983 by Chen [11] and Abbott [12], who proposed using syntactic features of English 
sentences for database modeling and program design. After these pioneering works, the beginning of 1990s saw some serious attempts to develop 
NLP4RE tools, among which were findphrases by Aguilera and Berry [13] and OICSI by Rolland and Proix [1]. For the remaining 1990s right up 
to the beginning of 2000s, a succession of NLP4RE tools had been proposed, among which were AbstFinder by Goldin and Berry [14], NL-OOPS 
by Mich [15], Circe by Ambriola and Gervasi [16], CM-Builder by Harmain and Gaizauskas [17], QuARS by Fabbrini et al. [18], and ARM by 
Wilson et al. [19]. Since the late 2000s, a large number of tools have been developed, among which are SREE (Tjong and Berry [20]) for 
ambiguity detection and aToucan (Yue et al. [21]) for model generation. More recent developments include tools for requirements classification 
[22], detection of defects [23], smells [24] and equivalent requirements [25], glossary extraction [26], requirements tracing [27], mining app 
reviews [28] and tweets [29], extracting user stories [30], and analyzing requirements-relevant legal texts [31]. 

However, in spite of this long history and increasing interest, except for a limited number of reviews that touch upon specific topics of 
NLP4RE (see Section 3), there has been no effort to provide a comprehensive view of the field as a whole. A holistic understanding of what has 
been done before, what is missing in the field, what are the strengths and weaknesses of existing studies, what overall trends are at play, and what 
these trends might mean, can steer the advancement of the field and facilitate the transition from research to industry. As Boote and Beile stated 
[32], a substantive, thorough and sophisticated literature review is a precondition for doing substantive, thorough and sophisticated research. To 
bridge this literature review gap in NLP4RE research, this article presents a large-scale systematic mapping study of the field. The mapping study 
reviews 404 relevant primary studies reported between 1983 and April 2019. We analyze the literature timeline and publication venues, the 
empirical maturity of the research, the RE phases addressed and tasks supported (e.g., tracing, defect detection, classification), the source 
documents used (e.g., requirements specifications, but also app reviews and legal text), the NLP4RE tools currently available and the most 
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common NLP technologies adopted. Based on a structured classification scheme that covers these different aspects, we identify research trends 
and gaps, and we provide a terminological and conceptual framework to understand the field and guide future research. In particular, our results 
show that, although several solutions are proposed to address a large spectrum of RE phases, tasks and types of documents, there is still a relevant 
gap to cover in terms of industrial case studies and in terms of open-science practices, such as the sharing of datasets and tools. Furthermore, most 
of the NLP4RE solutions do not consider advanced NLP techniques for semantics and discourse analysis, indicating that NLP research has not yet 
been exploited at its full potential. Overall, our results show that it is now time to improve the empirical maturity of the field, with case studies, 
benchmarks and rigorous evaluations that can lead to more robust tools and open to industrial adoption of NLP4RE solutions. 

The remainder of the paper is structured as follows. Section 2 sets the scene by introducing the concepts of NLP and NLP4RE. Section 3 
presents the related reviews to show the lack of comprehensive understanding in the field. Section 4 describes the method for our mapping study 
while the mapping results are presented and analyzed in Section 5. Section 6 reflects on the mapping study and discusses its implications for 
future research and practice. Section 7 assesses the validity threats to this mapping study and our countermeasures. Finally, Section 8 concludes 
the paper. 

2 Concepts and Definitions 
2.1  Natural Language Processing (NLP) 

NLP is a field that employs computational techniques for the purpose of learning, understanding and producing human language content [6]. 
Liddy [33] provides this definition: 

Definition 1: Natural Language Processing is a theoretically motivated range of computational techniques for analyzing and representing 
naturally occurring texts at one or more levels of linguistic analysis for the purpose of achieving human-like language processing for a range of 
tasks or applications [33]. 

In this definition, the notion of “levels of linguistic analysis” refers to the phonetic, morphological, lexical, syntactic, semantic, discourse, and 
pragmatic analysis of language [33], the assumption of which is that humans normally utilize all of these levels to produce or comprehend 
language [34]. NLP systems may support different levels, or combinations of levels of linguistic analysis. The more levels of analysis NLP 
systems support, the stronger or more capable these systems are supposed to be. 
The approaches to NLP can be broadly classified into symbolic NLP and statistical NLP [33]. Although both types of NLP have been investigated 
since the early days of the NLP field (circa 1950s), until the 1980s, it was the symbolic NLP that dominated the field. 

Symbolic NLP emerged from artificial intelligence (AI). It is based on explicit representation of facts about language and associated 
algorithms and uses this knowledge to perform deep analysis of linguistic phenomena [33]. Symbolic NLP approaches include logic or rule-based 
systems, and semantic networks. In rule-based systems, linguistic knowledge is represented as facts or production rules, whereas in semantic 
networks, this knowledge is represented as a network of interconnected concepts. 

However, symbolic NLP approaches lack the flexibility to dynamically adapt to new language phenomena, because they use the handwritten 
rules or the explicit representations built by human analysis of well-formulated examples to analyze input text [33]. Such rules may become too 
numerous to manage [35]. In addition, symbolic approaches may be frail when presented with unfamiliar, or ungrammatical input [33]. Beginning 
in the 1980s, but more widely in the 1990s, statistical NLP regained popularity, as a result of the availability of critical computational resources 
and machine learning (ML) methods [6]. Since then, statistical NLP has been the mainstream NLP research and development [36]. For example, 
many of today’s NLP tools such as POS taggers and syntactical parsers are based on statistical NLP [37]. 

In contrast to symbolic NLP, statistical NLP employs various ML methods and large quantities of linguistic data (text corpora) to develop 
approximate, probabilistic models of language. These statistical models are simple and yet robust, because they are based on actual examples of 
linguistic phenomena provided by the text corpora, rather than deep analysis of linguistic phenomena as in symbolic NLP. When trained with 
large quantities of annotated language data, statistical NLP can produce good results, because it can learn most common cases in the copious data. 
Furthermore, the more abundant and representative the data, the better statistical NLP becomes. 

However, statistical NLP can also degrade with unfamiliar or erroneous input [35], a problem similar to that of symbolic NLP. Furthermore, 
statistical NLP is mainly useful for low-level NLP tasks such as lexical acquisition, parsing, POS tagging, collocations, and grammar learning 
[33]. Today, many text and sentiment classifiers of statistical NLP are still solely based on the use of the words of a text to ascertain the meaning 
of the text, rather than using structure and semantics of the sentences or discourses of the text. Also, most statistical models are trained with text 
corpora of everyday usage language, such as WSJ (Wall Street Journal) articles. Consequently, statistical NLP can be unreliable for domain-
specific text such as software and system requirements. 

Most recently, circa 2012, deep learning (DL) methods began to emerge in the NLP scene [38]. The central idea of DL is that it allows a 
machine to be fed with a large amount of raw data and to automatically discover the representations or features needed for detection or 
classification [39]. Thus DL requires very little feature engineering by hand. Furthermore, the features learned by DL models are high-level, 
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allowing for better generalization even over new, unseen data. By contrast, conventional ML techniques used in NLP are limited in their ability to 
process natural data in their raw form. This means that constructing a statistical NLP system requires careful engineering and considerable 
domain expertise to design a feature extractor that transforms the raw text into a suitable internal representation (i.e., feature vector), from which 
the ML subsystem, often a text classifier, can detect or classify patterns in the input. Both NLP and deep learning experts predict that NLP is an 
area in which deep learning could make a large impact over the next few years [6], [39]. Nonetheless, recent trends in deep learning based NLP 
show that coupling symbolic AI will be key for stepping forward in the path from NLP to natural language understanding [38]. This reaffirms the 
view that symbolic approaches and statistical approaches are complementary. 
Our mapping study will focus on the application of NLP technologies (techniques, tools and resources) to NLP4RE, regardless whether they are 
based on symbolic or statistical NLP. 

2.2   Natural Language Processing for Requirements Engineering (NLP4RE) 
Based on the definition of NLP (Definition 1), we define NLP4RE as follows: 
Definition 2: Natural language processing for requirements engineering (NLP4RE) is an area of research and development that seeks to 

apply NLP technologies (techniques, tools and resources) to different types of requirements documents to support a range of linguistic analysis 
tasks performed at various RE phases. 

This definition has a number of key elements. First, we establish NLP4RE as an area of research and development that seeks to apply NLP 
technologies to RE. This has to be the precondition for NLP4RE, because NLP4RE is motivated and enabled by NLP. We differentiate between 
three types of NLP technology: NLP technique, NLP tool and NLP resource. A NLP technique is a practical method, approach, process, or 
procedure for performing a particular NLP task, such as POS tagging, parsing or tokenizing. A NLP tool is a software system or a software library 
that supports one or more NLP techniques, such as Stanford CoreNLP1, NLTK2 or OpenNLP3. A NLP resource is a linguistic data resource for 
supporting NLP techniques or tools, which can be a language lexicon (i.e., dictionary) or a corpus (i.e., a collection of texts). Existing lexicons 
include WordNet4 and FrameNet5, whereas examples of corpus include British National Corpus6 and Brown Corpus7. 

Second, NLP4RE deals with requirements documents, as most of these documents are expected to be in NL. This is true for the later stages of 
RE, when requirements are documented and validated, but also in early phase RE, in which requirements analysts may have to consult a wide 
variety of documents in order to develop an understanding of the problem domain. Such documents include interview transcripts, legal 
documents, standards, and operational procedures [40]. More recently, online product reviews [28] have been found useful for understanding the 
needs and wants of end users. Consequently, the types of input to NLP4RE, referred here as requirements documents, are broad and diverse, and 
not limited to the classical requirements specifications only. 

Third, while NLP strives for human-like language processing, to achieve human-like performance [33], NLP4RE has a less ambitious goal, as 
its main objective is to support requirements engineers to perform various RE tasks that involve processing and analyzing textual requirements 
documents [41], [42]. Such tasks include detecting language issues, identifying key domain concepts and establishing traceability links between 
requirements. As highlighted by Berry et al. [41], NLP tools for RE, or NLP4RE tools for short, can be more effective than humans in performing 
such clerical or data intensive activities. NLP4RE tools are therefore RE specific NLP tools, developed as a result of NLP4RE research and built 
on existing NLP technologies (tools, techniques and resources) to serve the purpose of RE activities. 

We use this broad definition of NLP4RE to delineate the scope of our mapping study and to help identify relevant studies to NLP4RE. 

3 Related Reviews 
The RE literature counts several surveys with various degrees of relevance and quality, and covering some specific areas of interest. A survey 

of the progress made in empirical RE research since 1992 identified a total of 56 reviews, consisting of 7 mapping studies and 49 systematic 
reviews (Daneva et al. [43]), but none of them is related to NLP4RE. For example, the topics addressed by the reviews included in the survey are 
concerned with requirements writing standards, empirical evaluation of software requirements specifications techniques, service description 
methods, cloud computing security requirements, and success factors in enterprise resource planning systems. Given this knowledge gap in the 

 
1 https://nlp.stanford.edu/software/  
2 https://www.nltk.org 
3 https://opennlp.apache.org  
4 https://wordnet.princeton.edu/ 
5 https://framenet.icsi.berkeley.edu/fndrupal/ 
6 http://www.natcorp.ox.ac.uk/ 
7 http://clu.uni.no/icame/manuals/   
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current RE literature, the raising interest in NLP4RE [8], [9], and the improvement of NLP technologies observed in the last years [7], motivated 
us to conduct our mapping study. In conducting the literature search for the study, we also identified 18 additional reviews that have some 
relevance to NLP4RE, but none of which was included in the 56 reviews selected by Daneva et al. [43]. The reviews are briefly discussed here to 
show the state of the secondary studies related to NLP4RE. 

Among those 18 reviews, four of them focus on modeling activities in software engineering. In particular, Loniewski et al. [44] present a 
survey of RE techniques in the context of model-driven development, including the cases where model transformation involved the requirements 
expressed in NL. Yue et al. [45] provide a review of different techniques for transforming textual requirements into analysis models. In their 
review, NLP support for model transformation is also considered. On the other hand, the review presented by Nicolás and Toval [46] focuses on 
the techniques used to generate NL or formal requirements from models. The review by Dermeval et al. [47] covers the studies that use 
ontologies for requirements modeling and shows that most of the reviewed studies dealt with textual requirements by means of AI techniques, 
including NLP, to support different language analysis tasks. 

Another group of reviews is concerned with topics related to requirements management, including retrieval, tracing and classification of 
requirements. Specifically, Irshad et al. [48] review papers on requirements reuse, including work that applies NLP and IR techniques to text 
similarity evaluation to match input queries with existing requirements in a repository. Torkar et al. [49] review the different methodologies to 
support traceability, considering also approaches that use some textual analysis support. On a different note, but still related to requirements 
management, Binkhonain and Zhao [50] review research on applying ML and NLP techniques to the classification of non-functional 
requirements and performance metrics used to assess different ML based approaches. More oriented towards software product line engineering, 
Bakar et al. [51] survey the usage of NLP techniques in the identification of common and variant features in NL requirements documents as well 
as other NL sources, such as NL product descriptions. Building on this survey, Li et al. [52] focus on identifying features and analyzing their 
relationships in textual requirements. 

A rather recent, yet lively, group of reviews is concerned with analysis of publicly available feedback produced by users and developers. 
Among these reviews, Martin et al. [53] report a mapping study of the research on app store analysis in software engineering and identify NLP as 
relevant tools for feature analysis and app review analysis. Within the field of app review analysis, Tavakoli et al. [54] review the application of 
ML and NLP techniques to extracting and classifying useful information from users’ feedback, so as to distinguish between requirements-relevant 
information and other types of users’ comments. Two recent reviews by Santos et al. [55], [56] are concerned with classification of app reviews 
and users’ feedback. Finally, with a broader focus on developers’ feedback, Nazar et al. [57] review works on summarization of the various data 
sources, including bug reports, mailing lists and developer forums, to extract requirements related information. 

Other reviews which might be relevant to NLP4RE, but more limited in scope and extension or topic-specific, are those by: Ahsan et al. [58] 
on test case generation from NL requirements and Garousi et al. [59] on NLP-assisted software testing; Shah et al. [60] on ambiguity detection in 
requirement also by means of NLP; Casamayor et al. [61], presenting a non-systematic survey on text mining and NLP in the field of model-
driven design; and Nazir et al. [62], pursuing a mapping study on NLP for RE analogous to ours, but considering only 27 primary studies. 
Recently, also a MSc Thesis reported on a systematic literature review on using NLP for requirements elicitation and analysis [63]. Although very 
rigorous, the review is limited to both its scope, as it only focused on requirements elicitation and analysis, and the number of studies included, as 
it surveyed 144 studies. 

This overview shows that while there are some literature reviews that touch upon specific topics of NLP4RE, they are limited in terms of 
coverage of the field. Indeed, each of the reviews investigates one specific NLP4RE-related topic, but there are no systematic synthesis and 
analysis of the surveyed topics and no extensive references that cover the broad area of NLP4RE. In addition, we note that our inclusion of these 
reviews in this overview is quite generous, intended to show the quantity of the existing reviews that have some degree of relation to NLP4RE, 
and thus the relevance of the field itself. Our mapping study aims to overcome these limitations by providing a comprehensive survey oriented 
towards a holistic understanding of the field. It not only provides a collection of the literature in NLP4RE, but, more importantly, also establishes 
a structure to frame the existing literature: through categorization, synthesis, analysis, and conceptualization of the main concepts and 
relationships that encompass both RE and NLP aspects. Our work therefore produces a conceptual framework of NLP4RE.   

4 Review Method 
To achieve our goal, we carried out a systematic mapping study [64] using the method presented in [65]. This section presents our research 

questions and describes the main activities involved in the mapping study; we report our mapping results in Section 5. 

4.1   Research Questions 
The research questions (RQs) for our mapping study are stated below. The RQs are interrelated, designed to interrogate the NLP4RE literature 

progressively. We first outline the main RQs in italic, and then we report in regular text specific questions that are used to elaborate each RQ.  
The answers to the set of specific questions provide the answer to the main RQ. 
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RQ1: What is the state of the literature on NLP4RE? Specifically, what is the population of the published literature on NLP4RE? What is the 
publication timeline? What are the leading publication venues? 

RQ2: What is the state of empirical research in NLP4RE? Specifically, what primary types of research have been carried out in the area of 
NLP4RE? What primary types of evaluation method have been used in the research? What relationships can be observed between these 
research types and evaluation methods? 

RQ3: What is the focus of the NLP4RE research? Specifically, what main RE phases have been addressed? What linguistic analysis tasks have 
been investigated for these phases? What is the relationship between these RE phases and tasks? What types of input document have been 
considered? 

RQ4: What is the state of tool development in NLP4RE research? Specifically, what new tools have been developed? Which RE phases and 
tasks do these tools support? Which of these tools are available to the public? 

RQ5: What kinds of NLP technologies have been used in NLP4RE research? Specifically, what NLP techniques, tools and resources have been 
employed? What RE tasks are targeted by NLP technologies?  

4.2   Study Selection Process 
4.2.1 Determining the Data Sources. 

We identified the following digital libraries as the main data sources for our mapping study: ACM Digital Library (ACM); IEEE Xplore 
Digital Library (Xplore); ScienceDirect (SD); SpringerLink (SL). These libraries were chosen because they host the major journals and 
conference proceedings related to software engineering (SE) and RE. To complement these libraries, we also selected Association for 
Computational Linguistics Library (ACL), where the major contributions to NLP are likely to be published. These five libraries serve as our data 
sources for identifying the relevant literature. In addition, NLP4RE workshop was also identified as our search source because its proceedings 
were not published by any of the above digital libraries. 

4.2.2 Formulating the Search Strategy. 
Our search strategy was based on the direct search of the electronic databases of the aforementioned five digital libraries. The search terms for 

querying these libraries were constructed using the steps presented in [66]. Specifically, we used the major terms “requirements engineering” 
(representing the context of the research) and “natural language processing” (representing the intervention in this context) as the base terms; 
elaborate each base term with alternative spellings and synonyms; use the Boolean OR to incorporate synonyms, alternative spellings, alternative 
terms, and sub-field terms into each base term set, and Boolean AND to link the two sets of terms. Several iterations were performed to identify 
and refine the keywords. The complete set of the search terms is presented in Table 1. 

TABLE 1:  KEYWORDS FOR IDENTIFYING THE NLP4RE LITERATURE 

Main Keywords Derived Keywords 
Requirements engineering  Requirements elicitation, requirements analysis, requirements specification, requirements modeling, 

requirements validation, requirements verification, requirements management, requirements traceability, 
requirements classification, requirements document, requirements specification 

Natural language processing NLP, statistical NLP, machine learning, deep learning, information extraction, information retrieval, text 
mining, text analysis, linguistic instruments, linguistic approaches 

4.2.3 Performing the Literature Search. 
Following a series of initial searches to fine-tune our search terms, we performed the main search in April 2019 on the aforementioned five 

digital libraries. For all the libraries except ACL, advanced search was conducted, whereas for ACL the search was conducted manually due to 
the lack of the advanced search feature. No publication timeline was imposed on these libraries and only the publications written in English were 
retrieved. The search results were imported into an Endnote library and combined with the initial search results. After automatically removing the 
duplicates, the total results were 11,489 (83 from the initial search and 11,406 from the main search).  Finally, we conducted a targeted search on 
NLP4RE workshop proceedings (2018 and 2019) and Google Scholar, which identified 51 studies. Adding them to the search results in our 
Endnote library gave us a total of 11,540 items for study selection. 

4.2.4 Selecting the Relevant Studies. 
Based on the search results, we applied a set of inclusion and exclusion criteria (see Table 2) to systematically include relevant studies and 

exclude irrelevant ones. This study selection process, as shown in Figure 1, was performed in stages by a team of four data inspectors (Alhoshan, 
Letsholo, Ajagbe, Chioasca) and three supervisors (Zhao, Ferrari, Batista-Navarro). These stages are briefly described as follows. 
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TABLE 2:  INCLUSION (I) AND EXCLUSION (E) CRITERIA FOR SELECTING RELEVANT STUDIES 

I/E No.  Criteria 
I 1 Include peer-reviewed primary studies that are relevant to NLP4RE (cross-checking and validation needed for such studies).  
I 2 If there are multiple relevant studies that report the same research, include the longest study only and exclude the rest of them.  
E 1 Exclude tables of contents, editorials, white papers, commentaries, extended abstracts, communications, books, tutorials, non-

peer reviewed papers, and duplicate papers. 
E 2 Exclude short papers that have fewer than 6 pages if they are in a single column format. 
E 3 Exclude reviews or secondary studies. 
E 4 Exclude papers that are not relevant to NLP4RE based on title, abstract, keywords, introduction, and conclusion (cross-checking 

and validation needed for such papers).  
 

 

Figure 1: Study selection process. 

 
In Stage 1, the lead inspector (Alhoshan) applied the exclusive criterion E1 (see Table 2) to the search results to filter out irrelevant contents 

such as editorials, commentaries and so on. This filtering stage left 6,324 studies in the library for further selection. In Stage 2, two inspectors 
simultaneously applied the exclusion criteria E2 and E3 to removed short studies8 and secondary studies. Discrepancies or undecided cases from 
this stage were considered by the lead supervisor (Zhao) and the selection was then based on the majority voting agreement [67]. In Stage 3, all 
four inspectors autonomously performed study selection based on the exclusive criterion E4, with the support of the lead supervisor (Zhao) and 
using the majority voting for undecided cases. 

In Stage 4, the remaining 1,012 studies were divided between the four data inspectors, who independently reviewed their allocated studies 
according to I1 and I2 to determine the relevance of each study. This involved carefully reading the full text of each study to establish its 
relevance and to identify its key components with respect to the predefined categories. During the selection, the three supervisors performed 
regular and random checking on the selected and discarded studies to ensure they were correctly included or excluded. Any discrepancies and 
inconsistencies were identified and immediately notified to the responsible inspectors. After individual selection, the inspectors crosschecked 
each other’s results to decide about the relevance of each selected study. Where there was a disagreement, the lead supervisor was brought in to 
make the final decision. The selected studies by individual inspectors were then combined, resulting in a total of 416 studies. The lead supervisor 
carried out the final check on these 416 studies, by examining the title and abstract of each study, and in undecided cases, by reading the text of 
the study and consulting the other two supervisors. This identified 4 duplicate studies and 8 irrelevant studies. The final set to be included in our 

 
8 We have explicitly excluded the short study papers, because in general such studies lack detailed description of their contributions and including them can potentially skew the results of 
the mapping study. 
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mapping study thus comprised the remaining 404 studies. These 404 selected studies, together with our mapping study protocol, search methods 
and raw search results, are available online in our GitHub repository9. 

4.3 Data Extraction and Classification 
4.3.1 Classification Scheme 

Building a classification scheme is the central task of any mapping study, as the main purpose of this research method is to classify the 
literature [65], [68]. Our classification scheme reflects the five research questions. It is made up of four facets, each containing a set of categories. 
Figure 2 depicts this classification scheme, where the number associated with each category is the number of occurrences in that category, to be 
discussed in Section 5. The four facets and their categories are described as follows. 

 
 

 

Figure 2: Faceted classification scheme for mapping the NLP4RE literature. 

1. Publication Facet. This facet is for classifying the publication information. The resulting classification will be used to answer RQ1. 
This facet contains the following three categories: Publication Types, Publication Venues and Publication Years. 

2. Research Facet. This facet is for classifying the selected studies according to their primary research types and primary evaluation 
methods. The resulting classification will be used to answer RQ2. This facet contains the following two categories:  

• Research Types. Five types of research are considered, using the taxonomy of Wieringa et al. [69] (see Table 3). 

 
9 https://github.com/waadalhoshan/NLP4RE. 
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• Evaluation Methods. Nine types of evaluation methods are considered, according to Chen and Babar [70] (see Table 4). 
3. Focus Facet. This facet is for classifying the selected studies according to their primary RE phases, NLP4RE tasks and input 

documents. The resulting classification will be used to answer RQ3. This facet contains the following three categories:  
• RE Phases. We classify the NLP4RE studies according to six primary RE phases, as defined in Table 5. The first five phases are based 

on the work of Cheng and Atlee [71], whereas the last phase, “Other”, is a placeholder, to be replaced by Testing or Design, or other 
phases of the software development process. 

• NLP4RE Tasks. We differentiate six general NLP4RE task types in our mapping study, as shown in Table 6. These tasks involve 
applying linguistic analysis to RE documents. The first four of these tasks are roughly based on the work of Berry et al. [41], whereas 
the last two are derived from our observation of existing work. Specifically, Tracing & Relating task is performed to establish 
traceability links or relationships between requirements, and between requirements and other software artifacts such as models, code, 
test cases, and regulations (e.g., [72], [73], [74], [75], [27], [76]). Search & Retrieval is used to find requirements or requirements sets 
from existing repositories or documents (e.g., [77], [78], [79]). 

• Input Document Types. The selected studies are classified into categories according to the input document type they use. The document 
types used in this classification are not predefined; they will be synthesized from the extracted data. 

4. Contribution Facet. This facet is for classifying the contribution and the underlying technologies of the selected studies. The resulting 
classification will be used to answer RQ4 and RQ5. This facet contains the following two categories:  

• NLP4RE Tools. These are the tools reported by the NLP4RE literature. 
• NLP Technologies. NLP technologies used by the selected studies are classified into three types: NLP Technique, NLP Tool and NLP 

Resource. 

TABLE 3:  TYPES OF RESEARCH FOR CLASSIFYING THE NLP4RE LITERATURE (ADAPTED FROM WIERINGA ET AL. [69]) 

Research Type Explanation 
Evaluation Research This type of research involves empirical evaluation from industries, often in the form of case study or field study.  
Validation Research  This type of research, better called “assessment research”, does not involve new technologies; instead, it is concerned 

with assessing existing technologies (methods, tools, algorithms etc.). Comparative studies are typically validation 
research.  

Solution Proposal This type of research typically involves the development of a novel solution (e.g., a new method, technique or tool) to 
a problem. This type of research may or may not contain validation research.   

Philosophical/ Opinion  This type of research covers a broad range of work, under the guise of vision statements, position papers, opinions, 
viewpoints etc. This type of research is conceptual or theoretical, so its outcome is often a new understanding or a new 
perspective of some research area.  

Personal Experience  This type of research is reflectional, based on personal experience of applying an existing technology to a real-world 
problem.  

TABLE 4:  TYPES OF EVALUATION METHOD FOR CLASSIFYING THE NLP4RE LITERATURE (BASED ON CHEN AND BABAR [70]) 

Evaluation Method Explanation 
Rigorous Analysis  Rigorous derivation and proof, suited for formal model. 
Case Study  An empirical inquiry that investigates a contemporary phenomenon within its real-life context; when the 

boundaries between phenomenon and context are not clearly evident; and in which multiple sources of 
evidence are used. 

Discussion  Provided some qualitative, textual, opinion. 
Example  Authors describing an application and provide an example to assist in the description, but the example is 

“used to validate” or “evaluate” as far as the authors suggest. 
Experience Report The result has been used on real examples, but not in the form of case studies or controlled experiments, 

the evidence of its use is collected informally or formally. 
Field Experiment Controlled experiment performed in industry settings. 
Laboratory Experiment with 
Human Subjects (LEHS) 

Identification of precise relationships between variables in a designed controlled environment using human 
subjects and quantitative techniques. 
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Laboratory Experiment with 
Software Subjects (LESS) 

A laboratory experiment to compare the performance of newly proposed system with other existing 
systems. 

Simulation  Execution of a system with artificial data, using a model of the real word. 

TABLE 5:  RE PHASES FOR CLASSIFYING THE NLP4RE LITERATURE (BASED ON CHENG AND ATLEE [71]) 

RE Phase  Explanation 
Elicitation  This phase comprises activities that enable the understanding of the goals, objectives, and motives for building a proposed 

software system. 
Analysis  This phase involves evaluating the quality of recorded requirements and identifying anomalies in requirements such as 

ambiguity, inconsistency and incompleteness. 
Modeling  This phase involves building conceptual models of requirements that are amenable to interpretation. 
Validation & 
Verification 
(V&V) 

Requirements validation ensures that models and documentation accurately express the stakeholders’ needs. Validation usually 
requires stakeholders to be directly involved in reviewing the requirements artifacts. Verification entails proving that the 
software specification meets these requirements. Such proofs often take the form of checking that a specification model satisfies 
some constraint (model checking). 

Management This is an umbrella activity that comprises a number of tasks related to the management of requirements, including the evolution 
of requirements over time and across product families, and the task of identifying and documenting traceability links among 
requirements artifacts and between requirements and downstream artifacts. 

Other This is an open-end category that allows us to record other NLP4RE related software development activities. For example, 
during software testing, NLP may be used to analyze requirements to generate test cases. In this case “Other” will be replaced 
by “Testing”. During software design, NLP may be used to transform requirements into design artifacts. “Other” will be 
replaced by “Design”.  

TABLE 6:  NLP4RE TASKS FOR CLASSIFYING THE NLP4RE LITERATURE (ADAPTED FROM BERRY ET AL. [41]) 

NLP4RE Task Meaning Explanation 
Detection  Detect linguistic issues in 

requirements documents  
This task is typically to support manual review activities to make the requirements, or 
requirements-related artifacts, clear and unequivocal. The linguistic issues to be detected 
may range from the controversial usage of passive voice, to the occurrence of typically 
vague phrases (e.g., as soon as possible, after some time) or weak verbs (e.g., may, could), 
to the presence of syntactic and pragmatic ambiguities. Also checking the adherence to 
pre-defined requirements templates, and identifying equivalent requirements, can be 
included in this task, as the goal is still to enforce rigor in requirements texts.  

Extraction Identify key domain 
abstractions and concepts 

This task normally aims to extract single or multi-word terms from requirements texts to 
establish domain-specific and project-specific glossaries, as requirements often include 
domain-specific, compound terms that are not commonly used. The extracted glossaries 
can be exploited for other objectives, including completeness or consistency checking, 
product comparison, classification, and modeling. 

Classification Classify requirements into 
different categories  

This task aims to classify requirements into different types, base on the purpose for which 
the task is applied. For example, requirements can be categorized based on their functional 
category, to ease requirements apportionment and reuse or based on its quality category, 
to identify non-functional requirements that may be hidden within functional ones. Also, 
when applied to users’ feedback and online discussions, classification can help identifying 
feedback that is specifically concerned with new requirements, or feedback referring to 
specific features of interest, possibly with the sentiment expressed by the product’s users. 

Modeling Identify modeling concepts and 
constructing conceptual models  

The task typically makes use of the extraction task, and can take different flavors, from 
the generation of UML models to support analysis and design, to the synthesis of feature 
models in a product-line engineering context, to the generation of high-level models of 
early requirements or user stories to support project scoping.  
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Tracing & 
Relating 

Establish traceability links or 
relationships between 
requirements, or between 
requirements and other 
software artifacts 

This task mainly aims to support manual tracing activities oriented to enforce and 
demonstrate process consistency, especially in a regulated context or in large-scale 
enterprise software. We include in this class also those works dealing with change impact 
analysis, as they also address the problem of identifying relationships between 
requirements or other artifacts.  

Search & 
Retrieval 

Search & retrieve requirements 
from existing repositories 

The goal of this task can be to reuse existing requirements assets to match with the needs 
of novel customers, or to support domain scoping towards the development of new 
product, by recommending specific features based on existing software descriptions 
available online. 

4.3.2 Data Extraction and Aggregation. 
Our data extraction process was organized into four separate phases, described as follows. In Phase 1, we extracted the data for the categories 

and subcategories of the publication facet. These data were automatically obtained from our Endnote library where the selected studies were 
stored. 

Phase 2 involved extracting the data for the categories and subcategories of the remaining three facets. To do so we first created a data 
extraction form on Google Sheets. The categories of the three facets (research, focus and contribution) were mapped onto the columns in the 
form. Some categories, i.e., RE phases and NLP4RE tasks, were given extra columns, to allow additional RE phases or tasks to be recorded. The 
rows of the form were used to record the data related to the selected studies, one row per study, and each row was identified by Study ID of a 
study. Next, we divided the selected studies evenly among the four data inspectors, who reviewed each study and performed data extraction for 
each study. 

In parallel with the inspectors, the supervisors performed data extraction on the randomly selected studies and then compared the results with 
those obtained by the inspectors. Any discrepancy and inconsistency were discussed with the inspectors and actions taken to ensure the accuracy 
and consistency of the extracted data across the board. 

After the completion of data extraction, in Phase 3, we carried out thematic synthesis on the descriptions related to input document types to 
identify specific input document types. We also performed coding [80], [81] and thematic synthesis [82] on the descriptions related to NLP 
techniques, NLP tools and NLP resources to create a coherent set of names for these technologies. This involves three steps [82]: code each piece 
of text with a label or term; translate related codes into the themes; organize the themes into high-level themes.  

Finally, in Phase 4, we carried out data cleaning for each category to harmonize and standardize the terms in it; we inspected the members in 
each category to ensure our classification was accurate and consistent; we conducted statistical analysis of the categories; we employed a variety 
of visual tools [83], including tables, bar charts and dendrograms, to produce the visual representations of the analysis results [83], [84]. In the 
next section, we answer our five RQs based on the mapping results. 

5 Mapping Results 
5.1   RQ1: State of NLP4RE Literature 

Population of the NLP4RE literature. A total of 404 primary studies relevant to NLP4RE are identified by our mapping study, comprising 
26.75% (108) journal articles, 58.17% (235) conference papers and 15.10% (61) workshop papers. Such a trend, as we observed, is consistent 
with other areas in RE [85] and SE [86]. 

Publication timeline. These studies were published over the past 36 years, from 1983 to 2019 as Figure 3 shows (NB. The number of studies 
published in 2019 is incomplete, as our library search ended in April 2019); however, the majority of these studies (88.61% or 358 out of 404) 
have actually been published since 2004. This means that before 2004, an average publication rate was roughly two studies per year, whereas 
after 2004 it was about 24 studies per year. This rapid growth can be attributed to technological advances in NLP over the past 15 years or so [6]. 

Publication venues. These studies were found from 170 different publication venues10. The large number of diverse publication venues for 
these NLP4RE studies shows that NLP4RE has a core base in RE and a strong audience in SE; it has also attracted a general interest from diverse 
communities. Although this extensive number of diverse venues indicates that NLP4RE is a topic of general interest – though not necessarily 
central – to diverse communities, such a wide spread of the venues also has its downside, as it makes locating relevant NLP4RE work and 
building a consolidated NLP4RE knowledge base a difficult task. 

Although the ACL library was included in our library search, we only found two relevant studies from it. The reason might be that the main 
publication venues for NLP4RE still focus on RE and SE, and that there is a lack of awareness of NLP4RE work in the NLP research community. 

 
10  The 404 selected studies and their publication venues are available as online-only material in the ACM Digital Library as well as in our GitHub repository 
(https://github.com/waadalhoshan/NLP4RE). 
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As NLP represents one crucial facet of NLP4RE, engagement with the NLP research community is important for NLP4RE researchers. One way 
of doing this is to take NLP4RE research results to NLP conferences or journals for discussion and feedback. 

Of the 170 publication venues, 12 venues are identified as the leading venues for these studies (see Figure 4), as they collectively published 
45.05% (or 182) of the selected studies. Thus, on average, each of these 12 venues published 15.17 studies, whereas each of the remaining 158 
venues only published 1.41 studies. These 12 leading venues count some top RE and SE conferences and journals, as Figure 4 shows. It can be 
observed that the three top RE venues (RE, REFSQ and REJ) published a quarter of all selected studies, indicating that these are the core 
publication channels for NLP4RE research. As it can also be observed from Figure 4, the five top SE conferences and journals (JSS, ASE, ICSE, 
IST, and TSE) published more than a 10 percent of the studies, indicating that NLP4RE research has a broad audience in the SE community. To 
assess the impact of NLP4RE research in the SE community, we compare the number of NLP4RE studies published at ICSE versus the number of 
GORE (Goal-Oriented Requirements Engineering) studies published at ICSE, as GORE is a well-established subfield in RE with a long research 
tradition. Our mapping study found nine NLP4RE studies from ICSE, whereas five GORE studies from ICSE. Proportionally, NLP4RE-related 
ICSE studies account for 2.25% of the 404 studies included in our mapping study, while GORE related ICSE studies account for 2.03% of the 
246 studies included in a recent mapping study on GORE [85]. This indicates that NLP4RE has made a similar impact on SE as GORE. 

 

Figure 3: Publication timeline of the 404 selected studies. 

 

Figure 4: Leading publication venues for NLP4RE research. 

These publication venues reveal that the majority of the NLP4RE studies are conference and workshop papers. Such a trend is consistent with 
the publication pattern in other RE and SE areas, and does not reflect a lesser quality across the field, as several RE and SE conferences such as 
RE and ICSE are highly competitive and comparable to top journals.  

5.2   RQ2: State of Empirical Research in NLP4RE 
To understand the state of the empirical research in NLP4RE, we classified the 404 studies according to their primary research types and their 

primary evaluation methods. We discuss the classification results as follows. 
NLP4RE studies by primary research type. We classified the 404 studies exclusively according to their primary research types. What this 

means is that we associated each study with exactly one research type that we considered to be the primary research type of that study. This 
exclusive classification allows us to see the research trend in NLP4RE studies. The classification results (Figure 5) show that the majority of the 
NLP4RE studies (67.08% or 271) use Solution Proposal as the primary research type, whereas less than one fifth (17.33% or 70) use Validation 
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Research. The remaining three research types are less frequently used. We think this is a general trend, as it was also found in other RE and SE 
areas [85], [86]. 

NLP4RE studies by primary evaluation method. Similarly, to observe evaluation trends, we classified the 404 studies exclusively according to 
their primary evaluation methods, by associating each study with exactly one evaluation method that was considered to be the primary one of that 
study. The classification results (Figure 6) show that Laboratory Experiment with Software Subjects (LESS) is the most frequently used 
evaluation method, followed by Example Application and Laboratory Experiment with Human Subjects (LEHS). Other evaluation methods are 
far less common. 

State of empirical research in NLP4RE. Empirical research is the one that seeks to explore, describe, predict, and explain natural, social, or 
cognitive phenomena by using evidence based on observation or experience [87]. Empirical research can be conducted in different ways, through, 
for example, systematic observation, experimentation, interview, survey, or examination of documents or artifacts [87], [88]. Among the nine 
evaluation methods used by NLP4RE studies, only five of them can be counted as empirical methods and these are LESS, LEHS, Case Study, 
Field Experiment, and Experience Report. The remaining four methods (i.e., Example Application, Discussion, Rigorous Analysis, and 
Simulation) are not empirical methods, because they are either conceptual (i.e., Example Application and Discussion), mathematical (i.e., 
Rigorous Analysis) or simulation exercises (i.e., Simulation) [89]. 

For the five empirical methods, Figure 6 shows that lab experiments (LESS and LEHS) are most common among the NLP4RE studies, 
whereas field studies (Case Study, Field Experiment, and Experience Report) are less common. This trend is consistent with empirical research in 
SE [90]. The main difference between a lab experiment and a field study lies in that the former is conducted in a controlled environment, typically 
with students (i.e., LEHS), whereas the latter is conducted in a real environment, typically with professionals [90]. Our results therefore show that 
most NLP4RE studies (more than 67%) are lab-based and only a small minority (7%) is conducted in an industrial setting. Although lab-based 
studies play an important role in gaining knowledge about new technologies [91], to advance knowledge, technologies must be evaluated 
rigorously in a real setting, by real users, because proving a tool works correctly (in the lab) does not equate to proving a tool works usefully for 
its intended audience and in its real-world context (in the field). 

Evaluation methods coverage over research types. Using the pivot table (Table 7), we present the coverage of the primary evaluation methods 
over the primary research types in NLP4RE studies. Table 7 reveals some insights into the current state of NLP4RE research and the key 
takeaways from the table are: there is a clear alignment between different types of research and their evaluation approaches (this is good, but the 
alignment says nothing about the quality of the evaluation); a significant proportion of the solution proposals were assessed with a recognized 
empirical method (175/271 - good but not perfect); more than a third of the solution proposals were assessed only using an example application 
(94/271 – bad, call for action); only a small minority used human subjects (35/271 – bad, call for action); all 29 evaluation research studies were 
assessed in a real setting, using either a case study or a field experiment (29/29 – very good); among the evaluation research studies, case studies 
greatly outnumbered field experiments (25/29 – need further investigation). 

Additionally, Table 7 also shows that a typical NLP4RE study is a solution proposal, possibly evaluated internally through an experiment or 
example application, but without an external evaluation in the real world. 

 
 

 

Figure 5: Distribution of the 404 studies according to their primary research types. 
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Figure 6: Distribution of the 404 studies according to their primary evaluation methods. 

5.3   RQ3: Focus of NLP4RE Research 
To address this research question, we exclude personal experience and philosophical & opinion papers, because they do not provide data 

pertinent to this question. We are therefore left with 370 studies for RQ3. These studies consist of 271 solution proposals, 70 validation research 
studies and 29 evaluation research studies. 

TABLE 7: PRIMARY EVALUATION METHODS COVERAGE OVER PRIMARY RESEARCH TYPES IN THE 404 STUDIES 
 

Solution 
Proposal 

Validation 
Research 

Evaluation 
Research 

Philosophical & 
Opinion  

Personal 
Experience  

Row Total 

LESS  140 37 0 0 0 177 

Example Application 94 0 0 0 0 94 

LEHS  35 31 0 0 0 66 

Discussion 0 0 0 19 0 19 

Case Study 0 0 25 0 0 25 

Experience Report  0 0 0 0 15 15 

Field Experiment 0 0 4 0 0 4 

Rigorous Analysis 0 2 0 0 0 2 

Simulation 2 0 0 0 0 2 

Column Total 271 70 29 19 15 404 

 

Most targeted and least targeted RE phases. Figure 7 shows the distribution of the 370 studies by their main RE phases. Clearly, analysis is by 
far the most targeted RE phase, followed by management, elicitation and modeling. V&V (validation & verification), while testing and design are 
the least targeted phases. Analysis as the most targeted phase by NLP4RE research may be due to its broad role in RE. The lack of attention to 
V&V may be because it is a phase at the boundary between requirements and the rest of the software development process. The same can be said 
to testing and design phases. This shows that the main focus of NLP4RE are the phases within the main RE process, with limited attention to the 
relationship with the whole software process. This indicates an additional space for further research. 

Note that about a third of the studies considered two different RE phases in their research, but the investigation of the second phase was often 
brief and secondary. In order to not skew the statistics, we focus only on the main RE phase targeted by each study. 

Most and least studied NLP4RE tasks. Figure 8 shows the distribution of the 370 studies by their main NLP4RE tasks. Evidently, detection, 
classification, extraction, modeling, and tracing & relating are the most studied tasks, whereas search & retrieval is the least studied task. In what 
follows, we identify the focus of NLP4RE research through the relationships between these tasks and the primary RE phases where these tasks 
are performed. 

Relationships between NLP4RE tasks and RE phases. For each RE phase, we count the number of studies that investigate each NLP4RE task. 
The results of the counting are presented in Table 8 from which some interesting observations can be made: from the RE phase perspective, 
analysis, management, elicitation, and modeling are targeted by a wide range of NLP4RE tasks. In addition, most of these phases has a central or 
typical NLP4RE task that represents the main role of NLP in that phase (detection for Analysis, extraction for Elicitation, tracing and relating for 
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Management, etc., see bold highlight in Table 8). Furthermore, (requirements) modeling and (software) design phases share exactly the same two 
NLP4RE tasks, with modeling as the central task for both phases. This suggests that, although the two phases occur at different stages of the 
development process, the main role of NLP in both modeling and design is essentially the same: to help identify requirements concepts and 
relationships. Likewise, from the NLP4RE task perspective, detection, classification, extraction, and tracing & relating are performed in a wide 
range of RE phases. In addition, classification, though not a central task for any RE phase (see bottom of Table 8), is more prevalent than tracing 
& relating, in spite of the latter being a central task for management. This perhaps due to the importance of classification and its general 
applicability throughout the whole RE process. 

 

 

Figure 7: Distribution of the selected studies to different RE phases. 

 

Figure 8: Distribution of the selected studies to different NLP4RE tasks. 

Types of input document processed by NLP4RE studies. From the input documents extracted from our mapping study, we categorized them 
into 14 different types, as Figure 9 shows. For some input documents, we had to deduce and interpret their categories, due to their vague 
descriptions. Clearly from Figure 9, “requirements specification” is the most dominant input document type for NLP4RE research, used by 239 
studies (64.59%), whereas “other model”, “code” and “UML diagram” are rarely used. Some document types are more recent, such as user-
generated text, legal & policy document, user story, and domain document. For example, we found that processing user-generated text such as 
app reviews [28] and tweets [29] has become a fashionable trend in NLP4RE research since 2013 [92], but the trend appears to have peaked in 
2017. Altogether, there were 26 NLP4RE studies (6.44% of the selected studies) that process this type of text. The reason for this trend could be 
that this kind of text is widely available, which can be used to test NLP4RE results, as a way to compensate the shortage of real requirements data 
[8]. However, processing this text may present new challenges to NLP4RE researchers: not only these documents do not conform to linguistic or 
structural standards that are normally expected for requirements specifications [40], but such documents could contain unfamiliar vocabulary and 
concepts to RE, more typical of conversational language. Given years of NLP4RE research, we believe that it is time for researchers to exploit 
more challenging texts and to explore uncharted territory. 

TABLE 8: RE PHASES AND CORRESPONDING NLP4RE TASKS 
 

Detection Classification Extraction Modeling Tracing & 
Relating 

Search & 
Retrieval 

Row Total 

Analysis 75 37 16 0 19 11 158 

Management 7 16 4 0 26 9 62 

Elicitation 8 14 32 0 3 5 62 

Modeling 0 0 3 58 0 0 61 
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V&V 5 4 2 0 4 0 15 

Other (Testing) 2 2 4 0 1 0 9 

Other (Design) 0 0 2 1 0 0 3 

Column Total 97 73 63 59 53 25 370 

 

 

Figure 9: Input document types and the number of studies using each type. 

5.4   RQ4: State of Tool Development in NLP4RE Research 
From the reviewed studies that explicitly report new tools, we found 130 named tools. These tools were developed specifically to support the 

various NLP4RE tasks, so we call them NLP4RE tools, to differentiate them from NLP tools. In Table 9 these 130 identified NLP4RE tools are 
classified into six categories according to their main targeted NLP4RE tasks; each tool is represented by its name (e.g., OICSI) and indexed by a 
study identifier (e.g., S678). Through the study identifier of each tool, the reader can locate the reference of the study that reports the tool. 
Evidently, the top-ranked tools are modeling (34) and detection (31), followed by extraction (24), classification (20) and tracing & relating (15). 
At the bottom of the rank is search & retrieval (6).  

By contrast, other types of tool, especially classification, detection and extraction, may be more readily composed from available NLP 
technologies and tools. For example, WEKA can be used to support classification, and GATE can be used to support extraction and detection. 
Consequently research on these tasks may focus on exploring different NLP techniques and tools, rather than on developing new tools. Finally, 
the limited number of search & retrieval tools can be attributed to the limited attention given to the search & retrieval task.  

During our categorization of different tools, we noticed that some extraction tools also support other NLP4RE tasks such as paraphrasing and 
summarization. For example, extraction tools NAT2TEST and GuideGen perform both extraction and summarization tasks. The latter task is used 
to compose test cases or test guidelines. 

Relationships between NLP4RE tools, NLP4RE tasks and RE phases. We use a circular dendrogram (Figure 10) to show the relationship 
between these tools and their corresponding RE phases. In this diagram, the NLP4RE tools are first grouped into the clusters by their NLP4RE 
tasks (the middle layer of the diagram) and then by their targeted RE phases (the inner layer of the diagram). This diagram can be used as a 
roadmap for us to navigate in both directions: from a given NLP4RE tool to its NLP4RE task and phase, and from a given RE phase to its tasks 
and available NLP4RE tools. Using this map, we can ask, for example, which NLP4RE tool is developed for which NLP4RE task and in which 
RE phase. Based on our results no tools were found for design phase. Furthermore, this map clearly illustrates the aforementioned typicality of 
NLP4RE tasks versus RE phases. 

TABLE 9: CATEGORIES OF NLP4RE TOOLS 

Tool Type  Tool Name (Study ID) No. 
Tools  

Percent 

Modeling OICSI (S678), NL-OOPS (S553), EA-Miner (S499), CM-Builder (S343), Circe (S34), LIDA (S623), NIBA 
Toolset (S272), RETNA (S108), aToucan (S909), DBDT (S31), Cico (S34), NL2UMLviaSBVR (S70), 
RADD-NLI (S121), SUGAR (S190), GRACE (S208), AREMCD (S219), RUCM (S227), RSLingo (S266), 
Zen-ReqConfig (S482), TREx (S496), NAPLES (S499), GeNLangUML (S551), ConstraintSoup (S600), 

34 26.15% 
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C&L (S707), AnModeler (S799), SBEAVER (S813), KCMP Dynamisch (S272), Xtext (S20), Kheops 
(S35), Visual Narrator (S683), ProcGap (S800), FeatureX (S772), CMT & FDE (S261), VoiceToModel 
(S765) 

Detection ARM (S861), SREE (S812), RQA (S903), AnaCon (S41), REGICE (S55), NARCIA (S56), LELIE (S75), 
SRRDirector (S86), MIA (S114), KROSA (S178), NAI (S226), QuARS (S232), CAR (S252), CARL 
(S298), RAVEN (S303), ReqSAC (S370), RAT (S376), MaramaAIC (S395), RESI (S432), RECAA 
(S447), DeNom (S448), RETA (S450), AQUSA (S501), Dowser (S644), QAMiner (S661), LeCA (S701), 
S-HTC (S258), CNLP(S464), Pragmatic Ambiguity Detector (S256), ReqAligner (S663), REAssistant 
(S662) 

31 23.85% 

Extraction findphrases (S13), AbstFinder (S307), FENL (S71), NAT2TESTSCR (S131), NLP-KAOS (S132), SAFE 
(S385), AUTOANNOTATOR (S433), UCTD (S453), GUEST (S598), Guidance Tool (S688), SpecQua 
(S743), NAT2TEST (S744), semMet (S777), Test2UseCase (S810), OCLgen (S845), Text2Policy (S872), 
GaiusT (S888), SNACC (S891), Doc2Spec (S897), ARSENAL (S915), MaTREx tool (S284), ELICA (S2), 
CHOReOS (S520), GuideGen (S907) 

24 18.46% 

Classification ASUM (S129), RUBRIC (S223), WCC (S257), NFR2AC tool (S306), ALERTme (S332), PUMConf (337), 
FFRE (S341), AUR-BoW (S500), SEMIOS (S550), CRISTAL (S629), CoReq (S672), SD (S674), ACRE 
(S757), SOVA R-TC (S778), SMAA (S788), CSLabel (S892), HeRA (S718), NFR Locator (S758), SURF 
(S910), NFRFinder (S647) 

20 15.38% 

Tracing & 
Relating 

Coparvo (S24), Trustrace (S25), Histrace (S25), CoChaIR (S26), HYPERDOCSY (S38), ReqSimile 
(S171), LGRTL (S198), CQV-UML (S400), TiQi (S651), REVERE (S717), LiMonE (S723), ESPRET 
(S792), COCAR (S805), RETRO (S934), WATson (S302) 

15 11.54% 

Search & 
Retrieval 

RE-SWOT (S174), IntelliReq (S602), ReqWiki (S711), iMapper (S784), PriF (S802), WIKINA (S686) 6 4.62% 

Total 130 100% 
 

Tool development timeline. The 130 NLP4RE tools were reported between 1990 and April 2019 and their development timeline is shown in 
Figure 11. Clearly, before 2004, the development had been patchy, with just 18 tools produced; from 2004 onwards, however, there has been a 
year-on-year growth of NLP4RE tools, with only a brief dip in 2007 (the number of tools in 2019 is incomplete as our search was completed in 
April 2019). We observe that this growth period corresponds to the strong growth period of NLP4RE research (Figure 3), a clear indication of the 
maturity of NLP4RE research. We expect to see a large increase in tool development in the coming years. 

Tool availability. Only 17 (13.08%) of these tools can be found online (See Table 10). However, of these 17 tools, aToucan requires access 
permission while IntelliReq is not accessible. For the remaining 15 tools, nine are open source tools hosted respectively on GitHub, SourceForge 
and a Semantic Wiki; three provide web-interface for users to try and another three can be downloaded from the Internet and installed on user 
computers. Among these accessible tools, only ReqSimile resisted the test of time, while the others were developed recently. Clearly, the state of 
the availability of NLP4RE tools is rather poor. We therefore hypothesize that the vast majority of NLP4RE tools were developed for the purpose 
of proof of concept, rather than for the purpose of practice.  
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Figure 10: The 130 NLP4RE tools clustered by NLP4RE tasks and then by RE phases. 
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Figure 11: Development timeline of NLP4RE tools. 

TABLE 10: NLP4RE TOOLS AVAILABLE ONLINE 

Tool Name Tool Type Year Web Address Status 
aToucan (S909) Modeling 2015 https://sites.google.com/site/taoyue/atoucan-models Need access permission 

CMT & FDE (S261) Modeling 2015 https://github.com/isti-fmt-nlp/tool-NLPtoFP Free open source software 

Visual Narrator (S683) Modeling 2016  https://github.com/MarcelRobeer/VisualNarrator  Free open source software on 
Github 

AnModeler (S799) Modeling 2016 https://sites.google.com/site/anmodeler/ Software can be downloaded 

FeatureX (S772) Modeling 2018 https://github.com/5Quintessential/FeatureX Free open source software 

SpecQua(S743) Extraction 2014 http://specqua.apphb.com Free to try only, with a simple UI 

Text2UseCase (S810) Extraction 2019 https://sites.google.com/view/text2usecase/home Web-based application, free to try, 
professional look and feel 

GuideGen (S907) Extraction 2019 https://github.com/hotomski/guidegen Free open source software 

Pragmatic Ambiguity 
Detector (S256) 

Detection 2012 https://github.com/isti-fmt-nlp/Pragmatic-
Ambiguity-Detector 

Free open source software  

IntelliReq (S602) Detection 2014 http://www.intellireq.org Website blocked 

NARCIA (S56) Detection 2015 https://sites.google.com/site/svvnarcia/ Can be installed on user computers 

AQUSA (S501)  Detection 2016  https://github.com/RELabUU/aqusa-core  Free open source, with a command 
line UI 

NFR Locator (S758) Classification 2013 https://github.com/RealsearchGroup/NFRLocator Free open source software 

PUMConf (337) Classification 2018 https://sites.google.com/site/pumconf/ Can be installed on user computers 

ReqSimile (S676) Tracing & 
Relating 

2005 http://reqsimile.sourceforge.net Free open source software, Beta 
version 

ReqWiki (S711) Search & 
Retrieval 

2013 http://www.semanticsoftware.info/reqwiki Free open source web-based 
application 

RE-SWOT (S174) Search & 
Retrieval 

2019 https://github.com/RELabUU/re-swot Free open source software on 
Github and visualisation on 
Tableau11 

 
11 The outputs of RE-SWOT can be viewed using Tableau tool: https://public.tableau.com/en-us/s/ (accessed 18 December 2020). 
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Figure 12: 140 NLP techniques and their frequency of use. 
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5.5   RQ5: Use of NLP Technologies for NLP4RE 
From the studies that make explicit reference to NLP technologies, we extracted and synthesized 231 different technologies, comprising 140 

NLP techniques (Figure 12), 66 NLP tools12 (Figure 13) and 25 NLP resources (Figure 14). These figures are briefly explained as follows. 
Figure 12 shows that the most frequently used NLP technique is POS tagging (used by 187 studies), while the next most used techniques are 

tokenization (by 81 studies), parsing (by 72 studies), stop-words removal (by 70 studies), term extraction (by 68 studies), and stemming (by 68 
studies). Figure 12 reveals that most NLP techniques, including those highly used, are syntactic techniques, a strong indicator of their dominance 
in NLP4RE research. Figure 12 also shows a large number of techniques are underused.  

Figure 13 shows that the most frequently used NLP tool is Stanford CoreNLP (used by 80 studies), while the next most used tools are GATE 
(by 35 studies), NLTK (by 23 studies), Apache OpenNLP (by 21 studies), and WEKA (by 13 studies). Among these, apart from WEKA, which is 
a data-mining tool, the other four tools are general-purpose NLP tools.  Figure 13 also reveals a large number of underused tools. 

In Figure 14, the most frequently used NLP resource is WordNet (by 66 studies), followed by VerbNet (by 9 studies) and British National 
Corpus (by 7 studies). Most NLP resources listed in Figure 14 are lexical resources. There are a large number of underused resources. 

Long tail distribution of NLP technologies. The usage of NLP technologies (techniques, tools and resources) as shown in Figure 13, Figure 14, 
Figure 15 exhibits a distribution pattern known as the “Long Tail” [93]. It means that only a small number of technologies were used frequently, 
as described above, whereas the majority technologies had a very low usage. The most frequently used technologies are called the “hits”, whereas 
the least used are called “long tails”. Clearly, POS tagging, Stanford CoreNLP and WordNet are the hits, indicating their popularity in NLP4RE 
research. However, what is more interesting is the huge number of long tail technologies – particularly those that are only used once or twice. 
According to the Long Tail theory [93], such technologies are “niches” in the market, but that is not entirely true of the NLP technologies used in 
NLP4RE research. Some of the long tail technologies are discussed in the following. 

Long tail NLP techniques. Our initial investigation suggests that most long tail NLP techniques are nascent, so their application in NLP4RE 
might be forthcoming. For example, various deep learning techniques such as Word Embedding, Doc2Vec, LSTM, CNN, and RNN, are novel. 
Google’s vector representation of words (Word2Vec) was only developed in 2013 [94]. It is therefore natural that they have a very low usage. 
Some long tail techniques are probably out of date or obsolete. For example, Lesk Algorithm, a classical algorithm for word sense disambiguation 
(WSD), is now being replaced by more advanced WSD techniques [95]. A few long tail technologies are real niches, as they are developed to 
serve specific needs. For example, CFG Parsing is a formal grammar for regulation expression and SCDV is a specialized technique to support 
faster construction of feature vectors in ML algorithms. For NLP4RE researchers, nascent techniques provide the springboard for innovation and 
novelty. In the future there will be more and more long tail NLP technologies, but only a small number of them will become future hits, according 
to the Long Tail theory [96]. A particularly promising one is the BERT language model [97], which is being used in recent RE research [98], 
[99]. 

Long tail NLP tools. Most long tail NLP tools are competing tools, such as taggers (e.g., Genia Tagger, CLAWS POS Tagger and Brill’s POS 
Tagger) and parsers (e.g., ANTLR Lexical Parser, SEMAFOR Parser and Java SAX Parser). We argue that these tools are less used because they 
are less known by NLP4RE researchers and they are overshadowed by all in one toolkits such as Stanford CoreNLP and GATE. 

Long tail NLP resources. According to our research, long tail NLP resources tend to be domain specific or language specific. For example, 
VerbOcean is a lexicon for mining semantic verb relations on the web; MODIS and CM-1 are datasets for software engineering [100]; GermaNet 
(a lexicon for German language) and Floresta Corpus (a syntactic tree corpus for Portuguese) are Language-specific resources. A few long tail 
resources are nascent, such as Google News Corpus and DBpedia corpus for Wikipedia. There are also a couple of out of date resources, such as 
Brown Corpus and Hornby’s Verb Patterns. Please note that other RE specific resources may have been published in short papers and thus have 
not been included in our study. Important cases are the PURE dataset [101], the SEM-REQ dataset [102], the datasets for traceability discussed 
by [103], and the user story dataset [104] - used by a recent study [105]. 

NLP techniques and NLP4RE tasks. As it is not possible to show the relationship between all the 140 NLP techniques and their supporting 
NLP4RE tasks, we choose the 32 top-ranked NLP techniques for discussion. Figure 15 shows these techniques and their frequency of use – each 
technique is used at least 10 times. Figure 16 depicts these techniques and their relationships with the six NLP4RE tasks. It shows that these NLP 
techniques are evenly distributed across all six NLP4RE tasks, revealing a symmetric pattern. This suggests that all these 32 techniques are 
generally applicable to the six NLP4RE tasks. However, as these techniques are predominantly word-based, we deduce that most current 
NLP4RE studies are based on basic syntactic analysis, with little consideration to semantic or discourse analysis. 

NLP tools and NLP4RE tasks. As with NLP techniques, we choose the top 14 NLP tools for discussion, on the basis that each tool is used at 
least three times. Figure 17 shows these tools and their frequency of use. The relationship between these tools and the six NLP4RE tasks is 
depicted in Figure 18, which shows that most tools are used for detection, classification and extraction, and only a few for modeling, tracing & 
relating and search & retrieval. The lack of NLP tools for modeling thus supports our early claim that more modeling tools are needed. We notice 

 
12 NLP tools are not NLP4RE tools; they are general-purpose tools that support the development of NLP4RE tools. 
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that the aforementioned general-purpose NLP tools – that is, Stanford CoreNLP, GATE, NLTK, and Apache OpenNLP – were used to support all 
six NLP4RE tasks. 

 

 

Figure 13: 66 NLP tools and their frequency of use. 
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Figure 14: 25 NLP resources and their frequency of use. 

 

Figure 15: Frequently used NLP techniques - those that are used 10 times or more. 
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NLP resources and NLP4RE tasks. We choose 13 NLP resources for discussion, on the basis that each resource is used at least three times. 
Figure 19 shows these resources and their frequency of use. The relationship between these tools and the six NLP4RE tasks is depicted in Figure 
20, which shows that resources are in general scarce for all the tasks, but particularly so for modeling and search & retrieval. Among these NLP 
resources, only WordNet is used to support all six NLP4RE tasks; VerbNet is used for all tasks but modeling; British National Corpus is used in 
all but modeling and search & retrieval. We observe that there is a general lack of NLP resources suitable for the NLP4RE tasks. This also 
suggests a general lack of task specific annotated RE dataset. 

 
Figure 16: Relationship between frequently used NLP techniques and the 6 NLP4RE tasks. 
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Figure 17: Frequently used NLP tools - those that are used three times or more. 

 

Figure 18: Relationship between frequently used NLP tools and the corresponding NLP4RE tasks. 
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Figure 19: Frequently used NLP resources - those that are used three times or more. 

 

Figure 20: Relationship between frequently used NLP resources and the corresponding NLP4RE tasks. 
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6 Implications of the Mapping Study 
Reflecting on the mapping study, here we discuss its implications for NLP4RE research and development and offer some suggestions for both 

NLP4RE researchers and practitioners. 
The state of the NLP4RE literature (RQ1): Although NLP4RE studies can be found in a large number of publication venues covering diverse 

topics of computer science and information technology, the main venues for these studies remain firmly in the RE and SE areas (Sect. 5.1). This 
finding suggests that researchers looking for NLP4RE studies can safely focus on the RE and SE venues, where major works on NLP4RE are 
most likely published. However, there is one area outside both RE and SE that is inherently relevant to NLP4RE research, namely NLP. We 
believe that presenting NLP4RE work at relevant NLP conferences will enable us to mingle with NLP researchers for potential collaborations, 
and to better learn about most recent developments in NLP. In return, we also believe that NLP researchers can benefit from addressing the 
challenges of NLP4RE problems. We therefore suggest that the NLP4RE community should actively seek collaborations with the NLP 
community. 

The state of empirical research in NLP4RE (RQ2): The mapping study shows (Sect. 5.2) that the majority (more than 67%) of NLP4RE 
studies are solution proposals, but more than one third of them are only evaluated by an example application whereas just one in eight of them are 
evaluated involving human subjects. This reveals that the status of evaluation in NLP4RE research is rather poor. We believe this is an area in 
which the NLP4RE community and the empirical software engineering community can collaborate. We suggest that NLP4RE researchers should 
carefully choose a suitable evaluation methodology in their design of evaluation, as there is a clear relationship between the quality of a study and 
the proper use of the evaluation methodology [70]. To this end, NLP4RE researchers need to understand and consult different evaluation 
methodologies. For lab experiments, we recommend to use the experimental design guidelines by Kitchenham et al. [91]; for case study and field 
experiment, we recommend the guidelines for conducting and reporting study research by Runeson et al. [106]; for user-centered evaluation, we 
recommend the design framework by Zhao et al. [88]. A comprehensive reference handbook for empirical software engineering is provided by 
Wholin et al [107]. Empirical evaluation in NLP4RE should also take into account the typical measures used in NLP (cf., e.g., Manning and 
Shutze [108]), although context-specific adaptations may be required (cf. RQ5 below). 

Our mapping study also shows that the majority (more than 60%) of NLP4RE studies are lab-based, and by contrast, only a small minority 
(7%) of them is conducted in an industrial setting. An obvious recommendation would be to call for the help from practitioners to evaluate 
NLP4RE research, but it is well known that it is usually difficult to get practitioners involved in research evaluation, due to time and other 
restrictions [90]. While we believe that industrial case studies and field experiments play an important role in the success of the research, we 
suggest that when these are not possible, an alternative is laboratory experiments with human subjects (LEHS) and this often means the use of 
students as subjects. Industrial experts accept that students are close to the software developer population [91], [90] and the use of students in the 
early stages of research evaluation is an effective way to advance software engineering theories and technologies [90]. 

The focus of NLP4RE research (RQ3): While most NLP4RE research focuses on the traditional RE phases (Sect. 5.3), especially the analysis 
phase, only a limited effort is dedicated to the phases that overlap with software development, such as design and testing. As the main purpose of 
RE is to support the transformation of user requirements into software systems, NLP4RE research can play an important role in this 
transformation, either by developing new design tools or new tracing tools. NLP4RE researchers are therefore recommended to expand the 
research scope beyond the typical RE process, possibly creating synergies with researchers working on NLP for feature extraction [109], [110] 
and on NLP for testing [111]. NLP4RE researchers sought to address NL issues related to a range of NLP4RE tasks (Sect. 5.3). While this 
mapping study identified six such tasks, it may have not uncovered other tasks, which can be investigated in future research. Additional areas of 
research come from the types of document that can be considered for evaluation: user stories, use cases, domain documents, interview scripts and 
models are still marginal in the research, while they have a primary role in practice. Furthermore, although recent research is giving relevant 
attention to artifacts such as user feedback, legal documents and user stories, the field is still open for further investigation.  

The state of tool development (RQ4): In spite of the large number of tools produced by NLP4RE research, evidence of industrial uptake is 
limited (Sect. 5.4). In addition, the number of publicly available tools is extremely small. As the first step to improve this situation, we suggest 
that NLP4RE researchers deposit their tools (including the 130 tools identified in this mapping study) in shared repositories by using, for 
example, GitHub, as done, among others, by the RE Lab of the University of Utrecht13. We further suggest that the shared NLP4RE tools can be 
structured according to their tasks and targeted RE phases, as shown in Figure 10. While it is important to share data and to build data repositories 
such as PROMISE14, we believe building a shared repository of NLP4RE tools is also extremely crucial, especially in a context such as RE in 
which data are often confidential and difficult to share. A shared tool repository can help researchers develop their work on top of their peers’ and 
would also facilitate technology transfer with industries, as companies often want to see a working tool before they can be convinced about the 
feasibility of a collaboration, for example to adapt the tool to the company context.  

 
13 https://github.com/RELabUU/ 
14 http://promise.site.uottawa.ca/SERepository/datasets-page.html 
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The use of NLP technologies (RQ5): A large number of NLP technologies (140 NLP techniques, 66 NLP tools and 25 language resources) are 
identified in the mapping study (Sect. 5.5), but these technologies have not been utilized to full potential, with only a quarter of them being used 
more frequently. The number of NLP resources used by NLP4RE studies is even smaller in comparison with the number of NLP techniques and 
tools, with WordNet as the only predominant resource. Our mapping study reveals a clear lack of RE specific resources, such as annotated 
requirements corpora and benchmark data, as apart from MODIS and CM-1, the remaining corpora, such as British National Corpus and 
Wikipedia Corpus, are for general NLP applications. The shortage of RE specific resources makes it impossible to develop effective NLP4RE 
approaches, as using general-purpose language resources to train domain specific language models for processing requirements text would 
inevitably lead to unreliable results. Also, as we found in another survey [50], the RE community uses token-level metrics such as precision, 
recall and F1-score to measure the performance of NLP4RE approaches, and these metrics may not be adequate for measuring NLP tasks that 
involve human judgment or the human-in-the-loop [112]. New metrics begin to emerge to explicitly capture how well the rationales provided by 
NLP models align with human rationales, and also how faithful these rationales are in influencing models’ predictions [113]. The application of 
different performance metrics to NLP4RE approaches can be a potential collaboration opportunity between the NLP4RE community and the NLP 
community. Therefore, alongside our suggestion for creating a shared tool repository, we also suggest that NLP4RE researchers share RE 
specific datasets, benchmark data and performance metrics. 

In summary, the action of NLPRE researchers in the past years has been successful in providing technical solutions that sufficiently cover the 
RE process, and it is now time to improve the empirical maturity of the field, with case studies, benchmarks and rigorous evaluations that can 
lead to more robust tools and open to industrial adoption of NLP4RE solutions. At the same time, researchers should not restrain themselves to 
consolidated NLP practices, but should also look into more advanced NLP techniques, e.g., for semantic and discourse analysis, and for less 
explored RE-relevant sources such as interviews and user stories, as they are largely used in practice [10]. Integration between NL and other data, 
such as RE-related images, vocal and biofeedback data [114] by means of multi-modal analysis [115] is also a challenging and fascinating 
research avenue. 

Suggestions for practitioners: We hope that this mapping study can be useful for practitioners interested in leveraging NLP4RE research 
results. Specifically, practitioners looking for NLP4RE literature should look outside typical SE dissemination fora, as most NLP4RE studies are 
published in RE venues, as Figure 4 shows. Practitioners need to be aware that many approaches that they may consider adopting are only lab 
assessed and most of them were not evaluated with human subjects (Table 7). To help change this situation and move NLP4RE research results to 
a stronger footing where they could be adopted and accepted for practice, practitioners need to provide researchers with the opportunity to carry 
out case studies with their involvement. While helping research evaluation will incur some overhead in terms of time and effort, exclusive 
relationships with the research team may lead to early adoption by the company and a competitive advantage. Practitioners interested in NLP4RE 
tools may find the dendogram in Figure 10 particularly useful, as it shows what tools have been developed for which tasks and which RE phases. 
Finally, the set of top NLP technologies, including techniques, tools and resources, identified in Section 5.5, may be particularly useful to 
practitioners who wish to develop in-house NLP4RE tools for their needs, by leveraging existing platforms (Stanford CoreNLP, GATE, NLTK, 
Open NLP). The top techniques, tools and resources represent the basic, well-established, NLP technologies that are needed to practice NLP4RE. 
The top 32 NLP techniques identified (POS Tagging, Parsing, etc.) can be used to address the whole set of NLP4RE tasks. Thus, this mapping 
study provides practitioners with a clear indication of the knowledge needed to develop NLP4RE tools and can be useful to identify the skills 
required during recruitment of personnel that may be dedicated to the in-house development of NLP4RE tools. 

7 Study Validity and Limitations 
The main threat to the validity of any type of literature review is the question of reliability [116]: if two different studies follow the same 

research procedures, will they produce the same results [117]? For systematic literature reviews and systematic mapping studies, the threat of 
reliability can be manifested in the entire review process, from identification of the literature to selection of the relevant studies to the final 
analysis. To mitigate this validity threat, we took some preventive measures in each step of the study process, described as follows. 

Reliability of literature search: Due to the constraints on resources, time and search engines, it is almost impossible to find the entire 
population of all the relevant studies on NLP4RE [116]. To ensure we found as many relevant studies as possible and as close to the actual 
population as possible, we followed the recommended guidelines [118], [119] to identify the literature (Sect. 4.2.1), formulate the search terms 
(Sect. 4.2.2) and perform the search (Sect. 4.2.3). However, it is possible that we did not find studies whose authors used other terms that were 
not included in our search terms. This threat is quite relevant, as RE has a large scope, and some studies may not explicitly refer to RE or use the 
term “requirement”, although they are dealing with requirements activities. We mitigated this problem through initial and targeted searches. 
Furthermore, this is a mapping study oriented to give an overview of the field, and we argue that the absence of few studies does not jeopardize 
the statistics. As our main search phase relied on the search engines provided by our chosen libraries, the quality of the search engines could have 
influenced the completeness of the identified primary studies, as reported by many other systematic reviewers [120], [70]. 

Reliability of study selection: To ensure our study selection to be as accurate as possible, as free from researcher bias and human errors as 
possible, we followed a rigorous study selection process, guided by the carefully designed inclusion and exclusion criteria, and enforced by 
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crosschecking and independent checking of the selected and deselected studies (Sect. 4.2.4). We paid a special attention to the last two stages of 
study selection (Stages 3-4 in Figure 1), because it involved determining the relevance of the remaining studies based on individual 
interpretations. To overcome the inherent threat arising from this subjectivity, as detailed in Sect. 4.2.4, we followed the recommendation of 
Kuhrmann et al. [67] by using the majority voting procedure to determine each included or excluded study. Our post hoc calculation shows that 
between the data inspectors and the lead supervisor, we reached an average agreement of κ = 0.93 on the final set of selected studies, measured by 
Cohen's kappa coefficient (κ) [121], suggesting an almost perfect agreement. We therefore believe that the study population we identified is close 
to the actual population and is a good representative sample of the current state of NLP4RE research. 

Reliability of data extraction and classification: To ensure we extract the required data and organize the selected studies accurately, 
consistently and uniformly, we followed a faceted classification scheme with a comprehensive set of predefined categories (Sect. 4.3). However, 
the classification scheme was not foolproof for data extraction, as this process involved subjective interpretations and decisions by the 
researchers. Lack of sufficient details about the design and execution of the reported studies often hindered data extraction. A particular problem 
arising from identifying exact NLP technologies from the studies was the lack of precise, explicit and standard description of these technologies 
in the reported studies. For example, when a study stated that it used a simple syntactic technique to analyze a document, it could mean POS 
tagging only or both POS tagging and parsing. Worse still, some studies stated that they performed a tokenization task, but did not say which 
NLP tools were used to perform this task. To mitigate this problem, we compiled our own in-house NLP dictionary with a list of NLP techniques, 
NLP tools and NLP resources. This dictionary was then used to guide us in extracting NLP technologies from the selected studies. The process of 
classifying the various aspects of the selected studies (such as research types, evaluation methods, RE phases, NLP4RE tasks) also involved 
subjective decisions by the researchers. To minimize human errors, we carried out regular checks on each category. Whenever there was doubt 
about the classification of a particular study, we would re-assess that study, re-extract the data and re-classify the data if necessary. 

Reliability of data synthesis, analysis and visualization: To ensure the mapping results were as accurate and error-free as possible, we 
carefully carried out thematic synthesis, descriptive analysis and frequency counting on the extracted data. Thematic synthesis involved 
standardizing the names of NLP techniques and establishing the types of input document. To synthesize the extracted NLP techniques, we used 
our NLP dictionary to normalize the names of NLP techniques or combine similar techniques into one. When we discovered new techniques, we 
also added them to our dictionary. To synthesize input documents, we relied on our knowledge to identify their common types. The synthesized 
results were reviewed several times and revisions were made to make them as accurate as possible. 

8 Conclusion 
This article has reported the first-ever systematic mapping study on the landscape of NLP4RE research. From 11,540 search results, 404 

primary studies were included in the mapping study and systematically reviewed according to five research questions. These questions interrogate 
the selected studies to understand their publication status, state of empirical research, research focus, state of tool development, and finally, their 
usage of NLP technologies. The answers to the research questions show that: 

• NLP4RE is an active and thriving research area in RE, which has amassed a large number of publications and attracted widespread 
attention from diverse communities. 

• Most NLP4RE studies (67.08%) are solution proposals that were evaluated using a laboratory experiment or an example application, 
while only 7.18% of the studies were evaluated in an industrial setting, which highlights a general lack of industrial evaluation of 
NLP4RE research results. 

• The biggest proportion (42.70%) of the NLP4RE studies focuses on the analysis phase, with quality defect detection as their central 
linguistic analysis task and requirements specification as their commonly processed document type, indicating the current focus of 
NLP4RE research. 

• A total of 130 new tools were proposed to support a range of linguistic analysis tasks, but only 17 of these tools (13.08%) are available 
for download. 

• 231 different NLP technologies comprising 140 techniques, 66 tools and 25 resources were used to support NLP4RE research, but only 
a quarter of them are used frequently and most popular NLP technologies are lexical or syntactic ones such as POS taggers, syntactic 
parsers and WordNet.  

These findings reveal a huge discrepancy between the state of the art and the state of the practice in current NLP4RE research, indicated by 
insufficient industrial evaluation of NLP4RE research, little evidence of industrial adoption of the proposed tools, the lack of shared RE-specific 
language resources, and the lack of NLP expertise in NLP4RE research to advise on the choice of NLP technologies. The findings also carry 
many important implications for NLP4RE research and practice. We believe that these implications can be used to drive the NLP4RE research 
agenda. At the top of this agenda there should be concrete plans for active collaboration with practitioners to jointly develop and assess NLP4RE 
tools, for close collaboration with NLP experts to learn and use cutting-edge NLP technologies for semantic and discourse analysis, and for 
developing open NLP4RE tools, shared datasets, benchmark data and performance metrics for research evaluation. 
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In spite of the gaps and limitations, this mapping study also shows that NLP4RE research has made a tremendous progress over the past 15 
years, particularly in the areas of publication and tool development. Additionally, recent work in analyzing more challenging documents such as 
user feedback and legal documents indicates that NLP4RE research has entered a new chapter by taking on more challenging tasks. Furthermore, 
we noticed that industries are also beginning to leverage NLP4RE research results to develop NLP tools for RE. There is now a real buzz of 
excitement that NLP4RE research can soon be transformed into a practical technology to support RE practice, especially thanks to novel 
techniques for transfer learning [97] that can solve the paramount problem of the lack of RE-specific resources. 

The mapping results can benefit researchers and practitioners in many ways. For researchers, the selected studies, their deep analysis and 
categorization can serve as useful references for further research; the identified gaps provide opportunities for innovative research; the identified 
publication venues, particularly those 12 leading venues, help narrow the search space for literature review in this area or for publishing relevant 
work. Practitioners interested in tool development can explore the set of the identified NLP4RE research tools and seek potential collaboration 
with the tool proposers. The identified NLP technologies, together with their usage and their relationships with the NLP4RE tasks, serve as a 
conceptual framework to help both practitioners and researchers gain a better understanding of what NLP technologies are in use in RE and how 
they are related. To conclude, we believe this mapping study is an important contribution to the field of NLP4RE, as it provides a substantive, 
thorough and sophisticated overview of NLP4RE research, and offers many important takeaways for future research and development in this area. 
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