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Abstract
We present a theoretical study of a nanowire made of a three-dimensional topological insulator.
The bulk topological insulator is described by a continuum-model Hamiltonian, and the
cylindrical-nanowire geometry is modelled by a hard-wall boundary condition. We provide the
secular equation for the eigenergies of the systems (both for bulk and surface states) and the
analytical form of the energy eigenfunctions. We describe how the surface states of the cylinder are
modified by finite-size effects. In particular, we provide a 1/R expansion for the energy of the
surface states up to second order. The knowledge of the analytical form for the wavefunctions
enables the computation of matrix elements of any single-particle operators. In particular, we
compute the matrix elements of the optical dipole operator, which describe optical absorption and
emission, treating intra- and inter-band transition on the same footing. Selection rules for optical
transitions require conservation of linear momentum parallel to the nanowire axis, and a change
of 0 or ±1 in the total-angular-momentum projection parallel to the nanowire axis. The
magnitude of the optical-transition matrix elements is strongly affected by the finite radius of the
nanowire.

1. Introduction

Three-dimensional (3D) topological insulators (TI)s were predicted in 2007 [1] as electronic systems
characterized by an insulating bulk and gapless conducting surface states (for a review, see references
[2–5]). The states at the interface between the system and the vacuum are topologically protected against
time-reversal invariant perturbations and consist, at low energy, of two-dimensional Dirac fermions [6–8].
Recent advances in nanofabrication techniques have enabled the realization of 3D-TI samples of reduced
dimensionality, for example in the form of nanowires [9–26]. 3D-TI nanowires proximised with an s-wave
superconductor have been proposed as a possible platform for the realization of Majorana bound
states [27, 28]. The availability of nanometer-scale samples is interesting also because it offers the
opportunity to investigate the competition between the inverted bulk gap and the size-quantisation energy
as well as the extent of the localization of surface states [29–38]. In reference [29], an approximate analytic
model supplemented by a numerical scheme based on exact diagonalisation was introduced to study the
quantum interference effects on the low-energy spectrum of Bi2Se3 nanowires.

In this paper we explore the properties of a finite-radius 3D-TI cylinder, using the envelope-function
description of the TI bulk band structure developed in references [39, 40]. Our goal is to determine the
dependence of its energy spectrum and eigenfuctions on the radius R. The central point of our analysis is
the analytical expression of the eigenfunctions, which allow us to express cylindrical hard-wall boundary
conditions in terms of secular equations that can be approximated in the limit of large radii: we obtain
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Table 1. Values for parameters in the effective continuum-model Hamiltonian describing bulk-electronic states of currently available
topological-insulator materials, from reference [41].

Bi2Se3 Bi2Te3 Sb2Te3

m0 (eV) −0.169 −0.296 −0.182
m1 (eV Å2) 3.353 9.258 22.136
m2 (eV Å2) 29.375 177.355 51.320
B (eV Å) 1.836 0.900 1.174
A (eV Å) 2.513 4.003 3.694

approximate expressions for the eigenenergies up to second order in 1/R. The analytical functional form of
the eigenfunctions, which is valid irrespective of the radius of the wire, enables the calculation of the matrix
elements of any observable. As an example, we consider the dipole matrix elements for optical transitions.
In particular, we find that the selection rules for absorption and emission are not modified by a finite
radius, in contrast to the case of a spherical nanoparticle [36]. Numerical results are presented for three
different materials, namely Bi2Se3, Bi2Te3, and Sb2Te3, which show qualitatively different behaviours. We
compute eigenenergies as functions of the radius R and longitudinal momentum and compare
them with approximate large-radius expressions. The eigenenergies are found to be oscillating for small
values of R, especially in the case of Bi2Te3. Moreover, we characterize the behaviour of eigenfunctions by
plotting the average radial coordinate and the corresponding variance as a function of the radius R. As
expected, the average coordinate moves towards the centre of the nanowire for small values of R, more
rapidly for Bi2Te3 than for Bi2Se3, while the variance increases in an oscillating fashion for increasing radii,
reaching the asymptotic value more rapidly in the case of Bi2Se3 with respect to Bi2Te3. Finally, we calculate
numerically the dependence of the optical dipole matrix elements on the radius finding quantitative
important changes with respect to the bulk situation.

The paper is organized as follows. In section 2, we present an analytic treatment for a cylindrical 3D-TI
nanowire with hard-wall confinement. We conclude section 2 with a complete analytic expression for the
eigenfunction of the finite-radius 3D-TI. In section 3, we study the finite size effects on the topological
properties of a cylindrical 3D-TI for two different materials. Specifically, we study the eigenenergies and
characterise the eigenfunctions of the system as a function of the radius of the cylinder. Finally, in
section 3.3, we calculate the optical dipole matrix elements of a cylindrical TI and study their dependence
on the the radius of the cylinder.

2. Model

We consider an infinitely long cylinder of TI of radius R, whose axis is in the z-direction. The bulk TI is
described by the Hamiltonian [39, 40]

H0 =

⎛
⎜⎜⎝

m (p) Bpz 0 Ap−
Bpz −m (p) Ap− 0

0 Ap+ m (p) −Bpz

Ap+ 0 −Bpz −m (p)

⎞
⎟⎟⎠ , (1)

where p = (px, py, pz) is the momentum operator, m (p) = m0 + m1p2
z + m2(p2

x + p2
y) is the mass term and

p± = px ± ipy. The effective Hamiltonian equation (1) is written in the basis of the four states closest to the
Fermi energy at the Γ point, {|P1+z ↑〉, |P2−z ↑〉, |P1+z ↓〉, |P2−z ↓〉}, where the label P1(2)z indicates that they
stem from atomic pz orbitals of the two different atoms in the material and the superscript ± refers to their
parity [39, 40]. When the sign of m0/m2 is negative, the material is in the topological insulating phase,
causing isolated boundaries to host surfaces states represented by gapless Dirac cones. The coefficients m0,
m1 and m2, as well as the coefficients A and B of the linear-momentum terms depend on the material [41].
The values of the parameters for the most common TIs are reported in table 1. As the system has
cylindrical symmetry, it is convenient to express H0 in cylindrical coordinates. Following Imura et al [42],
we write the Hamiltonian as a sum of two terms

H0 = H⊥ + H‖, (2)

where
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H⊥ =

⎛
⎜⎜⎝

m⊥ 0 0 −iAe−iϕ∂ρ
0 −m⊥ −iAe−iϕ∂ρ 0
0 −iAeiϕ∂ρ m⊥ 0

−iAeiϕ∂ρ 0 0 −m⊥

⎞
⎟⎟⎠ (3a)

H‖ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m‖ Bpz 0 −A

ρ
e−iϕ∂ϕ

Bpz −m‖ −A

ρ
e−iϕ∂ϕ 0

0
A

ρ
eiϕ∂ϕ m‖ −Bpz

A

ρ
eiϕ∂ϕ 0 −Bpz −m‖

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3b)

and with the mass terms given by the expressions

m⊥ = m0 + m2

(
−∂2

ρ −
1

ρ
∂ρ

)
(4)

m‖ = −m2
1

ρ2
∂2
ϕ + m1p2

z . (5)

The Hamiltonian H0 commutes both with pz and with the z-component of the total angular momentum
(Lz +

�

2 σz) ⊗ τ0, where τ 0 is the identity matrix in the orbital pseudo-spin subspace. In the following, to
avoid cluttering the notation, we set � = 1. The commutation relations of H0 discussed above suggest the
following Ansatz for the wave function:

Ψ(ρ,ϕ, z) =
eikzz

√
2π

⎛
⎜⎜⎜⎝
Φ1(ρ)ei( j− 1

2 )ϕ

Φ2(ρ)ei( j− 1
2 )ϕ

Φ3(ρ)ei( j+ 1
2 )ϕ

Φ4(ρ)ei( j+ 1
2 )ϕ

⎞
⎟⎟⎟⎠ , (6)

where kz is the eigenvalue of pz and j (half integer) the eigenvalue of the z component of the total angular
momentum. Solving the eigensystem requires applying the Hamiltonian equation (1) to the
wavefunciton in equation (6). The calculation is detailed in appendix A. In order to solve the radial part of
the eigensystem, we make further Ansatze for the Φi(ρ) and rewrite equation (6) as

Ψ(ρ,ϕ, z) =
eikzz

√
2π

⎛
⎜⎜⎜⎜⎝

c1Jj− 1
2
(κρ)ei( j− 1

2 )ϕ

c2Jj− 1
2
(κρ)ei( j− 1

2 )ϕ

c3Jj+ 1
2
(κρ)ei( j+ 1

2 )ϕ

c4Jj+ 1
2
(κρ)ei( j+ 1

2 )ϕ

⎞
⎟⎟⎟⎟⎠ , (7)

where Jn(z) is a Bessel function of the first kind and κ and the coefficients c1, . . . , c4 need to be determined.
In order for the Ansatz of equation (7) to be an eigenfunction of H0 with energy E, the parameter κ needs
to take one of the following two values

κ± =

[
−

(
m0

m2
+

A2

2m2
2

+
m1

m2
k2

z

)
±

√
A4

4m4
2

+
E2

m2
2

+
A2m0

m3
2

+

(
A2

m2
2

m1

m2
− B2

m2
2

)
k2

z

]1/2

. (8)

For the coefficients (c1, c2, c3, c4)T there are four independent solutions (two for κ+ and two for κ−) given
by (

iAκ±
Δ±

, 0,
Bkz

Δ±
, 1

)T

,

(
−Bkz

Δ±
, 1, − iAκ±

Δ±
, 0

)T

, (9)

where Δ± = m2κ
2
± + m1k2

z + m0 − E. The general solution for the wavefunction with quantum numbers
kz, j and E is a linear combination of the four independent solutions obtained above:

3
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Ψ(ρ,ϕ, z) =
eikzz

√
2π

∑
η=±

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
αη

⎛
⎜⎜⎜⎜⎜⎜⎝

iAκη

Δη
Jj− 1

2
(κηρ) ei( j− 1

2 )ϕ

0
Bkz

Δη
Jj+ 1

2
(κηρ) ei( j+ 1

2 )ϕ

Jj+ 1
2
(κηρ) ei( j+ 1

2 )ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

+ βη

⎛
⎜⎜⎜⎜⎜⎜⎝

−Bkz

Δη
Jj− 1

2
(κηρ) ei( j− 1

2 )ϕ

Jj− 1
2
(κηρ) ei( j− 1

2 )ϕ

− iAκη

Δη
Jj+ 1

2
(κηρ) ei( j+ 1

2 )ϕ

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (10)

We can now solve the confinement problem by assuming a hard-wall cylindrical confinement potential of
radius R. We need to impose the boundary condition Ψ(R,ϕ, z) = 0. This leads to as system of
equations for the coefficients αη and βη which has non-trivial solutions for energies obeying the secular
equation

Tj(κ+R)

Tj(κ−R)
+

Tj(κ−R)

Tj(κ+R)
=

κ+ Δ−
κ−Δ+

+
κ−Δ+

κ+ Δ−
+

B2

A2
k2

z

(Δ+ −Δ−)2

κ+κ−Δ+Δ−
, (11)

where we have defined the function Tj(z) =
Jj+1/2(z)

Jj−1/2(z) . A detailed derivation of the secular equation is

provided in appendix A. In the case kz = 0, the problem decouples in two 2 × 2 problems and we have two
independent secular equations

κ+Δ−
κ−Δ+

=
Tj(κ+R)

Tj(κ−R)
, (12a)

κ+Δ−
κ−Δ+

=
Tj(κ−R)

Tj(κ+R)
, (12b)

which are analogous to equation (28) of reference [36]. The kz = 0 energy eigenstates associated with
solutions of equation (12a) have βη = 0 and therefore their only nonvanishing spinor components are the
first and the fourth. Conversely, the eigenstates corresponding to solutions of equation (12b) have αη = 0
and therefore their only nonvanishing spinor components are the second and the third. Taking into
account the transformation properties of the basis states under spatial inversion, it is straightforward to
show that eigenstates associated with energy eigenvalues arising from the secular equation (12a) [(12b)] are
also parity eigenstates with eigenvalue (−1)j− 1

2 [(−1)j+ 1
2 ]. Even for finite kz, the spinors multiplied by αη

[βη] in the Ansatz (10) remain parity eigenstates with eigenvalue (−1)j− 1
2 [(−1)j+ 1

2 ]. However, as the
energy eigenstates for nonzero kz are superpositions of these opposite-parity spinors, they are not
eigenstates of parity.

Once we fix the quantum number j and kz and solve the secular equation (11) we obtain a series of
solutions both with positive and negative energies. Of these, we will only consider the two, one positive and
one negative, with the smallest absolute value of the energy. We will indicate the positive(negative)-energy
solution with s = +(−).6 Furthermore, we will restrict our analysis to energies that lie within the
bulk gap. The quantum numbers that we will use to label the states are s = ±, j, kz. The secular problem
yields the full knowledge of the eigenfunctions. In order to simplify the notation, in the following we
rewrite the eigenfunction equation (10) as

Ψs,j,kz (ρ,ϕ, z) =
eikzz

2π

⎛
⎜⎜⎜⎝
Φ1,s,j,kz (ρ)ei( j− 1

2 )ϕ

Φ2,s,j,kz (ρ)ei( j− 1
2 )ϕ

Φ3,s,j,kz (ρ)ei( j+ 1
2 )ϕ

Φ4,s,j,kz (ρ)ei( j+ 1
2 )ϕ

⎞
⎟⎟⎟⎠ , (13)

where the wavefunction obeys the normalisation condition
∑4

i=1

∫ R
0 dρρ

∣∣Φi,s,j,kz (ρ)
∣∣2
= 1.

3. Results

In order to understand the effect of a finite radius of the cylinder and how it affects the topologically
protected surface states, we start from the large-radius limit.

6 In principle, we could introduce another integer quantum number to label the different solutions as in the case of a particle in a box.
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3.1. Large-radius expansion

A natural length scale in this context is the effective Compton length R0 =
∣∣∣ A

m0

∣∣∣. In the following we

perform an expansion in R0/R and find corrections to the asymptotic (large R) results obtained by Imura
et al [42]. To this aim, we make use of Hankel’s asymptotic expansion for the Bessel function [43]

Jn(z) ≈
√

2

πz

[
P(n, z) cos

(
z − 1

2
nπ − 1

4
π

)
− Q(n, z) sin

(
z − 1

2
nπ − 1

4
π

)]
. (14)

The functions P(n, z) and Q(n, z) are power series of 1/z.

3.1.1. Zero axial momentum
We start by considering the case of zero axial momentum (kz = 0), with the goal to understand the
j-dependence of the surface states. We will consider only one of the two secular equations, namely
equation (12a) which can be recast as

κ+Δ−Jj− 1
2
(κ+R)Jj+ 1

2
(κ−R) − κ−Δ+Jj+ 1

2
(κ+R)Jj− 1

2
(κ−R) = 0. (15)

For realistic materials, see table 1, and small values of energies E 
 |m0|, κ± = k ± iq with q > 0. In the
large-radius limit qR � 1, we keep only the terms proportional to exp(qR) in equation (14). The secular
equation reduces to

κ+Δ−

[
P

(
j − 1

2
,κ+R

)
− iQ

(
j − 1

2
,κ+R

)][
P

(
j +

1

2
,κ−R

)
+ iQ

(
j +

1

2
,κ−R

)]
=

− κ−Δ+

[
P

(
j − 1

2
,κ−R

)
+ iQ

(
j − 1

2
,κ−R

)][
P

(
j +

1

2
,κ+R

)
− iQ

(
j +

1

2
,κ+R

)]
. (16)

Taking the zeroth order of the Hankel’s expansion (i.e. P(n, z) = 1 and Q(n, z) = 0), the secular equation
becomes

κ+Δ− + κ−Δ+ = 0. (17)

This equation has a zero-energy solution if m0/m2 < 0, i.e. when the system is in the topological phase.
Next, we consider the next two terms in the Hankel’s expansion, that is

P(n, z) = 1 − (4n2 − 1)(4n2 − 9)/(128z2) and Q(n, z) = (4n2 − 1)/(8z), and insert them into
equation (16). After some tedious but otherwise standard algebra, we obtain the eigenenergies up to
second-order in R0/R

E = A
j

R
− A2

2m0

j

R2
. (18)

The first term is in agreement with reference [42], the second term gives the first correction to the

asymptotic result. The other solution, with the opposite sign, E = −Aj/R + A2

2m0

j
R2 arises from solving

equation (12b). The values of κ± corresponding to the energies in equation (18) can be found by inserting
equation (18) in equation (8) and setting kz = 0.

3.1.2. Finite axial momentum
In this section we assume that kzR � 1. Proceeding in the same way as for case kz = 0, in zeroth-order in
R0/R the secular equation for the case of non-zero axial momentum reduces to

(κ+Δ− + κ−Δ+)2 +
B2

A2
k2

z (Δ+ −Δ−)2 = 0. (19)

This equation has the solutions

5
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Figure 1. Eigenenergies in units of ER = A/R for a cylinder of (a) Bi2Se3, (b) Bi2Te3 and (c) Sb2Te3 as a function of the radius R
for kz = 0. We only show the positive energies, i.e. s = +. Thick solid lines represent the numerical solution of equation (12),
whereas dashed lines represent the approximate large-radius result given in equation (18). The thin solid lines represent the
eigenenergy, E = Aj/R, obtained from first order expansion in R0/R. Due to finite-size effects, for small and decreasing values of

R the eigenenergies increase. For the model under consideration the bulk gap is given by min

[
|m0|,

√
− A2

m2

(
m0 +

1
4

A2

m2

)]
, if

the square root is real and by |m0| otherwise. For the materials considered here, the bulk gap is given by

√
− A2

m2

(
m0 +

1
4

A2

m2

)
and is indicated by a black solid line.

E = ±Bkz, (20)

which represents the linear dispersion of the surface modes.
Considering the Hankel’s expansion up to terms in 1/z2, that is

P(n, z) = 1 − (4n2 − 1)(4n2 − 9)/(128z2) and Q(n, z) = (4n2 − 1)/(8z), we obtain the eigenenergies up to
second order in R0/R

E = ±
(

Bkz +
1

2

A2j2

BkzR2

)
, (21)

which corresponds to the Taylor expansion in second order in 1/(kzR) of the result by Imura et al [42],
E = ±

√
B2k2

z + A2j2/R2. Notice that we are not allowed to take the kz → 0 limit, as this result has been
derived assuming kz � 1/R. The values of κ± corresponding to the energies in equation (21) can be found
by inserting equation (21) in equation (8).

3.2. Numerical results
In this section we present numerical results for three different materials, namely Bi2Se3, Bi2Te3, and Sb2Te3,
using the parameters of table 1. We use the following units for length and momentum, respectively,

R0 =

∣∣∣∣ A

m0

∣∣∣∣ and k0 =
∣∣∣m0

B

∣∣∣ ,

where R0 = 1.49 nm for Bi2Se3, 1.35 nm for Bi2Te3, and 2.03 nm for Sb2TE3.
Figure 1 shows how the eigenenergies in units of ER = A/R depend on the radius of the cylinder for the

three materials and for three different values of j. Here we show only the positive energies, that is s = +.
Solid curves refer to the exact result obtained by solving equation (12), while the dashed curves refer to the
large-radius analytic expression equation (18). We observe that the latter solutions approximate well the
numerical results when R � 6R0 for Bi2Se3 and Sb2Te3, and when R � 20R0 for Bi2Te3, respectively. For
Bi2Se3 and Sb2Te3 it is worthwhile noticing that at R = 6R0, especially for j = 3/2 and 5/2, the
normalized eigenenergies have not yet reached the asymptotic (R � R0) value (represented by the thin solid
lines, see equation (18)). On the other hand, when the radius of the cylinder is small, figure 1 shows an
oscillatory behaviour, especially in the case of Bi2Te3, that is more pronounced for smaller values of j,
similarly to a spherical nanoparticle [36]. For Bi2Te3, the effect of these oscillations are so large that, for
some values of the radius, the surface-state energy goes to zero. For these values of the radius the two states
s = ± become degenerate, the degeneracy is preserved by the fact that they have opposite parity. This
oscillatory behaviour is a consequence of the fact that the wavefunction is no longer localized on

6
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Figure 2. Eigenenergies divided by the asymptotic value ER,j,kz =
√

B2k2
z + A2j2/R2 as a function of wavevector kz for a cylinder

of (a) Bi2Se3, (b) Bi2Te3 and (c) Sb2Te3, for j = 1
2 and different values of radius. The eigenenergies are obtained using the secular

equation (11). In the case of Bi2Te3, for R = 6R0 the maximum value of kz that yields a solution for surface states corresponds to
kz = ±0.43k0 where E = 1.14ER,j,kz .

Figure 3. Average of the radial coordinate and the corresponding variance versus the radius of a cylinder of Bi2Se3 (left panels)
and Bi2Te3 (right panels) for kz = 0 and j = 1

2 (solid line) and j = 3
2 (dashed line).

the surface of the cylinder. We conclude that Bi2Te3 is the ideal candidate material to observe finite size
effects in TI nanowires. The oscillations are consistent with the results of reference [29] (see also appendix
B). The similarity between the results presented here and the corresponding results for a spherical
nanoparticle is not surprizing, as for kz = 0 the system is equivalent to a disk, i.e., the twodimensional
sphere, and the basic structure of the secular equation mirrors that for a sphere in three dimensions. In
particular, energy eigenstates are also parity eigenstates as for the spherical nanoparticle. This ceases to be
the case for kz 
= 0.

In figure 2 we show the positive eigenenergies, divided by the asymptotic value
ER,j,kz =

√
B2k2

z + A2j2/R2, as a function of wavevector kz. Finite-size effects appear in this plot as deviations
from unity of the normalized eigenenergies and are more pronounced form small values of kz.

Since we have the full knowledge of the eigenfunctions, we can calculate the expectation values of any
single-particle operator. The average of the radial coordinate in the state Ψs,j,kz is simply given by

〈ρ〉s,j,kz =

4∑
i=1

∫ R

0
dρ ρ2

∣∣Φi,s,j,kz (ρ)
∣∣2

, (22)

and its variance by

Dρs,j,kz =
√
〈ρ2〉s,j,kz

− 〈ρ〉2
s,j,kz

. (23)

Figure 3 (top panels) shows that the average of the radial coordinate, 〈ρ〉s,j,kz
, approaches R for large

values of the radius as expected for topologically-protected surface states. The average of the radial position
for both materials increases monotonically with the radius of the cylinder, showing weak oscillations only
for the case of Bi2Te3. As shown in figure 3 (bottom panels), the variance in itself approaches, in an
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oscillatory fashion, a constant value of the order of R0 for large values of radius (the variance varies very
little for R � 8R0 for Bi2Se3 and R � 24R0 for Bi2Te3). Since the value of R0 is similar for the two materials
(R0 = 1.5 nm for Bi2Se3 and R0 = 1.35 nm for Bi2Te3), we can conclude that in Bi2Se3 the asymptotic form
of the surface states is reached for smaller values of the radius compared to Bi2Te3.

3.3. Optical transitions in cylindrical topological insulators
In typical semiconductor nanostructures, optical transitions between size-quantized levels can be neatly
categorized as being either intra-band or inter-band transitions [44]. In the narrow-gap materials of interest
for our present work, however, these two types of transitions are not well-separated in energy and need to
be treated on the same footing. A versatile formalism for calculating all optical-transition matrix elements
in such systems using the envelope part of the confined-charge-carrier wave functions was developed in
reference [36]. Here we recall the basic features of this approach before applying it to the case of cylindrical
TI nanowires.

Optical transitions are mediated by matrix elements of the electric-dipole operator d, which can be
written as the sum of intra- and inter-band contributions [36, 44]

d = d(intra) + d(inter) . (24)

The intra-band part d(intra) ≡ er 𝟙 pertains to transitions between size-quantized states within the same
band, i.e., envelope wave functions multiplying the same basis state in k · p space. In contrast, the
inter-band part d(inter) accounts for optical transitions between different bands, i.e., different k · p basis
states, whose magnitude is renormalized by the overlap of associated envelope wave-function components.
Calculation of d(inter) within the envelope-function formalism is aided by a fundamental relationship
of the electric-dipole matrix elements between k · p basis states with coefficients of the linear-in-k terms
appearing in the multi-band envelope-function Hamiltonian H0. More specifically, writing H0 from
equation (1) as

H0 =
[
m0 + m1k2

z + m2(k2
x + k2

y)
]
τz ⊗ σ0 + Bkzτx ⊗ σz + Akxτx ⊗ σx + Akyτx ⊗ σy , (25)

where σi and τ i are Pauli matrices in spin and orbital-pseudo-spin space, respectively, we have [44]

〈τ ′σ′|er|τσ〉 = τ
ie

2m0

〈
τ ′σ′ ∣∣(∂H0/∂k

)
k=0

∣∣ τσ〉 . (26)

Here |τσ〉 represents the basis functions in the orbital and spin space of the Hamiltonian H0 defined in
equation (1), and τ is the eigenvalue of τ z associated with the eigenstate |τσ〉. Taking the derivative ∂H0/∂k
of H0 in equation (25) and setting k = 0, we find

d(inter) =
eB

2m0
τy ⊗ σz ẑ +

eA

2m0
τy ⊗ σy ŷ +

eA

2m0
τy ⊗ σx x̂ . (27)

Using the general formalism discussed in the previous paragraph, the optical-dipole matrix elements
between confined TI-nanowire states is obtained as

ds′ ,j′k′z
s,j,kz

=

∫
dz

∫ R

0
ρdρ

∫ 2π

0
dϕΨ†

s′,j′ ,k′z
(ρ,ϕ, z) d(ρ,ϕ, z)Ψs,j,kz (ρ,ϕ, z) . (28)

Here d(ρ,ϕ, z) ≡ e(ρ cosϕ x̂ + ρ sinϕ ŷ + z ẑ) 𝟙+ d(inter), with d(inter) given in equation (27). Using
equation (10) and performing the integrals over ϕ and z, we obtain

(dx + idy)s′,j′ ,k′z
s,j,kz

= δkz ,k′zδj′ ,j+1

[
e

4∑
i=1

(Rii)
s′ ,j+1,kz
s,j,kz

− ieA

m0

(
(S14)s′ ,j+1,kz

s,j,kz
− (S23)s′,j+1,kz

s,j,kz

)]
, (29)

8
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Figure 4. Overlap integrals entering the dipole matrix element relevant for absorption for circularly-polarised light as a function
of the radius of the cylinder of (a) Bi2Se3 and (b) Bi2Te3 for kz = kz

′ = 0. We observe that, |S41|+,−1/2,0
−,1/2,0 = |S23|+,1/2,0

−,−1/2,0 = 0 for all
values of R considered. For panel (a), the smallest value of radius considered is the one corresponding to E � |m0|. For panel (b),
instead, the smallest radius considered is the one for which the eigenenergy, given by the solution of equation (12a), passes
through zero (corresponding to the kink at R � 7R0 in figure 1).

and

(dx − idy)s′,j′ ,k′z
s,j,kz

= δkz ,k′zδj′ ,j−1

[
e

4∑
i=1

(Rii)
s′,j−1,kz
s,j,kz

− ieA

m0

(
(S32)s′ ,j−1,kz

s,j,kz
− (S41)s′ ,j−1,kz

s,j,kz

)]
, (30)

where we have defined the overlap integrals

(Smn)
s′j′ ,k′z
s,j,kz

=

∫ R

0
dρ ρΦ∗

m,s′,j′ ,k′z
(ρ)Φn,s,j,kz (ρ) (31)

and the matrix elements of radial position

(Rmn)
s′j′ ,k′z
s,j,kz

=

∫ R

0
dρ ρ2 Φ∗

m,s′,j′ ,k′z
(ρ)Φn,s,j,kz (ρ). (32)

For circular polarization in the plane perpendicular to the nanowire axis, we find the conventional selection
rule j′ = j ± 1, which is mandated by the conservation of total-angular-momentum projection (including
the photon’s) parallel to the nanowire axis. In addition, linear momentum kz parallel to the nanowire axis is
conserved in any optical transition. The energy threshold for absorption is associated with transitions
between (s′ = +, j = ±1/2, k′z = 0) and (s = −, j ∓ 1/2, kz = 0). At the subband edge (kz = 0 and k′z = 0)

for dx + idy only the overlap integral (S14)
+,1/2,0
−,−1/2,0 is non-vanishing for absorption, while for emission the

only non-vanishing overlap integral is (S23)
−,1/2,0
+,−1/2,0 . For the opposite polarization, namely dx − idy, the

non-vanishing overlap integrals at the band edge are: (S32)
+,−1/2,0
−,1/2,0 for absorption and (S41)

−,−1/2,0
+,1/2,0 for

emission, respectively. The overlap integrals relevant for the absorption threshold are shown in figure 4 as a
function of the radius of the wire. It needs to be noticed that also the matrix elements of the radial position

(Rmn)
s′ j′ ,k′z
s,j,kz

contribute both to absorption and emission. The sum of these matrix elements for the
case of absorption is shown in figure 5 as a function of the radius of the wire. The finite radius of the
nanowire does not affect the selection rules but leads to significant quantitative changes of the dipole matrix
elements.

Matrix elements of the optical-dipole component parallel to the nanowire axis are given by

(dz)s′j′ ,k′z
s,j,kz

=

{
e

4∑
i=1

(Sii)
s′,j,k′z
s,j,kz

∫
dz z

ei(kz−k′z)z

2π
+ δkz ,k′z

ieB

2m0

×
[

(S21)s′,j,kz
s,j,kz

− (S12)s′,j,kz
s,j,kz

+ (S34)s′,j,kz
s,j,kz

− (S43)s′,j,kz
s,j,kz

]}
δj′ ,j. (33)

9
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Figure 5. Dependence of
∑4

i=1 Rii on the radius of the cylinder of (a) Bi2Se3 and (b) Bi2Te3 for kz = kz
′ = 0.

Figure 6. Overlap integrals entering the dipole matrix element relevant for absorption for linearly-polarised (longitudinal) light
as a function of the radius of the cylinder of (a) Bi2Se3 and (b) Bi2Te3 for kz = kz

′ = 0.

The first term on the r.h.s. of equation (33) is ill-defined because the envelope functions are not localized in
their dependence on the z coordinate and, hence, the dipole approximation is not valid. However, the
remaining basis-function-mediated contributions describe valid optical transitions. For these,
both linear momentum kz and the total-angular-momentum projection j parallel to the nanowire
axis are the same for initial and final states involved in optical transitions. For states at the energy

threshold of absorption, we find that the only non vanishing overlap integrals are (S12)
+,±1/2,0
−,±1/2,0 and

(S43)
+,±1/2,0
−,±1/2,0 , while for emission the non vanishing overlap integrals are (S21)

−,±1/2,0
+,±1/2,0 and (S34)

−,±1/2,0
+,±1/2,0 . The

overlap integrals relevant for absorption are shown in figure 6. Again, the selection rules for optical
transitions are consistent with the basic symmetries associated with a cylindrical-nanowire geometry, and
finite-size effects are manifested as significant quantitative changes in the magnitude of dipole matrix
elements.

4. Conclusions

In this paper we have studied a nanowire made of TI. In particular, we have provided the analytical form of
the energy eigenfuctions, which is central to the derivation of an analytical secular equation for the
eigenenergies. This secular equation, on one hand, enables an analytical expansion for large radii and, on
the other hand, is amenable to straightforward numerical solution. We study the dependence of the
eigenenergies on the radius of the wire and we find oscillations as a function of the radius, which are very
pronounced for Bi2Te3. The analytical form of the energy eigenfuctions enables the computation of the
matrix elements of any single-particle operator. We have considered the optical dipole matrix elements.
While we find the usual selection rules for absorption/emission, the value of the matrix elements is strongly
dependent on the radius of the cylinder.

Our work can inform further detailed exploration of physical properties exhibited by TI nanowires. For
example, the implications of cylindrical symmetry on the topological magnetoelectric effect have previously
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been studied within the framework of macroscopic continuum-electromagnetic theory [45]. To gain insight
about the materials-size dependence of unconventional electromagnetic responses, the formalism of
reference [45] could be generalized to treat the magnetoelectric effect in TI nanowires by adopting
appropriate boundary conditions that reflect the surface-electromagnetic response [46]. Calculation of the
relevant parameters entering amended boundary conditions for the electromagnetic fields could be
facilitated by the explicit form of surface- and bound-state wave functions provided in our present work.
Recent studies [47, 48] have revealed interesting topological-electromagnetic responses of spherical
nanoparticles, and we expect a future investigation of the TI-nanowire electromagnetic response to be
equally fruitful.

Appendix A. Secular equation for confined states

In this appendix we provide the detailed derivation of the secular equation for the state of the TI cylinder.
Acting with the Hamiltonian (2) on the wave function equation (6) and looking for eigenfunctions with
energy E, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m⊥ + m−( j, kz) − E Bkz 0 −iA

[
∂ρ +

1

ρ

(
j +

1

2

)]

Bkz −
[
m⊥ + m−( j, kz) + E

]
−iA

[
∂ρ +

1

ρ

(
j +

1

2

)]
0

0 −iA

[
∂ρ −

1

ρ

(
j − 1

2

)]
m⊥ + m+( j, kz) − E −Bkz

−iA

[
∂ρ −

1

ρ

(
j − 1

2

)]
0 −Bkz −

[
m⊥ + m+( j, kz) + E

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
Φ1(ρ)
Φ2(ρ)
Φ3(ρ)
Φ4(ρ)

⎞
⎟⎟⎠ = 0,

(A.1)

where we have defined m±( j, kz) = m2
1
ρ2

(
j ± 1

2

)2
+ m1k2

z . To solve the eigensystem equation (A.1) we
make the Ansatz ⎛

⎜⎜⎝
Φ1(ρ)
Φ2(ρ)
Φ3(ρ)
Φ4(ρ)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c1Jj− 1
2
(κρ)

c2Jj− 1
2
(κρ)

c3Jj+ 1
2
(κρ)

c4Jj+ 1
2
(κρ)

⎞
⎟⎟⎟⎠ , (A.2)

where Jn(z) is a Bessel function of the first kind and κ and the coefficients c1, . . . , c4 need to be determined.
Substituting the Ansatz equation (A.2) in (A.1), we obtain the following equation for the coefficients

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(
κ2 +

m1

m2
k2

z +
m0 − E

m2

)
−Bkz

m2
0 i

Aκ

m2
Bkz

m2
−
(
κ2 +

m1

m2
k2

z +
m0 + E

m2

)
−i

Aκ

m2
0

0 −i
Aκ

m2
−
(
κ2 +

m1

m2
k2

z +
m0 − E

m2

)
Bkz

m2

i
Aκ

m2
0 −Bkz

m2
−
(
κ2 +

m1

m2
k2

z +
m0 + E

m2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ = 0.

(A.3)

Equation (A.3) has non-trivial solutions for

(
κ2 +

m1

m2
k2

z +
m0

m2

)2

+
A2

m2
2

κ2 +
B2

m2
2

k2
z −

E2

m2
2

= 0 (A.4)

which yields7

κ = κ± =

√√√√−
(

m0

m2
+

A2

2m2
2

+
m1

m2
k2

z

)
±

√
A4

4m4
2

+
E2

m2
2

+
A2m0

m3
2

+

(
A2

m2
2

m1

m2
− B2

m2
2

)
k2

z . (A.5)

There are four independent solutions for (c1, c2, c3, c4)T and are given by

7 The negative sign for the outer square root does not give a different solution and therefore should not be considered due to the
property of the Bessel’s functions: Jn(z) = (−1)nJn(−z) for integer n.

11



New J. Phys. 22 (2020) 063042 M Governale et al

Figure B1. Eigenenergies with j = 1
2 and s = + for a cylinder of Bi2Te3 as a function of radius for kz = 0. The solid red curve is

the exact numerical solution of equation (11) while the dashed black curves is obtained by means of the Hankel’s expansion at
first order in 1/z.

(
iAκ±
Δ±

, 0,
Bkz

Δ±
, 1

)T

, (A.6)

(
−Bkz

Δ±
, 1, − iAκ±

Δ±
, 0

)T

, (A.7)

where we have introduced the following abbreviation Δ± = m2κ
2
± + m1k2

z + m0 − E. The general solution
with quantum numbers kz, j and E can therefore be written as

Ψ(ρ,ϕ, z) =
eikzz

√
2π

∑
η=±

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
αη

⎛
⎜⎜⎜⎜⎜⎜⎝

iAκη

Δη
Jj− 1

2
(κηρ) ei( j− 1

2 )ϕ

0
Bkz

Δη
Jj+ 1

2
(κηρ) ei( j+ 1

2 )ϕ

Jj+ 1
2
(κηρ) ei( j+ 1

2 )ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

+ βη

⎛
⎜⎜⎜⎜⎜⎜⎝

−Bkz

Δη
Jj− 1

2
(κηρ) ei( j− 1

2 )ϕ

Jj− 1
2
(κηρ) ei( j− 1

2 )ϕ

− iAκη

Δη
Jj+ 1

2
(κηρ) ei( j+ 1

2 )ϕ

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (A.8)

Assuming a hard-wall cylindrical confinement potential of radius R, we need to impose the boundary
condition Ψ(R,ϕ, z) = 0 which leads to the following system of equations:

⎛
⎜⎜⎜⎜⎜⎜⎝

iAκ+

Δ+
Jj− 1

2
(κ+R) − Bkz

Δ+
Jj− 1

2
(κ+R)

iAκ−
Δ−

Jj− 1
2
(κ−R) −Bkz

Δ−
Jj− 1

2
(κ−R)

0 Jj− 1
2
(κ+R) 0 Jj− 1

2
(κ−R)

Bkz

Δ+
Jj+ 1

2
(κ+R) − iAκ+

Δ+
Jj+ 1

2
(κ+R)

Bkz

Δ−
Jj+ 1

2
(κ−R) − iAκ−

Δ−
Jj+ 1

2
(κ−R)

Jj+ 1
2
(κ+R) 0 Jj+ 1

2
(κ−R) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
α+

β+

α−
β−

⎞
⎟⎟⎠ = 0. (A.9)

We then obtain the secular equation

[
κ+Δ−Jj− 1

2
(κ−R)Jj+ 1

2
(κ+R) − κ−Δ+Jj− 1

2
(κ+R)Jj+ 1

2
(κ−R)

]
×

[
κ+Δ−Jj− 1

2
(κ+R)Jj+ 1

2
(κ−R) − κ−Δ+Jj− 1

2
(κ−R)Jj+ 1

2
(κ+R)

]

+
B2

A2
k2

z (Δ+ −Δ−)2Jj− 1
2
(κ−R)Jj− 1

2
(κ+R)Jj+ 1

2
(κ−R)Jj+ 1

2
(κ+R) = 0. (A.10)

Notice that the term in the third line of equation (A.10) vanishes for kz = 0. By simple algebraic
manipulations, equation (A.10) can be cast in the form of equation (11).

Appendix B. Small-radius limit

In section 3.2 we found interesting finite-size effects for small values of the radius R, such as the oscillatory
behaviour of the eigenenergies. In order to understand the origin of the oscillations in figure 1, here we use
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the Hankel’s asymptotic expansion (equation (14)), but without approximating the trigonometric
functions, and solve the secular equation at each given order. The plot of the eigenenergy as a function of R,
obtained by taking into account only the first order in 1/z [P(n, z) = 1 and Q(n, z) = (4n2 − 1)/(8z)], is
shown in figure B1 as a dashed black curve: it is found to agree remarkably well with the full numerical
results (solid red curve). The expansion up to second order in 1/z (not shown)
[P(n, z) = 1 − (4n2 − 1)(4n2 − 9)/(128z2) and Q(n, z) = (4n2 − 1)/(8z)] is practically indistinguishable
from the full numerical results.
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Ulrich Zülicke https://orcid.org/0000-0001-5055-3330

References

[1] Fu L, Kane C L and Mele E J 2007 Topological insulators in three dimensions Phys. Rev. Lett. 98 106803
[2] Hasan M Z and Kane C L 2010 Colloquium: topological insulators Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057
[4] Hasan M Z and Moore J E 2011 Three-dimensional topological insulators Annu. Rev. Condens. Matter Phys. 2 55
[5] Ando Y 2013 Topological insulator materials J. Phys. Soc. Japan 82 102001
[6] Lee D H 2009 Surface states of topological insulators: the Dirac fermion in curved two-dimensional spaces Phys. Rev. Lett. 103

196804
[7] Parente V, Lucignano P, Vitale P, Tagliacozzo A and Guinea F 2011 Spin connection and boundary states in a topological

insulator Phys. Rev. B 83 075424
[8] Imura K I, Yoshimura Y, Takane Y and Fukui T 2012 Spherical topological insulator Phys. Rev. B 86 235119
[9] Cho S, Dellabetta B, Zhong R, Schneeloch J, Liu T, Gu G, Gilbert M J and Mason N 2015 Aharonov-Bohm oscillations in a

quasi-ballistic three-dimensional topological insulator nanowire Nat. Commun. 6 7634
[10] Kim M, Kim J, Hou Y, Yu D, Doh Y J, Kim B, Kim K W and Suh J 2019 Nanomechanical characterization of quantum

interference in a topological insulator nanowire Nat. Commun. 10 4522
[11] Münning F, Breunig O, Legg H F, Roitsch S, Fan D, Rößler M, Rosch A and Ando Y 2019 Quantum confinement of the Dirac

surface states in topological-insulator nanowires (arXiv:1910.07863)
[12] Tian M et al 2013 Dual evidence of surface dirac states in thin cylindrical topological insulator Bi2Te3 nanowires Sci. Rep. 3 1212
[13] Hamdou B, Gooth J, Dorn A, Pippel E and Nielsch K 2013 Surface state dominated transport in topological insulator Bi2Te3

nanowires Appl. Phys. Lett. 103 193107
[14] Safdar M et al 2013 Topological surface transport properties of single-crystalline SnTe nanowire Nano Lett. 13 5344
[15] Bäßler S et al 2015 One-dimensional edge transport on the surface of cylindrical BixTe3 − ySey nanowires in transverse magnetic

fields Appl. Phys. Lett. 107 181602
[16] Arango Y C et al 2016 Quantum transport and nano angle-resolved photoemission spectroscopy on the topological surface states

of single Sb2Te3 nanowires Sci. Rep. 6 29493
[17] Ziegler J et al 2018 Probing spin helical surface states in topological HgTe nanowires Phys. Rev. B 97 035157
[18] Bhattacharyya B, Sharma A, Awana V P S, Senguttuvan T D and Husale S 2017 FIB synthesis of Bi2Se3 1D nanowires

demonstrating the co-existence of Shubnikov-de Haas oscillations and linear magnetoresistance J. Phys.: Condens. Matter 29
07LT01

[19] Peng H et al 2009 AharonovBohm interference in topological insulator nanoribbons Nat. Mater. 9 225
[20] Xiu F et al 2011 Manipulating surface states in topological insulator nanoribbons Nat. Nanotechnol. 6 216
[21] Hong S S, Cha J J, Kong D and Cui Y 2012 Ultra-low carrier concentration and surface-dominant transport in antimony-doped

Bi2Se3 topological insulator nanoribbons Nat. Commun. 3 757
[22] Wang Z, Qiu R L J, Lee C H, Zhang Z and Gao X P A 2013 Ambipolar surface conduction in ternary topological insulator

Bi2(Te1−xSex)3 nanoribbons ACS Nano 7 2126
[23] Jauregui L A, Pettes M T, Rokhinson L P, Shi L and Chen Y P 2015 Gate tunable relativistic mass and Berry′s phase in topological

insulator nanoribbon field effect devices Sci. Rep. 5 8452
[24] Dufouleur J et al 2017 Weakly-coupled quasi-1d helical modes in disordered 3d topological insulator quantum wires Sci. Rep. 7

45276
[25] Kunakova G et al 2018 Bulk-free topological insulator Bi2Se3 nanoribbons with magnetotransport signatures of Dirac surface

states Nanoscale 10 19595
[26] Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 One-dimensional helical transport in topological insulator nanowire

interferometers Nano Lett. 14 2815
[27] de Juan F, Ilan R and Bardarson J H 2014 Robust transport signatures of topological superconductivity in topological insulator

nanowires Phys. Rev. Lett. 113 107003
[28] Cook A and Franz M 2011 Majorana fermions in a topological-insulator nanowire proximity-coupled to an s-wave

superconductor Phys. Rev. B 84 201105
[29] Iorio P, Perroni C A and Cataudella V 2016 Quantum interference effects in Bi2Se3 topological insulator nanowires with variable

cross-section lengths Eur. Phys. J. B 89 97
[30] Hong S S, Kong D and Cui Y 2014 Topological insulator nano-structures MRS Bull. 39 873
[31] Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Finite size effects on helical edge states in a quantum spin-Hall system Phys.

Rev. Lett. 101 246807

13

https://orcid.org/0000-0001-7947-2155
https://orcid.org/0000-0001-7947-2155
https://orcid.org/0000-0002-2482-6750
https://orcid.org/0000-0002-2482-6750
https://orcid.org/0000-0002-8834-0493
https://orcid.org/0000-0002-8834-0493
https://orcid.org/0000-0001-5055-3330
https://orcid.org/0000-0001-5055-3330
https://doi.org/10.1103/physrevlett.98.106803
https://doi.org/10.1103/physrevlett.98.106803
https://doi.org/10.1103/revmodphys.82.3045
https://doi.org/10.1103/revmodphys.82.3045
https://doi.org/10.1103/revmodphys.83.1057
https://doi.org/10.1103/revmodphys.83.1057
https://doi.org/10.1146/annurev-conmatphys-062910-140432
https://doi.org/10.1146/annurev-conmatphys-062910-140432
https://doi.org/10.7566/jpsj.82.102001
https://doi.org/10.7566/jpsj.82.102001
https://doi.org/10.1103/physrevlett.103.196804
https://doi.org/10.1103/physrevlett.103.196804
https://doi.org/10.1103/physrevb.83.075424
https://doi.org/10.1103/physrevb.83.075424
https://doi.org/10.1103/physrevb.86.235119
https://doi.org/10.1103/physrevb.86.235119
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1038/s41467-019-12560-4
https://doi.org/10.1038/s41467-019-12560-4
https://arxiv.org/abs/1910.07863
https://doi.org/10.1038/srep01212
https://doi.org/10.1038/srep01212
https://doi.org/10.1063/1.4829748
https://doi.org/10.1063/1.4829748
https://doi.org/10.1021/nl402841x
https://doi.org/10.1021/nl402841x
https://doi.org/10.1063/1.4935244
https://doi.org/10.1063/1.4935244
https://doi.org/10.1038/srep29493
https://doi.org/10.1038/srep29493
https://doi.org/10.1103/physrevb.97.035157
https://doi.org/10.1103/physrevb.97.035157
https://doi.org/10.1088/1361-648x/29/7/07lt01
https://doi.org/10.1088/1361-648x/29/7/07lt01
https://doi.org/10.1038/nmat2609
https://doi.org/10.1038/nmat2609
https://doi.org/10.1038/nnano.2011.19
https://doi.org/10.1038/nnano.2011.19
https://doi.org/10.1038/ncomms1771
https://doi.org/10.1038/ncomms1771
https://doi.org/10.1021/nn304684b
https://doi.org/10.1021/nn304684b
https://doi.org/10.1038/srep08452
https://doi.org/10.1038/srep08452
https://doi.org/10.1038/srep45276
https://doi.org/10.1038/srep45276
https://doi.org/10.1039/c8nr05500a
https://doi.org/10.1039/c8nr05500a
https://doi.org/10.1021/nl500822g
https://doi.org/10.1021/nl500822g
https://doi.org/10.1103/physrevlett.113.107003
https://doi.org/10.1103/physrevlett.113.107003
https://doi.org/10.1103/physrevb.84.201105
https://doi.org/10.1103/physrevb.84.201105
https://doi.org/10.1140/epjb/e2016-70041-7
https://doi.org/10.1140/epjb/e2016-70041-7
https://doi.org/10.1557/mrs.2014.196
https://doi.org/10.1557/mrs.2014.196
https://doi.org/10.1103/physrevlett.101.246807
https://doi.org/10.1103/physrevlett.101.246807


New J. Phys. 22 (2020) 063042 M Governale et al

[32] Linder J, Yokoyama T and Sudbø A 2009 Anomalous finite size effects on surface states in the topological insulator Bi2Se3 Phys.
Rev. B 80 205401

[33] Liu C X, Zhang H, Yan B, Qi X L, Frauenheim T, Dai X, Fang Z and Zhang S C 2010 Oscillatory crossover from two-dimensional
to three-dimensional topological insulators Phys. Rev. B 81 041307

[34] Imura K I, Okamoto M, Yoshimura Y, Takane Y and Ohtsuki T 2012 Finite-size energy gap in weak and strong topological
insulators Phys. Rev. B 86 245436

[35] Kotulla M and Zülicke U 2017 Manipulating topological-insulator properties using quantum confinement New J. Phys. 19 073025
[36] Gioia L, Christie M G, Zülicke U, Governale M and Sneyd A J 2019 Spherical topological insulator nanoparticles: quantum size

effects and optical transitions Phys. Rev. B 100 205417
[37] Zhang Y and Vishwanath A 2010 Anomalous aharonov-bohm conductance oscillations from topological insulator surface states

Phys. Rev. Lett. 105 206601
[38] Bardarson J H, Brouwer P W and Moore J E 2010 Aharonov-bohm oscillations in disordered topological insulator nanowires

Phys. Rev. Lett. 105 156803
[39] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single

Dirac cone on the surface Nat. Phys. 82 438
[40] Liu C X, Qi X L, Zhang H, Dai X, Fang Z and Zhang S C 2010 Model Hamiltonian for topological insulators Phys. Rev. B 82

045122
[41] Nechaev I A and Krasovskii E E 2016 Relativistic k · p Hamiltonians for centrosymmetric topological insulators from ab initio

wave functions Phys. Rev. B 94 201410
[42] Imura K I, Takane Y and Tanaka A 2011 Spin Berry phase in anisotropic topological insulators Phys. Rev. B 84 195406
[43] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (New York: Dover)
[44] Haug H and Koch S W 2009 Quantum Theory of the Optical and Electronic Properties of Semiconductors 5th edn (Singapore: World

Scientific)
[45] Martín-Ruiz A 2019 Magnetoelectric effect in cylindrical topological insulators Phys. Rev. D 98 056012
[46] Yang Y et al 2019 A general theoretical and experimental framework for nanoscale electromagnetism Nature 576 248
[47] Siroki G, Lee D K K, Haynes P D and Giannini V 2016 Single-electron induced surface plasmons on a topological nanoparticle

Nat. Commun. 7 12375
[48] Zirnstein H-G and Rosenow B 2017 Time-reversal-symmetric topological magnetoelectric effect in three-dimensional topological

insulators Phys. Rev. B 96 201112(R)

14

https://doi.org/10.1103/physrevb.80.205401
https://doi.org/10.1103/physrevb.80.205401
https://doi.org/10.1103/physrevb.81.041307
https://doi.org/10.1103/physrevb.81.041307
https://doi.org/10.1103/physrevb.86.245436
https://doi.org/10.1103/physrevb.86.245436
https://doi.org/10.1088/1367-2630/aa7913
https://doi.org/10.1088/1367-2630/aa7913
https://doi.org/10.1103/physrevb.100.205417
https://doi.org/10.1103/physrevb.100.205417
https://doi.org/10.1103/physrevlett.105.206601
https://doi.org/10.1103/physrevlett.105.206601
https://doi.org/10.1103/physrevlett.105.156803
https://doi.org/10.1103/physrevlett.105.156803
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1103/physrevb.82.045122
https://doi.org/10.1103/physrevb.82.045122
https://doi.org/10.1103/physrevb.94.201410
https://doi.org/10.1103/physrevb.94.201410
https://doi.org/10.1103/physrevb.84.195406
https://doi.org/10.1103/physrevb.84.195406
https://doi.org/10.1103/physrevd.98.056012
https://doi.org/10.1103/physrevd.98.056012
https://doi.org/10.1038/s41586-019-1803-1
https://doi.org/10.1038/s41586-019-1803-1
https://doi.org/10.1038/ncomms12375
https://doi.org/10.1038/ncomms12375
https://doi.org/10.1103/physrevb.96.201112
https://doi.org/10.1103/physrevb.96.201112

	Finite-size effects in cylindrical topological insulators
	1.  Introduction
	2.  Model
	3.  Results
	3.1.  Large-radius expansion
	3.1.1.  Zero axial momentum
	3.1.2.  Finite axial momentum

	3.2.  Numerical results
	3.3.  Optical transitions in cylindrical topological insulators

	4.  Conclusions
	Appendix A.  Secular equation for confined states
	Appendix B.  Small-radius limit
	ORCID iDs
	References


