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Abstract

A model for image bases is presented, along with a query facility for exploiting image bases
contents. The models views an image as a 3-level object, comprised of a form, a content and
a mapping component. The form level provides an objective model for images as syntactical
objects, against which visual queries (Le. queries being images themselves) can be stated. The
content level provides a representation of the scene depicted by an image, in a semantic data
modelling style. The mapping level servesto connect the form and content levels, establishing
a relationship between visual appearances of individuals and their conceptual descriptions.
A query is a sentence of a logica language that can address any subset of the three image
components and also the spatial relationships between objects of the form level (i.e. image
regions) or of the content level (Le. content entities). An image is retrieved in response to a
query if it logically satisfies the query.

Categories and subject descriptors: H.1.0, H.3.4 Retrieval Models, H.2.3 Query Languages.
General terms: Theory, Languages.
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1 Introduction

Due to the impressive achievements of hardware, network and HCI technologies in the last decade,
large repositories of information centered around image objects, called image bases (IBs), are being
constructed, maintained and accessed by specialized users. It is foreseen that in the medium term
IBs will serve the information needs of an increasing community of users with decreasing computer
skills.

Images in an IB are stored and accessed according to an image model, which plays to an IB
a role analogous to that of a data model to a database: it provides a representation for images
and for gueries on images, and a relation between these two, establishing which images are to
be returned in response to each query. The nature of images and that of an information system
model dictate a number of requirements to be satisfied by an image model.

First, the model must abstract implementation details, and, at the same time, be imple-
mentable with the available technology. The very notion of a data model was conceived with both
physical data independence and productivity in mind, and this requirement continues to be the
basic concern of any information system model.

Second, the model should provide a unique framework for accommodating the many forms
of image retrieval that have been studied in various areas of computer science, ranging from
pattern matching to semantic information processing. Typically, certain users of an IB would like
to retrieve images by posing images themselves as queries and having the system performing a
match, perhaps capturing a similarity criterion. Other users would want to query the IB at a
more abstract level, by specifying conceptual properties of the individuals that occur in them. At
an intermediate level, retrieval could be performed on spatial relationships between individuals
depicted in images. In order to incorporate in a clean and principled way all these forms of retrieval,
the model must support a universal representation of images, providing the distinction between
form and content and a mechanism to relate the two. In this way, the model can accommodate
a wide range of retrieval functionalities and, more importantly, is open to be extended with new
techniques that may emerge from research.

Finally, the model should be stated in formal terms, so that it can be understood by users and
implementors and analyzed by system designers, for instance to be compared with other models.

For a more effective comparison with our model, we will postpone the discussion on other
image models proposed in the literature until section 7. For the present time, we can summarize
the conclusions of this discussion by saying that the image models proposed so far fail to meet
one or another of these requirements. From one hand, the models that allow the users to pose
visual queries often fail to state in semantical terms what is the relationship between a query and
its answer, and how this relationship stands to intuition. From the other hand, the models that
address the content representation of imagesin a way that goes beyond text retrieval techniques are
mostly bound to specific application fields, thus lacking the generality which is necessary to meet

the first of the above requirements. To the best of our knowledge, no model exists that possesses




the representation capabilities and the generality recommended by the second requirement.
We propose a model for image bases which satisfy all the above stated requirements. In brief,

our model views an IB as consisting of two main components:

e a concept schema, analogous to a database schema, containing the definition of the concep-

tual entities occurring in the content representations of the images; and

o an image population, analogous to the objects of a database, consisting of the images stored
in the IB.

Images are viewed as 3-level objects, comprised of the form, content, and mapping level. The
form level is a model of the image seen as a combination of colored spots. The content level
is an extension of the concept schema, and, along with this schema, is couched in terms of a
semantic data model, offering object-orientation and abstraction mechanisms to describe a slice
of reality. The mapping level is an association between form and content which can be used in
both directions.

Queries are requests of the form “Retrieve all images such that o”, where « is a condition on
images which can address any combination of the image components and the spatial relationships
between image objects. An image is returned in respohse to a query if it logically satisfies the
query.

We will present the model in a bottom-up fashion, starting from image models (Section 2), and
then proceeding to image contents (Section 3). This will allow us to introduce the model while
providing the rationale for its machinery (for convenience, a summary of the model is provided
in the Appendix). Images and image bases are introduced in Section 4, while section 5 describes
the basic elements of an image query language. The query facility of the model is given is Section
6, where image queries and answers to them are defined. The expressive power of the image
query language is also investigated, by presenting the various categories of queries allowed by
the language. Finally, Section 7 relates the present work to image modelling in a wide range of

different areas, with emphasis on iconic and pictorial databases.

2 Image models

The distinction between the form of an image and its content is not always definite in our mind.
It is commonly believed that visual perception and interpretation are deeply intertwined, thus
making it difficult to discriminate between an “objective” and a “subjective” level of an image.
Fortunately, the epistemological apparatus of a computer is much simpler, or at least better
understood, and allows us to identify an objective, or form level in an image base.

Whether physically stored in a raster, or pixel, or vector mode, an image can be conveniently
abstracted into a composition of colored areas. More precisely, an image can be viewed as a

partition of a 2-dimensional, connected region into sub-regions, called spots, such that: (a) each




spot consists of discrete points having the same color, and (b) no two contiguous spots have the
same color.

In order to be able to relate all images, regardless of their relative position in space and contour
shape, we set the origin of a discrete, 2-dimensional Cartesian space on the bottom left corner of
the smallest rectangle including an image so that any image can then be represented as an image
model, that is a triple (4, =, F') where:

e A, the region of the image, is a set of pairs of natural numbers having the property of being

connected, that is it has no isolated sub-regions;

e ™= {51,52,...,5,}, the spots of the image, is a partition of A consisting of connected sets;

and

e F is a total function from 7 to a given set of colors L, such that for all ¢, F'(S;) is the color

of spot S;.

In order to capture the condition (b) above, we further require that, for each image model (A, =,
F) and pair of contiguous spots S; and S; in m, F(S;) # F(S;).

An image model does not impose any commitment on the way images are stored in a computer,
but only provides an abstract, implementation independent way of looking at images. It will serve

as a basis for the evaluation of visual queries.

3 Modelling image contents

3.1 Baseline

The past experience with information retrieval systems has revealed that the retrieval of informal
information objects, such as pieces of text or images, can be effective only if a possibly rich
representation of the content of such objects is available [27]. This has been more recently argued
for multimedia information systems, upon proposing a conceptual view of multimedia documents
[17].

The content of an image is a scene and is understood by humans through a process of in-
terpretation, which produces a mental reconstruction of the scene depicted by the image. This
reconstruction, which will be called confent reconstruction, may vary from interpreter to inter-
preter, and depends on the context in which the interpretation is carried out, including its use.
We will confine ourselves to single reconstructions, although the extension of the model to multiple
reconstructions does not present conceptual difficulties.

Modelling the interpretation of images is beyond the scope of an image model, which must
instead provide a tool for representing the result of that process, i.e. content reconstructions.
This tool must allow to naturally represent slices of reality, while at the same time let these

representations be efficiently queried. This is not the case with current image retrieval systems.




To see why, let us consider an image whose contents can be described in natural language as

follows:
Francesco is hugging his sister Giulia at their uncle’s house in the summer 1993.

Clearly, this description shows knowledge of “hidden” details, that is information which could
not be derivable by any interpreter of the same image. We would like to stress that this is often
the case with indexers of documents: they are knowledgeable in the field which the documents are
about, and it is important to provide them with a language that allows to express such knowledge
and use 1t in retrieving information. Current retrieval systems typically employ, if any, one of two

techniques to represent the content of an image:

o The capiion method, which consists in associating an image with a piece of text describing
the scene depicted by the image. In our case, a suitable candidate could be the above
description. Content-based retrieval is then carried out by applying text retrieval techniques
to the image description, perhaps with the ald of some information structure, such as a

thesaurus.

e The keyword method, which consists in associating an image with a set of terms drawn from
a prefixed language. In our case, a possible description could be “Francesco Giulia summer-
1993”7, but usually things go worse, because an index language very seldom provides names

for individuals.

It is not difficult to see that these content representations allow to retrieve their associated
image only in case of very precise queries, that is queries containing a word occurring in the
representation, such as “Giulia”. But it would already be problematical for either of these repre-
sentations to satisfy a query mentioning “Francesco’s sister”: in the keyword representation the
system would have to make the guess “Giulia is Francesco’s sister”, whereas in the former case
the system would have to understand a natural language sentence, a notoriously difficult task.
Queries asking for “Francesco at his uncle house” or for “Giulia’s brother” would in no case be
satisfied by either representation, despite the fact that the involved information was known by the
image indexer.

In fact, these two techniques reflect two classical approaches to text retrieval: full-text and
keyword-based retrieval. The experimental evaluation of systems employing either of these tech-
niques has almost invariably (and not surprisingly) produced disappointing results, which have
been justified on different grounds. But there is a wide-spread agreement that a richer, formal
representation of documents contents is, if not the only, at least a very promising way out of the
problem.

We argue that a semantic data model is a suitable tool for the representation of image contents
in order to perform content-based image retrieval (for a survey on semantic data models, see [9]).
Such a model can be seen as a close relative of predicate calculus [20] emphasizing organization

and computational amenity.




3.2 Semantic modelling of image contents

The semantic data model that we are proposing for content reconstructions offers the basic features
common to almost all the models proposed in the literature, although the terminology and the
formal apparatus we use are inspired to Taxis [19]. This model views reality as consisting of
interrelated entities, and provides objects and properties to represent these entities and their
interrelationships in a one-to-one fashion. Put at work on the example above, the model would
have two objects, let them be named francesco and giulia, to represent, respectively, the
entities Francesco and Giulia, and two properties, namely Sister and Brother, to represent the
relation between them. This can be stated in the following way: (francesco Sister giulia)
and (giulia Brother francesco), where each triple is a factual property, and in particular a
multivalued one, given the nature of the represented relations. By carrying this process on to
all the entities and relationships of the world to be represented, a nexus of objects and links is
generated, which is organized by means of three absiraction mechanisms.

First, classes are introduced as collections of similar objects, thus defining the classification
mechanism. Each object belongs, or is an instance of, at least one class. In our example, two classes
are introduced: BOY and GIRL, whose instances include, respectively, francesco and giulia, in
symbols (francesco — BOY) and (giulia — GIRL). Each pair is called an InstanceOf link.

Second, a class defines a set of properties, which can be single- or multi-valued, for each of
which the class members can specify an appropriate number of values. This gives the aggregation
mechanism. In our example, we can make Brother and Sister multi-valued properties of the
classes just introduced, ranging on the proper classes: (BOY Brother BOY), (BOY Sister GIRL),
(GIRL Brother BQY), and (GIRL Sister GIRL). In words, boys and girls have boys as brothers
and girls as sisters. Fach of the above triples is called a multi-valued definitional property; the first
element of the triple gives the class defining the property, the second gives the property name, and
the third gives the property range, that is the class whose instances can be specified as values of
the property. Factual and definitional properties are of course related, as it will be shown below.

Third, classes are taxonomically organized by means of the IsA relationship. This give the
spectalization mechanism, which in our example can be used by having the class PERSON as a more
general class (or superclass) of BOY and GIRL. IsA links will be denoted: (BOY => PERSON) (GIRL
= PERSON) . The IsA relationship is a partial order which captures the notion of concept inclusion:
if a class IsA another class, then an object instance of the former is also an instance of the latter.
This mechanism is usually called instance inheritance, and is illustrated in our example by the
membership of francesco and giuliain the class PERSON: (francesco — PERSON) and (giulia
— PERSON), coming as a consequence of their membership in the classes BOY and GIRL and of the
IsA link from these classes to PERSON. More generally, each property defined by a class applies to
the instances of its less general classes (or specializations), and this introduces in the model the so
called structural inheritance. For instance, the name of a person can be defined as a single-valued

definitional property of the corresponding class, ranging on the class of character strings (a built-




in class of the model): (PERSON Name STRING). As already explained, this definition allows all
persons to specify one value for Name, hence all boys and girls, which are special persons. We thus
obtain by structural inheritance the ability of giving a name to francesco and giulia, which
is done through the following single-valued factual properties: (francesco ¥ame “Francesco™)

and (giulia Name "Giulia"). The next section will provide a precise definition of the model.

3.3 A model for content representations

A database state is an 8-tuple (O, C, SDP, MDP, SFP, MFP, —, =) where, letting ID be a

set of identifiers:

e O is a set of objects;

L4

C is a set of classes;

@

SDP C (C x ID x C) are the single-valued definitional properties;

@

MDP C (C x ID x () are the multi-valued definitional properties;

L]

SFP C (O x ID x O) are the single-factual properties;;

@

MFP C (O x ID x O) are the multi-factual properties;

&

— C (O x C) is the InstanceOf relation, relating an object to the classes where it belongs;

L4

= C (C x () is the IsA relation, relating a class to its superclasses.

A database state is consistent if it satisfies a number of constraints, aiming at capturing the

intuitive meaning and role of its components. These constraints are [18]:

1. Each object is an instance of (at least) one class, that is:
for every o in O there exists a ¢; in C such that (0 — ¢;).

2. SDP and MDP must be consistent, that is a property of a class cannot be single- and

multi-valued at the same time:
71 ,2(SDP) N\ wy o( MDP) =0

where 7 2(R) is the projection of R on its first two columns.

3. SDP, MDP and SFP are functional, that is:

(cidy),(cidy) € (SDPUMDP) implies dy = da,
(0% 01),(0% 02) € SFP implies 01 = o3.

4. Each factual property must be induced by a definitional property, that is:




(01 i 02) € SFP (resp. MFP)implies (c1 i ¢3) € SDP (resp. MDP) and

(o —¢i) fori=1,2.

For instance, (francesco Sister giulia) isallowedin M F P by the fact that (BOY Sister
GIRL) is in M DP and that francesco and giulia are instances of BOY and GIRL, respec-
tively. Moreover, each factual property must be consistent with all definitional properties

that concern it (there may be many due to structural inheritance), that is:

(01 i 02) € SFP (resp. MFP), (01 — ¢1) and (c1 i ¢z) € SDP (resp. MDP)

imply (02 — ¢2).

. = is a partial order with a minimum . and a maximum T. This implies that L and T be

in C.
. Property definition are inherited by specializations, that is:

(c; i di) € SDP (resp. MDP) and (cz = ¢1) imply (cz ¢ d2) € SDP (resp. MDP)
and (dz = d1).

As already seen, (BOY Name STRING) and (GIRL Name STRING) must be in SDP as a con-
sequence of the facts that (PERSON Name STRING) is in SDP and that (BOY = PERSON)
and (GIRL => PERSON).

. Instances are inherited by superclasses, that is:
(0 — ¢1) and (c1 = ¢g) imply (0 — ¢2).

From now on, we will tacitly assume only consistent database states. When no ambiguity will

arise, we will collect definitional and factual properties into the sets DP = (SDPUMDP) FP =
(SFP U MF P) naming definitional part the C, DP, and = components of a database state and

factual part the remaining components.

4 Images and Image bases

One of the basic steps of image interpretation by humans is the recognition of the entities that

occur in an image, that is the association of the pictorial representation of these entities with

the entities themselves, or rather with our mental representation of them. This association is

expressed in our model by the image mapping, a partial function from disjoint sets of spots in an

image model to objects in the database state which gives the content reconstruction of that image.

An image is a triple (M, D, M), where M is an image model (A, m, F), D is a database state

(0, C, DP, FP, —, =), and M is the image mapping, that is a partial function:

M:2" - O




such that for all m;, 7; in dom(M), m; # n; implies m; N m; = 0.

This constraint captures the intuitive fact that a spot in an image can be assigned only to one
object in the image’s content reconstruction. This is just another way of saying that two entities
cannot be recognized in the same color spot. At the same time, the domain of the image mapping
is not required to cover 7, as not necessarily any spot of color in an image depicts an entity or a
part of it.

Image mapping functions are introduced in [21], where first-order languages are proposed to
represent map images and their content representations, scenes. In this context, an image mapping
function associates a map object to a scene object, ;md is subject to a severe constraint: every map
object is mapped into (exactly) one scene object. Given the more general nature of our model, we
dispense with the totality of image mapping functions.

The usefulness of the image mapping will be fully appreciated upon querying an image base.
For the time being, we wish to point out that an image mapping permits a two-ways association
between the form and content of an image. From form to content, it associates a set of spots to an
object of the content description, thus revealing the conceptual view of the objects that appears
in an image. From the other way around, it serves to locate an abstract object in an image, thus
revealing an object’s visual appearance.

An image base is a set of images, with an additional database state, called background and
denoted oo = (Oq, Co, DPy, F Py, —¢,=>g), containing information that is relevant to the applica-
tion but cannot be related to any specific image. However, simply assembling these ingredients
will not produce an image base, which we conceive as a conceptually coherent body of information.
In order to capture this intuitive requirement, we introduce the notion of coherence of database

states. A non-empty set of database states:
{(017 Cla DPI) FB[, 1, ::>1)1 “eey (Oﬂy C‘n.) DPna FPn: —rn, =>n)}
is said to be coherent with a background oy if and only if:

((0i U Oy), C*, DP*, (FP; U FPy), (—; U—q), =) is a database state, for all 1 < i < n,

where:
o (V= Ui:o,n Ci
o DP* = Uz':O,n DPF;

o =¥ = Ui:O,n =i,
Coherence rules out the following situations:

o two inconsistent IsA links, for instance for some 0 < ¢,5 < n, (¢ = d) € =; and (d =
¢) € =>j; both these links would be in =% against constraint 5;




e two inconsistent definitional properties, i.e. for some 0 < 4,j < n, (c i dy) € DP;, (¢ i
d2) € DP; and d; # d; both these properties would end up in DP*, which would then

violate constraint 3;

e two inconsistent single-valued factual properties, i.e. for some 0 < i < n, (04 0;) € SFP,
and (o i 02) € SFF;; both these properties would end up in (FP; U F Py) which would then

violate constraint 3.

It should be noted that the above constraint prescribes a much weaker consistency for factual
parts than for definitional parts, as it does not prevent two factual parts to have inconsistent
factual properties. The rationale of this choice is that the contents of two images are prone to be
inconsistent at the factual level whenever they share an entity which does not look the same in both
images. For example, the factual part of an image showing Francesco as a programmer, would have
the following factual property: (francesco Job programmer) whereas that of an image showing
Francesco a few years later may have: (francesco Job manager). On the contrary, the kind of
factual information one is expected to have in the background is less contingent, like for example:
(francesco Sister giulia).

For convenience, the conceptual and background information of an image base is collected
into the content schema, that is the 6-tuple (Op, C¥, DP¥, FPy, —p, =%). Notice that, as a
consequence of the above constraint, the content schema is a database schema.

Given a database state oy and a non-empty set & of images whose content reconstructions are
coherent with oo, the image base associated to oo and X is the pair (o, T), where o is the content
schema of the images in £ and oyp.

The structure of an image base is pictorially presented in Figure 1. At the lowest level,
image models abstractly represent the images of the image base, each one associated to its content
reconstruction and possibly linked to it via the mapping function. The content parts are connected

to the concept schema by the InstanceOf links of their objects.

5 An image query language

The basic tool to exploit the content of an information system is a query facility, that is a language
for posing questions to the system and a function establishing the answer to each question. There
are two basic requirements that a query facility for an image base must satisfy. The first one is of a
general nature: the language’s expressions must be interpretable as questions on which the proper
answer function can be defined. The notion that best captures the intuitive relationship between
a question and an answer for it is that of logical implication, or its model theoretic alter ego,
satisfaction. Qur image query facility will therefore be a logic, and in particular a many-sorted
first-order logic, for reasons of adequacy that, if not already, will be clear in a moment.

The second requirement is that the query facility must allow the extraction of all the informa-

tion contained in the system. The information objects of interest to us are images, as defined along
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Concept Schema

Instance-of links
Content
Reconstructions
Image Mappings

Image Models

Figure 1: An Image Base.

the three dimensions of form, content, and mapping. Consequently, we want our query language
to be able to address all these dimensions and to maximally exploit each of them.

In the rest of this section we will introduce the basic predicate symbols of an image query
language, £y satisfying these requirements. The semantics of each predicate symbol in £; will be
given in terms of the images that satisfy the symbol’s ground atomic instances, so laying the bases

for the definition of the answer function of an image query facility for our model.

5.1 Visual predicate symbol

In order to represent visual queries, i.e. queries that have the form of images, two sorts are

introduced:
1. o, the sort of regions; the symbols from this sorts are:

e countably many constant symbols, denoted by capital letters drawn from the beginning
of the alphabet (metasymbols r, r1, ra);
e countably many variables;

e the existential quantifier 3.
2. o, the sort of colors; the symbols from this sorts are:

¢ countably many constant symbols, denoted by their English names (metasymbol {);
e countably many variables;

e the existential quantifier J..

As usual, variables will be small letters from the end of the alphabet with no additional sort

information, deducible from the associated quantifiers.
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The predicate symbol for querying image forms is the dyadic symbol I of sort (o, 0.), which
names the association between regions and colors necessary to describe image spots. For instance,
the atomic ground sentence I(A4,blue) means that region A is blue. In order to make this precise,
a formal semantics is now given.

A denotation function is a one-to-one mapping associating:

e the constant symbols of sort o, and the finite subsets of pairs of natural numbers (notice

that the latter are countably many, so that the mapping can be effectively established);
o the constant symbols of sort o, and the set of colors L.

Out of the denotation functions we factor one function, d, and call it the image denotation function.
An image structure is a pair (Z,d), where 7 is an image (M, D, M). Notice that the function d is
the same for all the images structures, it does not change from structure to structure.

An image structure is said to satisfy the atomic ground sentence I(r,{),
(Z,d) E I(r,1) if and only if F(d(r)) = d(I).

In words, an image structure satisfies a ground atomic instance of I if, in the image model of the
structure, the region designated by r (i.e. d(r)) is of the color designed by ! (d(1)).

When used as a query facility, this satisfaction relation would return, in response to the sentence
I(r,1), the images which visually include the sentence, thus yielding an ezact visual query facility.
It is well known that non-exact queries are also very useful in image retrieval, as they allow to
retrieve images that match queries only to a certain extent.

The non-exact image matching problem is a special case of the registration problem, which
consists in finding a mapping between two given images, possibly with an associated degree of
precision according to a specified similarity metric (for a survey on image registration, see [2]).
This problem arises in a number of areas in computer vision, pattern recognition, medical image
analysis and others.

In the mathematical formulation of the image registration problem, an image is seen as a 2-
dimensional discrete function H(z,y) associating a density (or other color measurement) to the

pairs of a fixed space; the sought mapping between two images is expressed as:

Hi(z,y) = g(Ha2(f(z,9)))

where f is a 2-dimensional spatial-coordinate transformation and g is a 1-dimensional intensity
transformation.

There is a large variety of techniques which have been proposed to solve the registration
problem, each one with its own pros, cons and range of applicability; yet none of these methods
stands out as the image matching function able to satisfy any user. Indeed, given the complexity
of image semantics and the variety of applications requiring some form of image matching, the

search for a universal image matching function seems to be much of an ill-defined problem.

12




The solution we propose to endow our model with a non-exact query facility is to let the
user select the image registration techniques that best capture the application’s requirements, and
import these techniques in the model. Given the logical formulation of the model, this can be
done in a clean mathematical way, as follows.

An image predicaie is a total function receiving in input an image model, a region, and a color
and returning an element of the set {0,1}. Given n > 0 image predicates ®1,...,®,, the partial

satisfaction relations on the ground atomic instances of I is defined as follows:

(Z,d) o I(r, 1) iff F(d(r)) =d(l)
(Z,d) k=i I(r, 1) M O (Md(r),d(])) =1, forall1<i<n

where 7 = (M,D,M). The relation |=¢ captures the exact query mechanism by requiring the
equality of the query with (a portion of) the image. All the other relations f=; capture an uncertain
match, as established by the image predicates.. It should be noted that an image predicate need
not be as concise and elegant as a sentence of a formal language. It may be a complex system
of equations or a computer programme, as long as it specifies a total computable function which
decides whether or not a given image model matches a given spot.

A satisfaction relation for ground atomic visual queries capturing also non-exact matchings

can now be stated as follows:

1. (Z,d) & I(r,]) iff for some 0 < i < n, (Z,d) =i I(r,1).

5.2 Spatial predicate symbols

As discussed in detail in section 7, spatial reasoning plays a primary role in many image retrieval
applications. Typically, users may want to talk in their queries about objects being “left to”, or
“north-east to” or “surrounded by” other objects. In order to express these queries, we introduce
spatial predicate symbols in L.

As pictures are 2-dimensional objects, the complete set of spatial relationships involved in image
retrieval can be obtained as a binary combination of the complete set of spatial relationships for
one-dimensional intervals. This set has been derived in [1] upon investigating a form of reasoning
about time; it consists of 13 relationships, representable with 7 different symbols, named: before,
equal, meets, overlaps, during, starts and finishes. Figure 2 illustrates the meaning of
each symbol.

As we have to deal with two dimensions, we introduce in £y two predicate symbols for each
one shown in Figure 2, using a prefix to indicate the dimension of the predicate. Each symbol is
of sort (o, 0,). For instance, X_before(ry, r2) means that the projection on the z axis of region »;
is before that of region ry, in the sense illustrated pictorially in Figure 2.

More formally, the semantics of ground atomic instances of the 14 spatial predicate symbols

is given in terms of image structures with four additional functions: two projection functions, II,
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Symbol Meaning

X beforeY XXX YYY
XXX
X equal Y YYY
X meets Y XXXYYY
XXX
X overlaps Y YYVY
XXX
X during Y YYYYYY
XXX
X starts Y YYYYYY
XXX
X finishesY YYYYYY

Figure 2: Interval Relationships.

and II, which return, respectively, the & and y projection of a given region; and two interval
function, B and ¢, which return, respectively, the begin and the end point of the given interval.
Notice that the projection of an image region is always an interval, as an image region is defined
to be a connected subset of w?. Given two region symbols r; and ry, the satisfaction relation on
ground atomic instances of spatial predicates is defined as follows (for brevity, only the predicate

symbols on the horizontal dimension are considered):
2. (Z,d) BEX-before(ry, r2) iff €(Tz(d(r1))) < A(H=(d(r2)))
3. (2,d) EX-equal(ry, ra) iff B(Iz(d(r1))) = B(Ils(d(r2))) and e(Ilz(d(r1))) = e(Ilz(d(r2)))
4. (Z,d) EX meets(ry, r2) iff e(To(d(r1))) = B(ILz(d(r2)))
5. (Z,d) EX-overlaps(ry, r2) iff B(Ile(d(r1))) < B(Tlz(d(r2))) and ¢(Iz(d(r1))) < €(Tlz(d(r2)))
6. (Z,d) EX-during(r1,r2) iff B(Ilz(d(r1))) > Az (d(r2))) and e(Tlz(d(r1))) < e(Ilz(d(r2)))
7. (Z,d) X staris(ry, ra) iff f(Il(d(r1))) = Bz (d(r2))) and €(Iz(d(r1))) < €(Tz(d(r2)))
8. (Z.,d) =X finishes(ry, 2) iff B(IL-(d(r1))) > BTz (d(r2))) and e(Il(d(r1))) = e(T=(d(r2))).

We have thus endowed our query language with the machinery to reason about spatial rela-
tionships between regions. We will see in the next section how this expressive power can be used

to reason about spatial relationships between objects.
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5.3 Content predicate symbols

In order to express queries on the contents of images, three more sorts are introduced in Ly :

e 0,, the sort of objects; the constant symbols from this sort will be denoted by lower case
names, such as: francesco and giulia (metasymbols o, 01, 02); the existential quantifier for

objects will be 3,;

e o,, the sort of classes; the constant symbols from this sort will be denoted by upper case
names, such as PERSON, with the exception of the two symbols T and L (metasymbols ¢,

¢1, ca, di, d2); the class existential quantifier will be 3p;

e o;, the sort of identifiers; the constant symbols from this sort will be denoted by names
starting with a capital letter, such as Brother (metasymbol 7); the identifier existential

quantifier will be 3;.
The predicate symbols for content queries are:
e MDP and SDP, of sort (op,0i,0p);
e MFP and SFP, of sort (0,,0,0,);
o InstanceOf, of sort (0,,0p);
e IsA, of sort (op,0p)-

A formal semantics for content queries is now introduced, based on database states. To this
end, the image denotation function d is extended as follows. Given a database state, d maps one-
to-one the constant symbols of the sorts o, 0p, and o; onto the sets O, C, and ID, respectively.
For simplicity, this mapping is assumed to be the identity function.

An image structure satisfies a ground instance of the above predicate symbols:
9. (Z,d) | MDP(c1,i,c¢0) iff (¢1,4,¢0) € MDP

10. (Z,d) = SDP(ec1,1,¢0) iff (¢1,%,¢0) € SDP

11. (Z,d) | MF P(oy,1,00) iff (01,%,02) € MFP

12. (Z,d) = SFP(o1,1,09) iff (01,%,02) € SFP

13. (Z,d) = InstanceOf(o,c) iff (0,c) €—

14. (Z,d) = IsA(ec1,ca) iff (c1,¢2) €=

This semantics is simply an extension to our semantic data model of the model theoretic view of
databases. We are assuming that a database state is a strict analog of the reality being modelled,
thus a closed world in which a sentence holds true (i.e. the database state satisfies the sentence)

or false.
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Table 1: The predicate symbols of £;.

Visual predicate symbol Spatial predicate symbols
Hor,00) X _before(or, o) Y_before(o,, or)
Content predicate symbols X_equal(oy, 0v) Y_equal(o,, 0r)

MDP(o,,0i,0p) SDP(op,04,0p) | X-meets(or,0r) Y_meets(or, 0y)

MFP(o,,0:,00) SFP(0,,0:,0,) | X-overlaps(o,,0.) Y_overlaps(o,,o;)

InstanceOf(o,,0p5) IsA(op,0p) X_during(or, or) Y_during(o,, or)
Mapping predicate symbol X_starts(oy, 0r) Y_starts(o,, oy)
Map(o,,0,) X_finishes(o,,07)  Y_finishes(or, o)

5.4 Mapping predicate symbol

In order to query the mapping component of an image, L1 provides the dyadic predicate symbol
Map, of sort (o,,0,), which can be used to associate image regions with content objects. For
instance, Map(T,0) means that the region r is mapped by the mapping component M of the image

being considered onto the content object o. Formally, given an image structure Z,

15. (Z,d) = Map(r, o) iff for some set of regions X, d(r) C |JX and M(X) = o.

6 Querying an image base

Having introduced the alphabet of £y and its semantics, a query facility for our model can now
be completely specified. This is done in the next section, in two steps. First, the syntax of L is
completed, allowing us to define what formulas of the language count as image queries. Then, the
semantics of the full language is given, allowing us to define the image answer function. In the

following sections, the expressive power of the introduced query facility is examined.

6.1 A query facility

As L£r has no function symbol, its ferms are just constant symbols or variables, whose sorts
give the sorts of the corresponding terms. The atomic formulas of Ly are the atomic ground
instances of the predicate symbols introduced in the previous section, summarized with their sorts
in Table 6. The well-formed formulas of L are the smallest set containing the atomic formulas
and the formulas: —a, (a V 8), (3r2)e, (Fex)e, (3o2)a, (Fpz)a, and (Jiz)a, where o and f are

well-formed formulas. Notice the usage of one existential quantifier for each sort of the language,
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ranging on the corresponding sort. As customary, the well-formed formulas made up from all the
interesting connectives and one universal quantifier for each sort can be assumed in the language as
abbreviations of primitive expressions. A sentence is a well-formed formula with no free variables.
An tmage query is any sentence of L.

For simplicity, we will provide a semantics only for the sentences of £y, which model image
queries. The semantics of the atomic sentences has been already given in the previous section.
The following rules extend that semantics to all the sentences of the language. In them, (Z,d) is
an image structure, « and S well-formed formulas, v a well-formed formula in which the variable
z occurs in instances of I or of spatial predicate symbols, and é§ a well-formed formula in which
the variable z occurs only in instances of Map. Finally, of is the same formula as « except that

¢

all the occurrences of the variable « are replaced by occurrences of the constant symbol c.
16. (Z,d) E —aiff (Z,d) f «
17. (Z,d) E (aV p) iff either (Z,d) = e or (Z,d) =B
18. (Z,d) = (3rz)y iff for some constant symbol ¢ of sort oy, d(c) € 7 and (Z,d) = 7*
19. (Z,d) = (3,=)0 iff for some constant symbol ¢ of sort oy, (Z,d) k= 67
20. (Z,d) = (3cz) iff for some constant symbol ¢ of sort o, (Z,d) k= of

21. (Z,d)  (Foz) iff for some constant symbol ¢ of sort o,, (Z,d) = o

4

22. (Z,d) = (3pz)a iff for some constant symbol ¢ of sort ¢, (Z,d) = o®

[

23. (Z,d) = (3iz)c iff for some constant symbol ¢ of sort oy, (Z,d) E o

These rules extend the notion of satisfaction to the non atomic sentences of £y, taking into
account the sorted nature of the language. Notice that in 18 the membership of d(c) in 7 is
required to ensure that when the variable z denotes a region of an image model, the quantifier 3,
ranges on the spots of that image model rather than on the finite sets of pairs of natural numbers.
In this way, the sentence (V.z)I(z, green) is satisfied by all images which are entirely green, as
desired, whereas the sentence (3.z)X_before(x, ) is satisfied by all images having a region at the
left of r. Without this provision, the former sentence would be satisfied by no image, as images
models are finite objects, whereas the latter would be satisfied by no images if the end-point of
the x-projection of + is 0 (i.e. r is a leftmost region), and by all images otherwise, regardless of
their shape. The same restriction does not apply to Map instances, because the image mapping
function takes as argument sets of regions. Thus the sentence Map(r,0) may be satisfied by an
image even though 7 is not a region of ils image model; the serﬁantics requires only that r be
included in the regions mapped by M onto o.

Given an image base (7, Z) and an image Z = (M,D,M) in T, with D = (0;, C;, DP;, F P;, —;
, =), the extension of T is the image 7¢ = (M, D¢, M) where D¢ = ((O; U Oy), (C; U Cy), (DF; U
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DPy),(FP; U FP),(—; U=—0), (=i U=)). In essence, the extension enriches an image content

component with the background information. Given an

answer of q in IB, a(q,IB), is given by:

a(q,IB)={Z|(Zd)Eq}

Notice the usage of the background information in the
This query facility subscribes to the logical view of
as it models retrieval as logical inference. At the sam
approach to databases presented in [20], as it views
being modelled, thus a closed world in which every s

satisfies the sentence) or false. We thus have an image 1

image base I B and an image query q, the

retrieval of images.

nformation retrieval recommended in [26],
> time, it conforms to the model-theoretic
an image as a strict analog of the reality
entence of Lr holds true (i.e. the image

nodel which is based on solid philosophical

and mathematical grounds, and offers agreeable computational properties. First of all, answers

are decidable. Secondly, the decision algorithm is cone

eptually simple. Thirdly, the cost of that

algorithm can be reduced at will by limiting the expressive power of the query language, in a way

that is well-known.

The expressive power of our image query facility can
can span over four information dimensions: the visual,
which partition the predicate symbols of the query langt
offers 15 types of queries, one for each non-null assignm
to these dimensions. Preserving the above ordering, q
mapping dimension (assignment 0001), while queries o
content dimensions. In the following sections we will res

by the model, focusing on the most important of them

6.2 Visual queries

A visual query is a query in which only the predicate
typically expressed through an appropriate visual tool
an expression of the query language, like a query of an;

The answer of an atomic ground visual query, such

be investigated by considering that a query
spatial, content, and mapping dimensions,
1age. From this point of view, the language
ent to four binary variables corresponding
ueries of type 1 are those having only the
f type 6 (0110} have both the spatial and

view the types of queries on images offered

symbol I occurs. A query of this kind is
but from our analysis’ point of view it is
y other kind.

as I(A,blue) consists of the images whose

image models have the region named A of color blue. Ho

w exact this match is, depends on the non-

exact matching functions included in the model; in order to make the following discussion more

concrete, we will ignore this aspect. Assuming that the visual querying tool provides the machinery

to deal with first-order syntax, logical connectives and
complex queries, such as (I(4,blue) — I(B,green)) re

blue or whose B region is green, while:

((Frz)I(=, blue) V (Foz)(Vry)I(y, z))

kquamtiﬁers can be used to articulate more

turning the images whose A region is not

returns the images which either have a blue spot or whose regions are all of the same color.
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In general, an image satisfies the queries that are “less specified” or “more vague” than its image
model. For instance, let us consider an image model M having 3 regions, named for simplicity
A, B, and C, whose colors are, respectively, white, blue, and green. A query less specified than
M is one describing only a subset of the image’s spots, such as (I(A, white) A I(C, green)) or
denoting also other images, such as (I(B, blue) V §) where § is any visual query. It is not difficult
to see that both these sentences are satisfied by M. In the former case the satisfaction can even
be visualized, since the sentence has a straightforward pictorial representation. It is important to
realize that M satisfies the above two sentences regardless of the nature of the involved objects:
A, B, and C could be names of stars, white, blue, and green could be natural numbers and I could
name the distance of a star from the Earth and the satisfaction relations mentioned above would
hold anyway. The reason is that these inferences are valid in the first-order predicate calculus,
and, by interpreting in a certain way the sentences that occur in them, we have simply rephrased
the classical notion of satisfaction in terms of images. As a further verification of this fact, we can

observe that the “trivial” cases of the logical satisfaction relation hold in our query facility:

e an image model M satisfies the simplest sentence that represents it, given by A; I(4;,¢;)
where A; are names for the regions of M and for all ¢ F(4;) = ¢;; this ensures that the

membership of an image in an image base can be tested via the query facility;

¢ a contradictory sentence, such as (I(A, green)A—I(A, green)) is satisfied by no image model,
thus it would return no images when posed as a query; this ensures that ill-defined queries

are harmless;

¢ a tautological sentence, such as (I(A4,blue) — I(A,blue)) is satisfied by any image model

with the same underlying partition.

The interested reader may find more about the logic underlying visual queries in [16].

6.3 Spatial queries

This kind of queries contain only instances of spatial predicate symbols and can be used to retrieve
images on the bases of spatial relationships between the images’ spots.

Ground spatial queries state properties of specified regions, and therefore are not particularly
interesting. They either return no image, in case the stated property does not hold, or otherwise

they return all the images in the image base. For instance, the sentence:
X before(ry,ra) N =Y before(ry,ra) A =Y. before(ry,ry)

asserts that region r; precedes region r on the z axis and they share one point the y axis, and is
clearly either true or false regardless of any particular image. By quantifying on either region, a
more interesting query results, whose answer depends on the images stored in the image base. For

instance, using an existentially quantified region variable in place of r;, we have a query which
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retrieves the images in whose image models there is a region standing to ro in the above mentioned
relationship. ‘

In order to query spatial relationships between objects, the spatial predicate symbols are to be
used in conjunction with the mapping symbol. Queries of this kind are said to be mixed, as they

involve more than one dimension of the image representation, and will be discussed later.

6.4 Content queries

A content query includes only instances of the content predicate symbols, allowing to specify
conditions which the retrieved images are to be about. The notion of aboutness is central to
content-based retrieval and has been formalized in many different ways by different categories of
information retrieval models. The query facility of our model returns, in response to a query,
the images in which a query is true, thus interpreting aboutness as truth. In so doing the model
subscribes to a classical view, as assessed, for instance, in [6].

The expressiveness of the content query language is similar to that of classical object-oriented
query languages, allowing to state conditions on objects, property values, and InstanceOf links in
a simple and uniform way. In addition, our language permits to express queries whose variables
range on property or class names.

For instance, the images that are about someone named “Francesco” can be retrieved by the

query:

(Foz)(Ziy)SFP(z,y, “Francesco”)

which returns the images in whose content part some object z has value ‘ ‘Francesco?’ for some
property y, which is presumably a kind of naming property. Similarly, the images which are about

a musician, brother of Giulia can be requested via the following query:
(Foz)(InstanceOflx, MUSICIAN) A MFP(z,Brother,giulia)).

In order to retrieve the images with a non-empty content component, the following query can be

used:
(Foz)(Fpy)InstanceOf(x, y).

There is a basic difference between our query facility and that of databases. The queries of
a database typically return objects, whereas our query facility is designed to return images, i.e.
documents including, among other things, whole database states. Technically, this difference is
due to the logical nature of queries. Those offered by a retrieval model are sentences, whereas
database queries are open formulas whose free variables give the structure of the query answer.
For instance, the images whose content reconstructions contain instances of the PERSON class

who have giulia as sister can be retrieved by posing the query:

(Foz)(InstanceOfz, PERSON) A MFP(z,Sister,giulia)).
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By removing the quantifier from this sentence, we obtain a typical database query asking for the
brothers of Giulia. For this reason, our model is closer to an information retrieval model [25] than

to a traditional data model.

6.5 Mapping queries

Pure mapping queries contain only instances of the Map predicate symbol and can be used to
retrieve images whose regions are associated to content objects. When both regions and content
objects are denoted by constant symbols, the query returns, as established by the semantics of
Map, the images whose mapping component associates the mentioned regions (or supersets of
them) with the mentioned objects. By quantifying on the regions, a query asks images which have
map information on the specified content objects; for instance the query (3,z)Map(z,0) returns
the images whose mapping function has o in its range, which means that o is shown in the image
model and that the mapping function “points it out”.

A form of shape-based retrieval can be performed via mapping queries which quantify on

objects while specifying regions; for instance the query:
(aox)(Map(rl) iE) \4 Map(rza x))

retrieves the images in which either r; or ry (or a superset of them) are mapped into some
unspecified object. Clearly, there is some noise due to the superset matching; in addition, the
position of the shape is fixed, since a region is a fixed portion of the assumed 2-dimensional
space. The latter problem can be solved by introducing in the query language suitable operators
for scaling, rotating and translating regions, while the former is not expected to be significantly

serious.

6.6 Mixed queries

Mixed queries exhibit instances of predicate symbols of at least two of the kinds shown in Table 6.

They can be subdivided into two categories:

o weakly mixed queries, in which no term is shared by instances of predicate symbols of different

kinds; and

e strongly mixed queries, where there is at least one common variable or constant symbol

between instances of predicate symbols of different kinds.

Queries belonging to the former category exploit the power of the image representation only
to a limited extent, as they are Boolean combinations of unrelated 1-dimensional queries. As a
consequence, weakly mixed queries cannot address spatial relationships between objects, because
these cannot be asserted of objects but simply of regions. Assuming that § is a picture representing

a visual query, an example of a weakly mixed query is:
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(6 A (3pz)InstanceOf francesco,z))

which returns the images whose image model matches § and whose content component includes
the object francesco. No connection between the two conditions is expressed by the query. As
Boolean combinations of types of queries already examined, weakly mixed queries will not be
discussed in more detail. Notice that queries of type 6, having spatial and content predicate
symbols, and queries of type 10 (visual and content) can only be weakly mixed, as the predicate
symbols occurring in them have no sort in common.

Strongly mixed queries permit the expression of conditions which address more than one level
of the image representation.

In queries of type 3, content and mapping predicate symbols can share object terms, so they
allow to request images whose regions satisfy certain conceptual properties. For instance, the

query:
(Foz)(Map(r,z) A InstanceOfz, TREE))

can be used to retrieve the images in which a group of regions, which include r, is mapped onto
an instance of the class TREE by the mapping component. More succinctly, this query can be
phrased as “A tree of shape (the contour of) ”: the first conjunct permits to constraint the shape
of the object, while the second one constraints its class membership. By quantifying on the region,

we obtain the query:
(Fo2)(3ry)(Map(y, z) A InstanceOfz, TREE))

requesting images in which some region, regardless of its shape, is mapped onto a tree (i.e. “A

tree”). There is an important difference to be noted between this query and the query:
(3oz)InstanceOflz, TREE).

The former returns the images showing a tree, while the latter those which are about a tree, which

means that the image content reconstruction includes a tree, but not necessarily the image.
When the mapping and the content components of this kind of queries share object constant

symbols, the content components are not used to identify objects on the basis of their relationships,

but to express stricter conditions on the specified objects. For instance, the query:
(Map(r,0) A InstanceOf(0,SALESMAN))

retrieves the images in which o has a shape included within the contours of r, and is known to be
a salesman.

Queries of type 11 are queries of type 3 with an additional visual component. When tighted
to the other components of the query by a region term, such visual component serves to specify
that the mapping applies to single regions, and possibly to state the colors of those regions. To

exemplify, the query:

22




Erz)3oy)(I(z,yellowy A Map(z,y) A InstanceOf(y, TREE))

returns the images in which a region of color yellow is mapped onto a tree (i.e. “A yellow tree”).
The color specification can be omitted by using an appropriate color variable in place of the symbol
yellow. In this case, the query would return the images whose models have one region mapped
onto a tree. The use of a region constant symbol = in place of the variable z would constraint
the shape of the tree, leaving to the content component the possibility of specifying conceptual
properties to be satisfied by that tree, such as its location.

Queries of type 9 (visual and mapping) are a restricted form of queries of type 11, permitting
to retrieve images on content objects with a color specification. The request to retrieve images in

which “Giulia is wearing something pink” can be formulated as the following query of type 9:
Erz)(I(z,pink) A Map(z,giuvlia)).

Queries of type 5 (spatial and mapping) can be used to state spatial conditions between content

objects or regions and other content objects. As an example, the query:
(Vrz)(Map(z,francesco) — (X before(z,r) A Y_during(z,r)))

can be used to retrieve the images in which all francesco’s regions (that is, all the regions in which
he is mapped onto) precede r on the z axis and are properly included in r on the y axis. The

following query retrieves the images in which giulia is left to francesco:

(Vrz)(Map(z,giulia) — ((Vry)Map(y,francesco) — X _before(z,y)) A
((3ry) Map(y,francesco) A Y_includes(z, y)))

where Y_includes(a,b) is an abbreviation for:
Y_staris(a,b) V Y_during(a,b) V Y_finishes(a,b) V Y_equal(a,b).

The query requires all giulia’s regions to be (a) left of all francesco’s regions on the z axis and (b)
entirely contained in at least one of francesco’s regions on the y axis.

Analogously to the previous case, the addition of a visual component to this kind of queries
{so obtaining queries of type 13) restricts region terms to denote single image regions, on which a
color condition can possibly be stated.

Queries of type 7 include all kinds of predicate symbols except the visual one. They extend
queries of type 5 by allowing a richer articulation of content conditions, in which not only content
objects can be addressed, but also conceptual relationships involving these objects. For this reason,
queries of this kind permit to perform “iconic” image retrieval, consisting in requesting images on
the basis of the spatial relationships between their content objects. A typical iconic query is [5]

“find all pictures having a tree to the left of a house”, expressible in our query language as:

(Fozy)(InstanceOfz, TREE) A InstanceOfy,HOUSE) A
(Vru)(Map(u, z) — ((Yrv)Map(v,y) — X before(u,v)) A
(Grw)Map(w,y) A Y.includes(u,w)))).
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The content component gives the possibility of specifying, among other things, the class which the
content objects mentioned in the query belongs to, thus permitting retrieval on generic objects.
A comparison of our retrieval capability with that of iconic databases is carried out in section 7.2.

Queries of type 12 include visual and spatial queries which share region terms. If the shared
term is a constant symbol, then the spatial properties of that region do not depend on any
particular image, and the resulting query is equivalent to its visual (sub-)query. When the shared
term are region variables, the visual component of the query, as already pointed out, serves to
have those variables ranging on single image regions with an additional color specification, while

the spatial component states conditions on them. For instance the query:
(Brz)(I(z,green) A X before(z,r))

retrieves the images having a green spot at the left of region r.
Queries of type 14 are queries of type 12 with an additional content component. As this content
component cannot share any term with the visual and spatial components, this type of queries are

in fact Boolean combinations of queries of type 12 and queries of type 2. For instance:
(3rz)(I(z,green) N X before(z,r) A (3oy)InstanceOfy,APPLE))

return the subset of the images returned by the previous query which are about an apple.

Finally, queries of type 15 include all four components, permitting to express requests such as:

“Giulia is wearing a pink sweater and there is a person at her right”
“A yellow tree on a grass”

“A house with green windows left to a tree”.

7 Relation to other work

At this point we are in the position of relating the introduced model with other proposals sharing,
to a reasonable extent, the same goal as ours. Considering that the number of such proposals is
too large to permit a comprehensive discussion, we will have a two-stepped approach. First, in
the next section, we will take a broad perspective, and look at some well known image models,
coming from a fairly wide range of different fields. Then, in the successive two sections, we will
narrow down the scope of the discussion to image databases, examining two important classes:

iconic and pictorial databases.

7.1 Image models

The assumption that images can be regarded as sentences in a natural language goes back to at
least 30 years ago, and has been the basis of the activity of researchers investigating the automatic
generation of images (for a survey, see [22]). Chomsky’s generative grammars and related concepts

have been used in this field to capture the basic production mechanisms of image languages.
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In artificial intelligence, image models are investigated in order to understand and reproduce
human problem solving methods which are deemed to be based on image inspection and manip-
ulation. These operations can be performed on scene reproductions as in a vision system, or on
mental reconstructions as in imagery [7]. In fact, it is argued that imagery and vision have parallel
purposes and essentially differ in the image source (human memory in the former case, the external
world in the latter) [11].

Mental imagery finds its theoretical foundations in psychology and cognitive science, where the
primary role of images in certain human inference processes (such as reasoning [15] and discourse
understanding [10]) has been postulated and empirically tested.

The role of images in our mental processes is still controversial, and not all the defenders of this
role have been precise about image representation (this is not necessarily a limit of their proposals).
Those who have gone as far as proposing an image representation scheme have resorted to various
formalisms, ranging from generative array grammars [22] to array theories [7], depending on the
purpose of the formalization and the formalizer’s style. Despite the fact that none (with the
exception of [21], but only for content and mapping), to the best of our knowledge, has used a
mathematical logic as an image model, we can observe that the underlying ontology of our logic,
consisting of spots and colors, is consistent with that of these other image models. The logical form
of our model is due, as argued in the introduction, to the view of images as information bearers
that underlies any image information system. However, we believe that the formal development
we have presented can be used to capture other image inferences, beside thbse needed for retrieval,

and thus it is relevant to any attempt aiming at capturing aspects of reasoning on images.

7.2 Iconic databases

An iconic database contains abstractions of images, consisting in two dimensional arrays homolo-
gous to the abstracted images, showing the objects of interest to the application in symbolic (or
iconic) form. Such abstractions are half-way between the form and the content level of our model,
since they are about conceptual entities (i.e. objects, as opposed to regions and colors) but at
the same time preserve the spatial relationships among these objects as they appear in the image.
Such representations have been called iconic images. Figure 3 shows iconic images containing four
the objects a, b, ¢, and d.

Iconic images support the retrieval based on the spatial relationships of the entities shown in
the corresponding, non-abstracted images, as they abstract everything from these images but the
spatial relationships between objects. A typical query to an iconic database is “find all pictures
having a tree to the left of a house” [5], and is expressed by means of an iconic image. For instance,
the iconic image shown in Figure 3.b can be a query on the image presented in Figure 3.a.

This form of image retrieval has received considerable attention in the last years. However,
research in this field has mostly been focused on efficiency, disregarding, until lately, the logical level

of the proposed retrieval models, that is what spatial relationships were really represented and used
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(2) (b)
Figure 3: An iconic image and an iconic query.

for image retrieval. The reader interested in this aspect has to decode it from substring matching
operations, carried out on a special kind of strings, named 2-D strings, and on several variations
thereof. Putting the stress on implementation matters has delayed the full understanding of the
logical nature of the retrieval realized by these methods.

In the seminal paper [5], 2-D strings are introduced as a way of encoding 5 spatial relationships
between pairs of rectangles, the minimum bounding rectangles of the objects appearing in an iconic

» &

image. These relationships are: “left,” “right,” “below,” “above,” and “same location,” and are
represented by using 4 symbols. Three matching functions between 2-D strings are defined which
capture, to different extents, the semantics of the 5 spatial relationships represented by the model.
These string matching functions are extended in [14], in order to capture a “similarity” criterion
between iconic images. The criterion is that of maximum likelyhood of two 2-D strings, and, being
defined on the implementational data structure rather than on the semantics of the representation,
it is difficult to say what it amounts to in terms of spatial reasoning,.

In [4], a rule-based database system is presented which provides the same 5 primitive spatial
relations as [5], but allows to combine them in a Boolean way, so obtaining a system reasoning on 9
relationships (“north”, “south”, “west”, “east”, “north-west”, “north-east”, “south-west”, “south-
east”, and “same location”). This combinational power permits also to define other interesting
spatial relationships, such as “surrounded-by”, “partly-surrounded-by”, and “near”. A similar
representation is proposed in [3], where the 9 spatial relationships above are assumed as primitives
and 2-D strings are abandoned in favour of less cryptic triples (O1, O, ), where the O; are objects
and r is an integer representing a spatial relationship above. Retrieval on the basis of these
relationships is performed on a special data structure, called picture indexing table, where the
triples, one for each pair of objects, are hashed.

The bottom line of this approach is reached in [12], where all the 13 possible spatial relationships
between two intervals in a one-dimensional space are identified and captured by 7 symbols. This
result had been already obtained some time before in [1], which proposes one-dimensional intervals
to model time, and provides a logical formalization. Incidentally, this formalization gives a much
clearer account of the reasoning on spatial relationships underlying iconic image retrieval than

that found in [13], which purports at capturing formal aspects of spatial reasoning but is couched
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in terms of 2D C-strings.

Our model includes the representational primitives proposed in [1] and in [12], thus permitting
the specification of any spatial relationship between rectangles upon querying the image base.
Furthermore, as discussed in section 6.6, iconic queries are a proper subsets of queries of type 7.
Evidently, the specification of one such queries is much more elaborated than that of an iconic
query, as it can be verified by comparing Figure 3.b with the corresponding query. This is due to
the fact that the scope of iconic retrieval is much more limited than the general purpose image
retrieval offered by our model. However, once a general model is defined which establishes the
theoretical bases of a class of information systems, the simplicity of more limited and informal
models can be re-gained by acquiring these models as parts of the general model. In our case, iconic
queries can be included tout cour in our query facility, with all their graphical and computational
machinery, either as queries on their own right, or as sub-queries of more articulated queries. The
evaluation of an iconic query, then, can be performed via 2D strings, leaving to the system the
task of combining its result with that of the rest of the query, if any. As an alternative, a program
can be devised that translates an iconic query into an equivalent formula of our query language,

to be evaluated in the standard way.

7.3 Pictorial databases

A pictorial database is a database whose built-in data types include images and image compo-
nents. The basic functionality offered by a pictorial database is thus the obvious extension of that
provided by traditional databases: manipulation and retrieval of data objects including images.
Not surprisingly, then, the data models of pictorial databases have emerged in an evolutionary
way as extensions of successful traditional data models.

For instance, the PSQL query language [23] enhances SQL by allowing user-defined abstract
data types for defining pictorial domains on top of 3 primitives domains offered by the model:
points, line segments, and regions. These built-in domains come equipped with a number of
operators, capturing spatial and topological relations between their members. PSQL queries are
SQL queries with an additional clause for introducing the images which the query is on. Conditions
on images (or superimposilions) can thus be specified, in terms of the operators provided by the
model.

Similarly, the PICQUERY query language [24] extends the query-by-example approach to deal
with image manipulation and retrieval, yielding a new tabular query language for accessing a pic-
torial DBMS, PICDMS, in a generic, application independent way. PICQUERY provides a large
variety of operations, ranging from image manipulation (such as shifting, rotation, zooming, su-
perimposing) to pattern recognition (edge detection, contour drawing, similarity retrieval), spatial
and geometric computing (on points, segments, and regions).

We have already remarked in section 5.3 one important difference between our model and a

data model: while our model is essentially an information retrieval model, concerned with the
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retrieval of image objects, carrying form, content and mapping of an image, a data model allows
to retrieve elements of a data structure, like objects or property values, rather than whole con-
tent representations. But there is a more fundamental difference between a data model and an
information retrieval model: the former is the result of an abstraction, usually called conceptual
modelling, performed on the specific requirements of the application, the latter purports at sup-
porting generic content-based retrieval on “raw” documents, images in our case. In other words, a
database is defined having in mind the requests that the users will make to it, whereas very little
knowledge, if any at all, is assumed on the information need of the users of a document base.

As a result, a pictorial data model typically copes with the efficient, physically independent
implementation of pictorial domains, of the manipulation functions defined on them, of their
comparison operators and so on. An information retrieval model has to address more general
issues, such as the distinction between form and content representation, the provision of a powerful
language for describing the various levels of images, and that of a retrieval function capturing the
notion of relevance of a document to a query. Consequently, the comparison between the retrieval
capability of a pictorial data model and that of our model can be pursued only to a limited extent.

Work much in the spirit of our model is presented in (8], which introduces image retrieval based
on a class of visual queries, namely hand-drawn sketches. The choice of this particular kind of
queries is driven by the nature of the considered image base, which is a collection of paintings;
but the claim that any image retrieval system should provide a facility for visual querying goes
beyond the application at hand, and is supported by our model as well. Retrieval in {8] is realized
on the basis of local correlation between the user drawings and pictorial indexes of images. This
form of image matching can be imported in our model as an image predicate, yielding 1 when the

local correlation exceeds a predefined threshold, and 0 otherwise.

8 Conclusions

We have presented a model for image bases offering a 3-level representation of images and a
query facility for exploiting the content of an image base in a complete way. Our work must be
considered as having a foundational spirit, as both the proposed representation schemes and their
query languages need extension in order to arrive at a rich model, able to cope with the applications
complexity. However, we claim that these extensions are details that can be easily accommodated
in the presented model, similarly to the extensions which led from the tuple calculus to SQL.
Besided its immediate applicability to image bases, our model provides a basic philosophy to
deal with the representation and retrieval of (a class of) “intensional” objects, i.e. objects with
a content. The more general class of multimedia objects is rapidly emerging on the information
system scene, conquering a number of applications and creating new opportunities for the en-
terprise of information systems. Among the many demands of multimedia information systems,

that for adequate data models is perhaps the most crucial. Our model makes a step towards a
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general model for multimediainformation systems, providing a paradigm and representational and

querying primitives.
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A Summary of the model

A.1 Image models

Given a set of colors L, an image model is a triple (A, m, F) where:
e A is a connected set of pairs of natural numbers;
e m is a partition of A consisting of connected sets;

e F:m— L, such that for all contiguous sets S; and S; in pi, F(S;) # F(S;).

A.2 Database states

A database state is an 8-tuple (O, C, SDP, MDP, SFP, MFP, —, =) where, letting ID be a

set of identifiers:
o O is a set of objects;
e (' is a set of classes;

e SDP C (C x ID x C) are the single-valued definitional properties;

P

MDP C (C x ID x C) are the multi-valued definitional properties;

®

SFP C (O x ID x O) are the single-factual properties;;

@

MFP C (O x ID x O) are the multi-factual properties;
e — C (0 x C) is the InstanceOf relation, relating an object to the classes where it belongs;
e = C (C x C) is the IsA relation, relating a class to its superclasses.
such that:
1. for every o in O there exists a ¢ in C such that (0 — c)
2. m15(SDP) Ny o(MDP) = 0
3. (cidi),(cidy) € (SDPUMDP) implies d; = dy
4. (04 01),(0% 02) € SFP implies 0; = 0
5. (01 i 02) € SFP implies (¢; i ¢3) € SDP and (0; — ¢;) for i = 1, 2.
6. (01 ¢ 02) € MFP implies (¢, i c2) € MDP and (0; — ¢;) for i = 1,2
7. (01 i 02) € SFP, (01 — ¢1) and (¢1 i ¢2) € SDP imply (05 — e2)

8. (01 i 09) € MFP, (01 — ¢1) and (c1 i ¢2) € MDP imply (0y — ¢2)
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9. => is a partial order with a minimum L and a maximum T
10. (¢1 ¢ d1) € SDP and (cp = ¢1) imply (¢ 7 d2) € SDP and (dp = d1)
11. (ey i d1) € MDP and (¢ = ¢1) imply (¢ i d2) € MDP and (dz = d3).
12. (0 = ¢1) and (¢; = c2) imply (0 — ¢2)
Definitional and factual properties are collected into the sets:
DP =SDP UMDP
FP=SFPUMFP
A.3 TImages

An image is a triple (M, D, M), where M is an image model (A4, =, F'), D is a database state (O,
C, DP, FP, —, =), and M is the ¢tmage mapping, that is a partial function:

M:2" =0

such that for all m;, m; in dom(M), m; # m; implies m; N 7w; = 0.

A.4 TImage bases
A non-empty set of database states:
{(0y,C1,DPy, FPy,—1,=1), «ey (On,Cry, DPy, F Py, =y, =)}
is said to be coherent with the state oo = (Qo, Co, DPo, F Py, —0,=>0), if and only if:
((0; U Og), C*, DP¥, (FP; UFFR), (—:; U—0), =) is a database state, forall 1 <7 < n,
where:
* €% = Uino G
e DP* = ;0. DF;
o =% =00 =i

The 6-tuple (Og, C¥, DP¥, F Py, —, =") is called content schema.
Given a database state o9 and a non-empty set ¥ of images whose content reconstructions are
coherent with g, the image base associated to o¢ and T is the pair (o, X), where o is the content

schema of the images in ¥ and oy.
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A.5 The image query language £;
The image query language, £y, is a many-sorted first order language. The sorts of L are:
e o, the sort of regions
® 0,, the sort of colors
® o,, the sort of objects
e op, the sort of classes
e 0;, the sort of identifiers

The alphabet of £; consists, for each sort, of countably many constant symbols, countably many
variables and one existential quantifier; in addition, the predicate symbols of £ are those shown
in Table 6.

An image query is any sentence of L.

A.6 The semantics of £;

‘The image denotation function d is a one-to-one function which maps:
o the constant symbols of sort o, onto the finite subsets of pairs of natural numbers
e the constant symbols of sort o, onto the set of colors L
e the constant symbols of the sorts o,, 0y, and o; onto themselves.

An image structure is a pair (Z,d), where Z is an image.
An tmage predicate is a total function receiving in input an image model, a region, and a color
and returning an element of the set {0, 1}. Given n > 0 image predicates @y, ... , ®, and an image
I =(M,D,M),

(Z.d) ko I(r, 1) iff F(d(r)) = d(1)

(Z,d) ki I(r, 1) iff ®;(M,d(r),d()) =1, forall1<i<n

Let (Z,d) be an image structure, o and 2 well-formed formulas, v a well-formed formula in which
the variable z occurs in instances of I or of spatial predicate symbols, § a well-formed formula
in which the variable 2 occurs only in instances of Map, and of the same formula as o except
that all the occurrences of the variable z are replaced by occurrences of the constant symbol c.

An image structure (Z,d) is said to be satisfied by an image query g, (Z,d) k=g, if and only if:
L (Z,d) E I(r,1) iff for some 0 < i < n, (Z,d) k= I(r,1)
2. (Z,d) X before(r1,72) iff e(Tz(d(r1))) < (I (d(rs)))

3. (Z,d) =X equal(ry, r3) iff (1L, (d(r1))) = B(IL;(d(r2))) and e(T(d(r1))) = (Tl (d(r2)))
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

(Z,d) =EX_meets(ry,ry) iff (Il (d(r1))) = B(I;(d(r2)))

(Z,d) EX-overlaps(ry, r2) iff B(I;(d(r1))) < B(ILz(d(r2))) and €(lz(d(r1))) < eIz (d(r2)))

- (Z,d) =X_during(ry, ro) iff B(I;(d(r1))) > Bz (d(re))) and (M5 (d(r1))) < e(Ilz(d(r2)))
. (T,d) EX_starts(ry, re) iff B(Ilz(d(r1))) = Bz (d(r2))) and (Mg (d(r1))) < (M (d(r2)))

. (Z,d) =X_finishes(ry, rs) iff B(Iz(d(r1))) > B, (d(rs))) and (I (d(r))) = e(Tlz(d(r2)))

(Z,d) |=Y-before(ry, r2) Hf €(ILy (d(r1))) < BTy (d(r2)))

(Z,d) FYequal(ry, ra) iff B(ILy (d(r1))) = B(ILy (d(r2))) and €(TLy (d(r1))) = e(Iy (d(r2)))
(Z.d) = Yomeets(ry, r2) if €(ILy (d(r1))) = BTl (d(r2)))

(Z,d) = Y-overlaps(ry, r2) iff B(Ily (d(r1))) < ATy (d(r2))) and €(ILy(d(r1))) < e(TL, (d(72)))
(Z,d) | Y-during(ry, r2) iff B(ILy (d(r1))) > B(ILy(d(r2))) and e(TTy (d(r1))) < eIy (d(r5)))
(Z,d) | Yostarts(ry, m2) iff BTy (d(r1))) = B(ILy (d(r2))) and €(Ty (d(r1))) < e(IL (d(r2)))
(Z,d) [ Y-finishes(ry, r2) Hff B(Iy (d(r1))) > B(TLy (d(rs))) and (Il (d(r1))) = e(TL (d(rs)))
(Z,d) k= MDP(e1,i, c5) iff (1,4, ¢c0) € MDP

(Z,d) = SDP(c1,4,¢5) iff (1,1, ¢c0) € SDP

(Z,d) = MFP(0y,i,0) iff (01,%,00) € MFP

(Z,d) = SFP(01,i,05) iff (01,1,00) € SFP

(Z,d) k= InstanceO f(o, c) iff (o, c) €—

(T,d) | IsA(cy, e2) iff (c1, c2) €=

(Z,d) = Map(4, o) iff for some set of regions X, d(A) C JX and M(X) = o

(T d) | —aiff (Z,d) £ o

(Z,d) (e V f) iff either (Z,d) = o or (Z,d) =

(Z,d) | (3-=)y iff for some constant symbol ¢ of sort o, d(c) € 7 and (Z,d) k= 12

(Z,d) k= (3,2)8 iff for some constant symbol ¢ of sort oy, (Z,d) = 6

(Z,d) k= (3c2)a iff for some constant symbol ¢ of sort o¢, (Z,d) k= o

(Z,d) k= (Fo2)e iff for some constant symbol ¢ of sort oy, (Z,d) |= oF

(Z,d) k= (3p®)a iff for some constant symbol ¢ of sort o, (Z,d) k= o

(Z.d) = (Ziz)o iff for some constant symbol ¢ of sort o;, (Z,d) E ot
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A.7 The query answer
Given an image base IB = (¢, %) and an image 7 = (M,D,M) in B, where:
D = (0:,C;, DP;, FP;, —;, =),
the eziension of 7 is the image 7¢ = (M,D®, M) where:
D¢ = ((0: U 00),(C: U Cq),(DP; U DPy), (FP; U FPy), (—; U —), (=i U=)).
Given an image base IB and an image query ¢, the answer of ¢ in IB, a(q,IB), is given by:

o, IB)={TI|(Z%d)=q}.
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