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Abstract
Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive 
molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how 
senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, 
we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects 
on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under 
intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of 
senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the 
action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of 
neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the 
success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our 
results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged 
by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils 
may lead to innovative strategies to cope with chronic or tumor-associated inflammation.
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FDA  Food and Drug Administration
IL-8  Interleukin-8
LPS  Lipopolysaccharide
mAb  Monoclonal antibody
MDSC  Myeloid-derived suppressor cell
MFI  Median fluorescence intensity
MPO  Myeloperoxidase
NET  Neutrophil extracellular trap
NK  Natural killer
PMA  Phorbol 12-myristate 13-acetate
ROS  Reactive oxygen species
SA-β-Gal  Senescence-associated β-galactosidase
SAA  Acute-phase serum amyloid A
SASP  Senescence-associated secretory phenotype
TAN  Tumor-associated neutrophil
TIS  Therapy-induced senescence

Introduction

Cellular senescence represents a cellular stress response 
primarily triggered by DNA damage, including telomere 
shortening and cytosolic nucleic acid sensing, and it is 
considered an alternative fate to regulated cell death [1–3]. 
Senescent cells are characterized by a long-lasting cell cycle 
arrest and therefore are regarded as a hurdle against tumori-
genesis [4]. Nevertheless, senescent cells are metabolically 
active and many of their biological functions are driven by 
the so-called senescence-associated secretory phenotype 
(SASP). This is a complex and temporally regulated pro-
gram that involves the secretion of bioactive molecules and 
inflammatory factors in the surrounding microenvironment 
[5–7]. SASP makes senescent cells crucial in orchestrat-
ing immune cell recruitment and tissue plasticity around 
neoplastic lesions, showing even opposite effects on tumor 
progression [8]. For instance, senescence-dependent recruit-
ment of lymphocytes of the innate immunity, namely natu-
ral killer (NK) cells, can mediate tumor regression [9–11]. 
NK cells recognize senescent cells expressing the ligands of 
the activating receptors NKG2D and DNAM-1 and elimi-
nate them through the release of perforin- and granzyme-
containing granules [12–16]. Macrophages also participate 
in the clearance of senescent cells [17, 18]. Furthermore, 
senescent cells have been recently described to alert the 
adaptive arm of the immune system by enhancing tumor 
cell immunogenicity through the priming of dendritic cells 
and the activation of tumor antigen-specific CD8 T cells 
[19, 20]. On the other hand, senescence can also establish 
an immunosuppressive microenvironment [21] and promote 
cancer cell stemness [22]. In certain contexts, senescent cells 
may express the inhibitory molecule HLA-E, dampening NK 
cell, and CD8 T cell effector functions [23], and expand 
the myeloid-derived suppressor cell (MDSC) compartment 

within the tumor niche [24]. Much less is known about the 
interaction between senescent cells and neutrophils, which 
are the first immune cells recruited to injured tissues. Neu-
trophils have been reported to target senescent cells during 
vascular remodeling in retinopathy [25] and to be influenced 
by the secretome of senescent hepatoma cells with contrast-
ing results on neutrophil extracellular trap (NET) forma-
tion capacity [26]. Considering the increasing evidence of 
a prominent role of neutrophils in the tumor immune land-
scape, there is an urgent need to investigate the cross talk 
between senescent cells and neutrophils. According to the 
state of the art, tumor-associated neutrophils (TANs) can 
establish antitumor responses by direct killing of cancer cells 
via reactive oxygen species (ROS) production or by serving 
as antigen-presenting cells. Conversely, TANs can skew the 
immune responses toward a tumor-promoting inflammation 
and a permissive environment driving angiogenesis and 
extracellular matrix remodeling [27].

Immunotherapy has revolutionized cancer treatment and 
the therapeutic efficacy of many anticancer drugs relies on 
their immunomodulatory effects [28, 29]. Cellular senes-
cence has great potential as an immunomodulatory tool 
due to its intimate connection with the immune system. 
Pro-senescence therapy of tumor cells may even be con-
sidered as a new type of immunotherapy [30]. Palboci-
clib (PD0332991), ribociclib (LEE011), and abemaciclib 
(LY2835219) belong to the third generation of CDK4/6 
inhibitors, which have been recently approved in associa-
tion with hormonal therapy for the treatment of hormone 
receptor-positive and human epidermal growth factor recep-
tor 2-negative (HR + /HER2-) metastatic breast cancer and 
have promptly demonstrated additional effects beyond the 
antiproliferative property [31–33]. Palbociclib (Ibrance, 
Pfizer Inc.), the first licensed, has shown non-canonical 
functions among which the induction of a senescence-like 
phenotype in tumor cells has attracted great attention for its 
implications in cancer pathology [34–37]. In this regard, pal-
bociclib treatment may represent a form of therapy-induced 
senescence (TIS). Preclinical evidence extends palbociclib 
application also to tumors other than breast cancer, including 
leukemias, melanoma, pancreatic carcinoma, head and neck 
cancer, and glioblastoma [38–40]. Moreover, palbociclib is 
being tested in clinical trials in combination with immune 
checkpoint inhibitors or other agents [41, 42]. Noteworthy, a 
recent alert from the Food and Drug Administration (FDA) 
warns about severe pulmonary adverse effects following 
the administration of CDK4/6 inhibitors, including palbo-
ciclib, and a preclinical study has shown that palbociclib 
treatment leads to neutrophil recruitment to fibrotic lung 
lesions potentially contributing to pulmonary inflammation 
[43, 44]. Therefore, shedding light on the way palbociclib-
induced senescent cells modulate neutrophil behavior is of 
great relevance. To this aim, in this work we treated human 
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breast cancer cells with palbociclib to study the induction 
of cellular senescence and to analyze the resulting SASP. 
Specifically, we assessed the ability of senescent tumor 
cells to mediate inflammation by recruiting and activating 
neutrophils.

Materials and methods

Cell culture and treatment

Human breast cancer cell lines MCF7 and MDA-MB-231 
were kindly gifted by Rossella Maione (Sapienza University 
of Rome, Italy). Primary human foreskin fibroblasts (HFFs) 
were from the American Type Culture Collection, ATCC 
SCRC-1041™. Cells were routinely screened for myco-
plasma contamination with the PCR mycoplasma detection 
kit from abm (G238). Cells were cultured in a humified incu-
bator at 37°C with 5%  CO2 in DMEM high glucose supple-
mented with 10% FBS, 2 mM L-Gln, and 100 U/ml penicil-
lin/streptomycin (Euroclone). Optimal seeding density was 
established for each cell line to reach 70–80% confluence at 
the experimental endpoint. Palbociclib (PD0332991) was 
provided by Pfizer Inc. and used at 2 μM which is a stand-
ard concentration in cellular studies [45] and not far from 
physiologically achievable concentrations in the plasma of 
patients [46].

Cell cycle analysis

Cells were harvested and fixed in cold 70% ethanol at least 
overnight at 4°C. After washing in PBS, cells were incu-
bated with 50 μg/ml propidium iodide containing 40 μg/ml 
RNAse A for 30 min at room temperature and immediately 
analyzed by flow cytometry with a CytoFLEX cytometer 
from Beckman Coulter. Data were elaborated using FlowJo 
software v.10.7.1 (FlowJo, OR, USA), and cell cycle 
determined with the Dean-Jett-Fox model after doublets 
exclusion.

Apoptosis evaluation

Apoptotic and dead cells were detected using the dead cell 
apoptosis kit with Annexin V FITC and propidium iodide 
for flow cytometry from Invitrogen (V13242) according to 
the manufacturer’s instructions.

SA‑β‑Gal assay

Senescence-associated β-galactosidase (SA-β-Gal) activ-
ity was assessed by using the senescence β-galactosidase 
staining kit from cell signaling technology (#9860) accord-
ing to the manufacturer’s instructions. Senescent cells were 

identified as blue-stained cells by standard light microscopy. 
Images were acquired using an EVOS microscope with mag-
nification 200 ×.

Lamin‑B1 detection

Lamin-B1 was detected by immunofluorescence micros-
copy. Cells were fixed with methanol/acetone at ratio 3/7 
and stained overnight at 4°C with anti-Lamin-B1 rabbit mAb 
(Abcam, ab133741) diluted 1:100 in PBS with 5% BSA, 
0.3 M glycine, 0.1% Triton X-100. After washing in PBS, 
AF594-cojugated goat anti-rabbit IgG secondary antibody 
(Invitrogen, A-11012) was applied for 1 h at room tem-
perature. Cover slip was mounted using SlowFade™ gold 
antifade mountant with DAPI (Invitrogen, S36938). Images 
were acquired by conventional epifluorescence micros-
copy using an Olympus BX51 microscope equipped with 
a ProgRes® MF cool monochrome camera (Jenoptik) and 
processed with I.A.S software ver. 009 (Delta Sistemi) for 
merging and pseudo-coloring adjustment.

Conditioned medium collection

At the end of the treatment, culture medium containing 
FBS was replaced with fresh medium without FBS. Treated 
and untreated cells were cultured in T-25 flasks with 6 ml 
of medium and, after 24 h, conditioned media were col-
lected, and cells counted. Supernatants were centrifugated 
(13,000 rpm for 15 min at 4°C) to remove cell debris and 
stored unconcentrated in aliquots at − 80°C until the day of 
use. Media were thawed on ice and used undiluted, 100 μl 
for ELISA analysis and 0.5 ml in 24-well plate for neutrophil 
functional assays.

Luminex multiplex immunoassay

Cytokine levels in cell culture supernatants were measured 
using a custom human premixed multi-analyte kit (R&D 
Systems) and a Bio-Plex® MAGPIX™ multiplex reader 
(Bio-Rad Laboratories) according to the manufacturer’s 
instructions. Levels of CCL2, CCL27, CCL3, CCL4, CCL7, 
Chemerin,  CX3CL1, CXCL10, CXCL9, GM-CSF, IFN-
γ, IL-10, IL-12, IL-13, IL-15, IL-18, IL-1α, IL-1β, IL-2, 
IL-21, IL-28A, IL-4, IL-5 were measured. Samples were 
run in duplicate and cytokine concentrations were calculated 
using a six-point standard curve derived from measurement 
of serially diluted panel-specific standards. Upper and lower 
limits of detection for each cytokine were based on indi-
vidual analyte standard curve.
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IL‑6, IL‑8, and SAA1 ELISA

Centrifugation-cleared cell culture supernatants were stored 
at − 80°C until the day of analysis. IL-6, IL-8/CXCL8, and 
SAA1 concentrations were quantified using specific Duo-
Set® ELISA Kits (R&D Systems, DY206-05, DY208-05, 
and DY3019-05, respectively) according to the manufac-
turer’s instructions. Concentrations were normalized to 
the number of cells counted immediately after supernatant 
collection.

Gene expression analysis by quantitative real‑time 
PCR (qPCR)

Total RNA was extracted using the TRIzol™ Reagent (Inv-
itrogen, #15596026), and cDNAs were obtained using the 
SuperScript Vilo kit (Invitrogen, #11754050) according 
to the manufacturer’s instructions. For the targets CXCL1 
(Hs00236937_m1), CXCL8 (Hs00174103_m1), SAA1 
(Hs07291672_g1), and SAA2 (Hs01667582_m1), qPCR 
assays were performed using TaqMan Universal PCR Master 
Mix (#4369016) and gene expression assays from Applied 
Biosystems. Gene expression was normalized using HPRT1 
(Hs02800695_m1) as housekeeping gene. For the targets 
CXCL5, CXCL6, and CXCL7, qPCR assays were performed 
using SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad Laboratories, #1725271). GAPDH was used as house-
keeping gene. Specific primer sets were used, and prim-
ers sequences are available upon request. Reactions were 
performed using an AriaMx 3005 Real-Time PCR System 
(Agilent Technologies). Data were analyzed with the  2−ΔΔCt 
method using the average of control samples for the ΔΔ 
calculation.

Neutrophils isolation

Neutrophils were isolated from peripheral blood of healthy 
donors according to [47]. Briefly, pellet obtained from den-
sity gradient centrifugation as for peripheral blood mono-
nuclear cell (PBMC) preparation containing polymorpho-
nuclear cells were subjected to several steps of red blood 
cell lysis with buffer containing 0.155 M  NH4Cl, 12 mM 
 NaHCO3, and 0.1 mM EDTA. Polymorphonuclear cells 
were resuspended in PBS and counted. For the analysis of 
viability and purity, a small amount of isolated polymor-
phonuclear cells (0.2 ×  106 cells) were stained with Zom-
bie Violet™ Fixable Viability Dye (BioLegend, #423114) 
and then with FITC-conjugated anti-CD10 mAb (BD 
Biosciences, #347503), APC-conjugated anti-CD15 mAb 
(Immunotools, #21890156), and PE-conjugated anti-CD16 
mAb (BD Biosciences, #332779). Samples were analyzed by 

flow cytometry with a CytoFLEX cytometer from Beckman 
Coulter, and data elaborated using FlowJo software v.10.7.1 
(FlowJo, OR, USA). Gating strategy to identify neutrophils 
is shown in Supplementary Fig. 2.

Neutrophil migration assay

Migration of fresh isolated neutrophils was assessed in 
transwells (24 wells/plate) with inserts made of 3 mm-pore 
membrane (Corning Costar, #3415). The lower chamber 
was loaded with 600 μl of attracting medium according to 
the experimental design, while 0.5 ×  106 neutrophils were 
loaded in the upper chamber with 100 μl. Migration assay 
was performed in the absence or presence of 1 μg /ml neu-
tralizing α-human CXCL8 mAb (R&D Systems, MAB208) 
placed both in the upper and lower chambers. After 1 h at 
37°C, the number of neutrophils migrated across the filter 
into the lower chamber was counted by flow cytometry with 
a CytoFLEX cytometer from Beckman Coulter, and data 
shown as percentage of migrated neutrophils in respect of 
loaded neutrophils.

Neutrophil phenotyping

Cell morphology, NET formation, and ROS production 
were addressed after incubating  105 fresh isolated neutro-
phils for 1 h at 37°C with conditioned media according to 
the experimental design. For circularity evaluation, neutro-
phils were fixed in 4% PFA, permeabilized with 0.2% Triton 
X-100, stained with AF594-conjugated phalloidin (Thermo 
Fisher Scientific, A12381), and counterstained with 2 μg /ml 
Hoechst-33342 (Thermo Fisher Scientific, H3570). Images 
were acquired by conventional epifluorescence micros-
copy using an Olympus BX51 microscope equipped with 
a ProgRes® MF cool monochrome camera (Jenoptik) and 
processed with I.A.S software ver. 009 (Delta Sistemi) for 
merging and pseudo-coloring adjustment. Cell circularity 
score was measured using the ImageJ image analysis soft-
ware (Rasband, W.S., ImageJ, U. S. National Institutes of 
Health, Bethesda, Maryland, USA, https:// imagej. nih. gov/ 
ij/, 1997–2018) analyzing for each experimental condition 
200 cells from 5 different fields acquired from two inde-
pendent experiments. Briefly, images at 400 × magnification 
were processed performing the following actions: subtract 
background, adjust threshold, fill holes, analyze particles. 
The “overlay mask” was considered for visualizing results 
and the “round parameter” was considered for roundness 
index quantification. NETs were visualized by extracellular 
DNA staining with NucGreen™ Dead 488 ReadyProbes™ 
Reagent (SYTOX™ Green) (Invitrogen, R37109), a fluo-
rescent membrane-impermeable DNA dye, according to the 
manufacturer’s instructions. Cells were counterstained with 
2 μg /ml Hoechst-33342 (Thermo Fisher Scientific, H3570). 

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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When indicated (ctr +), neutrophils were stimulated with 
50 ng/ml PMA (Sigma-Aldrich, P1585) for 1 h to induce 
NET formation. Medium alone with FBS was used for basal 
background (ctr-). Images were captured by fluorescence 
microscopy as described above. CellROX® Green Reagent 
from Invitrogen (C10444) was used to estimate intracellular 
ROS according to the manufacturer’s instructions. Neutro-
phils were treated with 1 μg /ml LPS (InvivoGen, TLRL-
EBLPS) for 1 h as positive control. The fluorescence result-
ing from CellROX® Reagent oxidation was quantified by 
flow cytometry considering the median fluorescence inten-
sity (MFI) and data shown as fold increase in respect to the 
average of proliferating samples. For the evaluation of cell 
debris uptake, target cells were fluorescently labeled with 
1.25 μM 5(6)-Carboxyfluorescein diacetate N-succinimidyl 
ester (CFSE) (Sigma-Aldrich, #21888) and after plating co-
cultured with neutrophils at effector:target ratio of 1:2 for 
2 h at 37°C. Neutrophils were then collected and analyzed 
by flow cytometry.

Statistical analysis

All statistical analyses were carried out using GraphPad 
Prism 8.0.2 (San Diego, CA, USA). For comparisons 
between two groups, a two-tailed unpaired t-test was used. 
For multi-group comparison, a one-way or two-way ANOVA 
with Tukey’s post hoc test was performed.

Results

To validate our model of therapy-induced senescence (TIS), 
we firstly quantified the cytostatic effect of the CDK4/6 
inhibitor palbociclib by analyzing the cell cycle of human 
breast cancer cells following palbociclib treatment. We 
treated both estrogen-sensitive MCF7 and metastatic triple 
negative breast cancer MDA-MB-231 cell lines with 2 μM 
palbociclib for 7 days. Cells were further analyzed after 
washing out the drug from the culture medium at days 10 
(7 days of treatment plus 3 days of recovery) and 14 (7 days 
of treatment plus 7 days of recovery) to verify the revers-
ibility of the result (Fig. 1A). Palbociclib was able to induce 
a reversible cell cycle arrest in the G1 phase (Fig. 1B and 
Supplementary Fig. 1) along with an enlargement of the 
cell size and increased granularity (Fig. 1C), which reverted 
after palbociclib removal. To ascribe the transient prolifera-
tion arrest to the establishment of a senescence program, 
we performed the senescence-associated β-galactosidase 
(SA-β-Gal) assay (Fig. 1D). As additional marker of cellular 
senescence, we evaluated the loss of perinuclear lamin-B1 
by immunofluorescence (Fig. 1E). Besides triggering senes-
cence, palbociclib treatment had little impact on cell death 
or apoptosis induction as indicated by Annexin V assay 

(Fig. 1F). Overall, our results show that palbociclib induces 
a reversible cell cycle arrest with features of cellular senes-
cence in breast cancer cells, prompting us to further study 
its immunomodulatory effects.

We focused our attention on the SASP composition, 
which can widely shape the tumor microenvironment and 
act on neutrophil recruitment and activation. To this aim, 
we analyzed the SASP of MCF7 and MDA-MB-231 cells 
treated with 2 μM palbociclib for 7 days (hereafter named 
senescent cells) by performing a cytokine screening assay. 
In particular, we carried out a magnetic bead-based mul-
tiplex assay for the Luminex® platform with 24 h-condi-
tioned media (Fig. 2A). The cytokines measured are listed 
in Table 1. Secretion of CCL2, CXCL10, and IL-1β was 
increased by senescent MCF7 and MDA-MB-231 cells 
compared to control proliferating cells (Table 1), confirm-
ing the inflammatory feature of a bona fide SASP. IL-6 
and IL-8 (CXCL8) are two key factors of the innate immu-
nity affecting neutrophils and frequently upregulated in 
the SASP, thus they were analyzed separately by ELISA. 
Both cytokines were largely secreted by senescent MDA-
MB-231 cells, while no IL-6 and only a slight increase of 
IL-8 was observed in senescent MCF7 cell-derived samples 
(Fig. 2B). These results are in accordance with published 
data about the inhibitory control of the estrogen receptor 
over IL-6 and IL-8 expression [48–50]. The presence of IL-8 
in the SASP prompted us to investigate whether neutrophils 
can be effectively recruited by senescent cells. To this aim, 
we firstly analyzed the expression of CXCL1, CXCL5, 
CXCL6, CXCL7, and CXCL8, ligands of the chemotactic 
receptor for neutrophils CXCR2, by quantitative real-time 
PCR (Fig. 2C). Both cell lines, even if with a different gene 
profile, showed upregulation of a variety of chemokines, 
supporting the hypothesis that senescent cells can actively 
recruit neutrophils. To verify this hypothesis, we evaluated 
the capacity of conditioned media of attracting neutrophils. 
Neutrophils were isolated from the blood of healthy donors 
and assessed in a trans-well migration assay. Neutrophil 
enrichment, as estimated by CD10, CD15, and CD16 stain-
ing, was above 95% and vitality above 95% (Supplementary 
Fig. 2). A neutralizing anti-IL-8 antibody was used to verify 
IL-8 specific contribution to migration. Senescent cell-con-
ditioned media enhanced neutrophil migration compared to 
control proliferating cell-conditioned media. In addition, 
the migration induced by MDA-MB-231 cell-conditioned 
medium was partially reverted by IL-8 blocking, in agree-
ment with the high expression of IL-8 measured for this 
cell line (Fig. 2D). These results demonstrate that tumor 
cells led to senescence by palbociclib promote neutrophil 
recruitment.

Besides inflammatory cytokines, the SASP includes 
damage-associated molecular patterns (DAMPs) [51] that 
are critical regulators of neutrophil activation. In particular, 
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the acute-phase serum amyloids A1 and A2 (SAAs) have 
been reported to be key factors of the SASP acting in a 
paracrine way to reinforce the senescence phenotype [52]. 
Furthermore, SAA1 synergizes with chemokines in recruit-
ing leukocytes [53]. Thus, we investigated the involvement 

of SAA1 as an additional chemoattractant and neutrophil-
activating factor. Gene expression of SAA1 and SAA2 was 
significantly increased by senescent cells in both cell lines 
as evaluated by quantitative real-time PCR (Fig. 3A). We 
confirmed increased protein production and secretion of 

Fig. 1  Palbociclib induces reversible senescence in breast cancer cell 
lines. A  Diagram depicting the experimental design.  B Cell cycle 
analysis of MCF7 and MDA-MB-231 cells treated with 2  μM pal-
bociclib as outlined in Fig.  1A. Bars show mean ± SEM from three 
independent flow cytometric experiments. Statistical analysis was 
performed using two-way ANOVA followed by Tukey’s multiple-
comparisons test. *P < 0.05, **P < 0.01, ****P < 0.0001 comparing 
the G1 phase. C MCF7 and MDA-MB-231 cell morphology after 
palbociclib treatment as evaluated by forward and side scatter flow 
cytometric parameters. D Senescence-associated β-galactosidase 

(SA-β-Gal) assay of MCF7 and MDA-MB-231 cells after one week 
of 2  μM palbociclib and a further week without palbociclib. Blue 
staining marks senescent cells. Images are representative of more 
than three independent experiments. Magnification 200 ×. E Repre-
sentative immunofluorescence images of DAPI and Lamin-B1 stain-
ing of MCF7 and MDA-MB-231 cells treated with 2 μM palbociclib 
for 1 week. Magnification 400 ×. F Cell death and apoptosis of MCF7 
and MDA-MB-231 cells upon palbociclib treatment as evaluated by 
Annexin V assay. Representative dot plots of two independent experi-
ments
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Fig. 2  Senescent MCF7 and MDA-MB-231 cells recruit neutro-
phils. A Diagram depicting the experimental design  for conditioned 
medium analysis. B Quantification by ELISA of IL-6 and IL-8 
secreted by control proliferating and senescent MCF7 and MDA-
MB-231 cells in 24 h-conditioned media as outlined in Fig. 2A. Bars 
show mean ± SEM and statistical significance was determined by 
unpaired two-tailed Student’s t-test. *P < 0.05. C Quantitative real-
time PCR of the indicated CXCR2 ligands from total RNA extracted 
from control proliferating and senescent MCF7 and MDA-MB-231 
cells. Data are reported as fold increase by using the  2−ΔΔCt method 
and the average of control samples for the ΔΔ calculation. Bars show 
mean ± SEM from at least three independent experiments. Statisti-

cal analysis was performed using multiple t-test (one for each gene 
of interest). *P < 0.05, **P < 0.01, #P = 0,055, §P = 0,092. N.D. = not 
detected. D Percentage of neutrophils migrated toward conditioned 
media obtained from control proliferating and senescent MCF7 and 
MDA-MB-231 cells. Migration toward medium alone (uncondi-
tioned medium) was considered as background. Experiments were 
performed both in the absence and in the presence of neutralizing 
IL-8 mAb as indicated. Bars show mean ± SEM from at least three 
independent experiments. Statistical analysis was performed using 
one-way ANOVA followed by Tukey’s multiple-comparisons test. 
*P < 0.05, **P < 0.01, ****P < 0.0001, #P = 0.087
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SAA1 by senescent cells analyzing the conditioned media 
by ELISA (Fig. 3B). These data suggest that neutrophils, 
once recruited by senescent tumor cells, may be activated 
by sensing DAMPs in the tumor bed. To extend the rel-
evance of these findings and to verify that senescence per 
se, independently of palbociclib effects, is responsible for 
neutrophil engagement, we measured the amount of IL-8 
and SAA1 secreted by: (1) proliferating early passage pri-
mary fibroblasts; (2) serum-starved early passage primary 
fibroblasts, in which the cell cycle is temporarily halted 
(quiescent fibroblasts); (3) late passage primary fibroblasts, 
which are rendered senescent by replicative exhaustion. 
To reach replicative senescence human foreskin fibro-
blasts were subcultured until they progressively acquired 
an enlarged, flattened morphology and stopped dividing. 
Cell cycle withdrawal and senescence status were verified 
by cell cycle analysis and SA-β-Gal assay (Supplementary 
Fig. 3 and Supplementary Fig. 4). We observed that only 
senescent fibroblasts increased IL-8 and SAA1 secretion, 
while quiescent fibroblasts released IL-8 and SAA1 at lev-
els comparable to proliferating fibroblasts (Fig. 3C). These 

results indicate that senescent cells, regardless the type of 
senescence, are endowed with a program intrinsically able 
to engage neutrophils.

To assess the phenotype of neutrophils after recruitment 
by senescent cells, we firstly analyzed their morphology by 
fluorescently tagged phalloidin, as cell shape polarization 
is considered an early sign of neutrophil activation. Neutro-
phils exposed to senescent cell-conditioned media exhib-
ited protrusions and loss of circularity, as evaluated by cell 
edge analysis performed by ImageJ software, while neutro-
phils incubated with control proliferating cell-conditioned 
media maintained the rounded appearance typical of rest-
ing neutrophils (Fig. 4A and Supplementary Fig. 5). The 
capacity of NET extrusion is a peculiar feature of activated 
neutrophils also in sterile inflammation. Thus, we evalu-
ated the release of nuclear material in the form of NETs 
by staining neutrophils cultured with proliferating cell- or 
senescent cell-conditioned media with a dye labeling extra-
cellular DNA (SYTOX Green). Strikingly, NET formation 
was only observed in the presence of conditioned media 
derived from senescent cells (Fig. 4B). NET generation 
is often coupled with ROS production; for this reason, we 
quantified ROS by using cell-permeable fluorogenic probes 
designed to measure ROS in live cells (CellROX® Oxida-
tive Stress Reagents). A slight increase of ROS was detected 
by flow cytometry in neutrophils incubated with senescent 
cell-conditioned media compared to neutrophils incubated 
with control proliferating cell-conditioned media (Fig. 4C). 
Finally, to investigate a possible role of activated neutrophils 
in tissue remodeling, we addressed their clearance capac-
ity of senescent tumor cells by co-culture. Neutrophils were 
seeded upon fluorescently CFSE-labeled proliferating or 
senescent MCF7 and MDA-MB-231 cells and the acqui-
sition of the CFSE fluorescence, suggestive of cell debris 
uptake, was evaluated by flow cytometry. Neutrophils per-
formed better uptake of senescent cell debris than debris 
of control proliferating cells (Fig. 4D and Supplementary 
Fig. 6), suggesting that senescent cells have increased sus-
ceptibility to neutrophil-mediated clearance. Overall, these 
results demonstrate that palbociclib-induced senescence, 
even in the absence of a permanent cell cycle arrest, is char-
acterized by an inflammatory secretome that drives neu-
trophil recruitment and activation, likely triggering a local 
immune reaction and tissue remodeling (Fig. 5).

Discussion

Cellular senescence has been recently proposed as an emerg-
ing hallmark of cancer [54]. However, the impact of senes-
cent cells on tumor immune microenvironment remains 
incompletely understood [55]. Senescent tumor cells con-
tribute to adjuvanticity and antigenicity but also trigger 

Table 1  SASP analysis. Cytokines from conditioned media were 
quantified by a multi-analyte human magnetic Luminex® assay

Cytokines upregulated by senescent cells are highlighted in bold
< LOD indicates values below the limit of detection of the assay

Cytokine (pg/ml) MCF7 MDA-MB-231

Ctr Senescent Ctr Senescent

CCL2 76.03 315.85 36.50 242.09
CCL27  < LOD  < LOD  < LOD  < LOD
CCL3  < LOD  < LOD 194.65 210.88
CCL4 188.99 205.08 304.92 304.92
CCL7  < LOD  < LOD  < LOD  < LOD
Chemerin  < LOD  < LOD 1241.74 1366.73
CX3CL1  < LOD  < LOD  < LOD  < LOD
CXCL10 4.73 40.64 13.42 34.77
CXCL9 998.77 998.77 1046.58 1046.58
GM-CSF 3.48 6.21 646.85 354.65
IFN-γ  < LOD  < LOD 3.66 5.98
IL-10 2.34 3.62 3.02 3.62
IL-12  < LOD  < LOD  < LOD  < LOD
IL-13  < LOD  < LOD  < LOD  < LOD
IL-15  < LOD  < LOD  < LOD  < LOD
IL-18 14.73 18.41 20.26 22.11
IL-1α  < LOD  < LOD 9.22 40.12
IL-1β  < LOD 1.61 3.25 27.58
IL-2 12.79 20.51 94.85 107.08
IL-21  < LOD  < LOD  < LOD  < LOD
IL-28A  < LOD  < LOD  < LOD  < LOD
IL-4  < LOD  < LOD 43.00 43.00
IL-5 1.14 1.14 4.02 4.02
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immune checkpoint expression, heterogeneously affecting 
innate and adaptive immunity [56, 57]. In our study, we 
aimed to explore the potential role of neutrophils in this 
context, addressing their recruitment and activation by 

senescent tumor cells. Given the clinical relevance of TIS 
in cancer treatment, we focused our study on the CDK4/6 
inhibitor palbociclib, which is approved for the treatment 
of breast cancer and is under intense investigation for 

Fig. 3  Senescent cells express recruiting and activating factors for 
neutrophils. A Quantitative real-time PCR of SAA1 and SAA2 genes 
from total RNA extracted from control proliferating and senescent 
MCF7 and MDA-MB-231 cells. Data are reported as fold increase 
by using the  2−ΔΔCt method and the average of control samples for 
the ΔΔ calculation. Bars show mean ± SEM from at least three inde-
pendent experiments. Statistical analysis was performed using multi-
ple t-test (one for each gene of interest). *P < 0.05. B Quantification 
by ELISA of SAA1 secreted by control proliferating and senescent 

MCF7 and MDA-MB-231 cells in 24  h-conditioned media. Bars 
show mean ± SEM and statistical significance was determined by 
unpaired two-tailed Student’s t-test. ***P < 0.001, ****P < 0.0001. C 
Quantification by ELISA of IL-8 and SAA1 secreted by proliferating, 
quiescent, and senescent human foreskin fibroblasts in 24  h-condi-
tioned media. Bars show mean ± SEM and statistical significance was 
determined by one-way ANOVA followed by Tukey’s multiple-com-
parisons test. *P < 0.05, #P = 0.091
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additional malignancies. In the present study, we showed 
that: (1) palbociclib makes tumor cells senescent with a 
reversible phenotype; (2) the senescent phenotype induced 
by palbociclib is endowed with an inflammatory secretome 
that can recruit and activate neutrophils through the release 
of different inflammatory factors, such as IL-8 and SAA1; 
(3) the activated neutrophils are able to perform phagocytic 
removal of senescent tumor cells. These findings have differ-
ent implications. The reversibility of the palbociclib-induced 
senescence should be considered therapeutically relevant 

as the current clinical schedule for palbociclib is based on 
three weeks of administration followed by one week of stop. 
Long-term effects of CDK4/6 inhibition strictly depend on 
the duration of the treatment or genetic background (i.e., 
p53 status) of cancer cells as recently suggested [58, 59]. 
Transient cell cycle arrest may be due to an incomplete 
senescence program as senescence is a biological continuum 
and highly dynamic process rather than a terminally defined 
condition. Different states may exist, ranging from “light” to 
“deep” senescence, likely differing in some aspects. A global 
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epigenetic reprogramming occurs during time leading to the 
acquisition of novel cell functions that may still revert totally 
or only in part [60–62]. Tumor regrowth and/or acquisition 
of stemness features by senescent tumor cells after cell cycle 
reentry have been described and must be avoided [63]. In 
addition, a speculative idea is now linking senescence to 
cancer dormancy, with yet unexplored implications [64]. It 
is interesting to notice that sustained activity of the mTOR 
pathway has been linked to the acquisition of the senescent 
phenotype [65, 66]. Thus, modulating the activity of the 
mTORC1 and mTORC2 complexes, in principle, might be 
exploited to avoid senescence entry or, on the contrary, to 
force cells into a permanent state of senescence. Alternative 
strategies can rely on the direct targeting of senescent cells. 
Indeed, senescent cells can be specifically targeted by seno-
lytics and senomorphics, agents aimed at selectively elimi-
nating senescent cells and abrogating/modulating the SASP, 
respectively [67, 68]. Steps into this direction are moving 
fast, and trials with senotherapeutic compounds, especially 
for age-related diseases, are ongoing [69]. Combined thera-
pies implementing palbociclib with mTOR-targeting drugs 
or senotherapeutics could significantly improve treatments 
efficacy and could be accompanied by dosage lowering, with 
the aim of reducing side effects.

Regarding the SASP-evoked immune response, the neu-
trophil engagement by senescent tumor cells adds further 

complexity to the immune scenario. Neutrophil recruit-
ment can be beneficial by promoting direct antitumor 
response in preneoplastic lesions or by switching “cold” 
tumors into “hot” ones. However, it may also be detrimen-
tal in the event of unresolved inflammation. In this regard, 
we demonstrated that activation of neutrophils upon stimu-
lation with senescent cell secretome results in NET forma-
tion. In the context of tumors, NETosis is mostly associ-
ated with an unfavorable tumor microenvironment due to 
tissue damage and release of proinflammatory factors that 
lead to epithelial to mesenchymal transition (EMT) and 
angiogenesis, paving the way to metastatic processes [70]. 
In breast cancer, NETosis has been associated with disease 
worsening and vasculature adverse events [71]. Myelop-
eroxidase (MPO) participates in NET release by moving 
from the cytosol to the nucleus where it contributes to 
nuclear membrane breakdown. MPO is then entrapped in 
the extruded materials and drives the production of anti-
neutrophil cytoplasmic antibodies (ANCAs), which have 
been reported to play a role in the pathogenesis of auto-
immune diseases [72]. However, to which extend ANCAs 
or the exposure of DAMPs by NETs shape tumor immu-
nity is largely unknown. On the one hand, ANCAs have 
been reported in cancer patients with vasculitis [73], thus 
serving as potent inflammatory factors, on the other hand, 
NETosis may provide adjuvant factors eliciting tumor 
neoantigen-driven responses. Recently, it has been shown 
that NETs can act as scaffold for the release of factors with 
antitumoral activity, i.e., cathepsin G, or, in the opposite 
direction, promoting EMT in cancer cells, i.e., TGF-β [74, 
75].

Our secretome analysis uncovered SAA1 as a major factor 
of the SASP of palbociclib-induced senescent tumor cells. 
This acute-phase protein is a serum factor whose precise 
biological functions are still unresolved [53, 76, 77]. Inter-
estingly, SAA1 (primarily through its derived peptides) 
appears to have differing impact on neutrophil phenotype, 
enhancing the inflammatory response when neutrophils 
reach the site of injury, but pushing toward a pro-resolving 
function during the resolution stage of inflammation [78]. 
It is tempting to speculate that senescent cells, partially by 
modulating SAA1, orchestrate inflammation and its resolu-
tion through a coordinate program that includes neutrophil 
switching from an “N1” to an “N2” phenotype. From an 
evolutionary perspective, cellular senescence is reason-
ably related to tissue healing rather than tumor suppressive 
mechanism [79, 80]. Following tissue injury, the induction 
of senescence prevents the spreading of the insult by arrest-
ing the proliferation of damaged cells and then elicits tissue 
remodeling by providing a plethora of bioactive factors in 
the microenvironment. This perspective explains the ability 
of senescent cells to recruit the immune system to trigger 
their clearance and, at the same time, to promote stemness 

Fig. 4  Secretome of senescent MCF7 and MDA-MB-231 cells pro-
motes neutrophil activation. A Circularity score of neutrophils stim-
ulated with the conditioned media obtained from control proliferat-
ing and senescent MCF7 and MDA-MB-231 cells. Cell shape was 
visualized by phalloidin staining and roundness calculated with the 
ImageJ software. Each dot represents the corresponding value (1000 
indicates precise round shape) of a single cell. The horizontal red 
bar represents the mean value. Statistical analysis was performed 
using unpaired two-tailed Student’s t-test (one for each cell line). 
***P < 0.001, ****P < 0.0001. B NET formation by neutrophils stim-
ulated with the conditioned media obtained from control proliferating 
and senescent MCF7 and MDA-MB-231 cells. Medium alone (with 
FBS) and medium with PMA were used as negative and positive con-
trol, respectively. Nuclei and NETs were visualized by Hoechst and 
SYTOX Green staining, respectively. Images are representative of 
two independent experiments. Magnification 100 × . C ROS produc-
tion by neutrophils stimulated with the conditioned media obtained 
from control proliferating and senescent MCF7 and MDA-MB-231 
cells. Medium alone (with FBS) and medium with LPS were used as 
negative and positive control, respectively. ROS were quantified by 
flow cytometry considering the median fluorescence intensity (MFI) 
of ROS-specific fluorogenic probes. Data are reported as fold increase 
in respect to the average of corresponding  control proliferating sam-
ples. Bars show mean ± SEM from at least three independent experi-
ments. Statistical analysis was performed using unpaired two-tailed 
Student’s t-test (one for each cell line). *P < 0.05, #P = 0.088. D Eval-
uation of the uptake by neutrophils of CFSE-labeled control prolif-
erating or senescent MCF7 and MDA-MB-231 cells as evaluated by 
flow cytometry. Graphs show the percentage of neutrophils acquiring 
the  CFSE+ phenotype. Bars show mean ± SEM from at least three 
independent experiments. Statistical analysis was performed using 
unpaired two-tailed Student’s t-test (one for each cell line). *P < 0.05

◂
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features in the surrounding cells to enhance tissue repair. 
Unwantedly, this mechanism is exploited by cancer cells, 
favoring tumor progression. Therefore, there is an urgent 
need to separate tumor-inhibiting from tumor-promoting 
effects of senescence. IL-8 is a key chemokine involved in 
cancer plasticity and immune suppression [81]. In our study, 
we reported its upregulation by senescent cells and its effect 
on neutrophils. Interestingly, levels of IL-8, as well as levels 
of IL-6 and SSA1, were reminiscent of the baseline expres-
sion in not-senescent parental cells, supporting the finding 
that SASP factors are strictly related to original cell type, 
likely due to chromatin background, as already postulated 
[82]. Given that the IL-8/IL-8R axis is already a therapeutic 
target in different clinical studies [81], this approach could 
be considered to mitigate the side effects of senescence. It 
is now emerging that senescent cells play a prominent role 
during aging and aging-related disorders, including cancer, 
thus it is of great relevance depicting the entire immune 

landscape induced by cellular senescence to better tailor the 
upcoming therapies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 024- 03695-5.
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