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With today's technology, elderly can be supported in living independently in their own homes for a prolonged

period of time. Monitoring and analyzing their behavior in order to find possible unusual situation helps

to provide the elderly with health warnings and convince them towards positive changes in their behavior

with persuasive suggestions at the proper time. Current studies are focusing on the elderly daily activity and

the detection of anomalous behaviors aiming to provide the older people with remote support. To this aim,

we propose a real-time solution which models the user daily behavior using a task model specification, and

a context manager to detect relevant contextual events occurred in their life. In addition, by a systematic

validation through a system that automatically generates wrong sequences of events, we show that our

algorithm is able to find behavioral deviations from the expected behavior at different times by considering

the extended classification of the possible deviations. Moreover, it should enable suitable actions addressing

the identified anomaly which can contribute to improving the elderly well-being.
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1 INTRODUCTION
The increase of the average age of the European citizens is a current matter of concern as in the next

future there will be the need of providing adequate and sustainable support to an increasing number

of people who are more subject to suffer from health diseases. Today, remote care applications

are available to support remote assistance and help elderly by continuously providing relevant

information to the relatives, the caregivers and also elderly themselves. In many cases, older

people prefer to have an independent life in their own homes [29], however, support is needed to

continue their everyday living routines. Current technologies offer plenty of interactive devices,

smart objects, and sensors to detect a wide range of environmental and user-related parameters.

However, it is challenging to extract relevant knowledge in real-time from information provided

by sensors and devices. In Ambient Assisted Living (AAL) scenarios, monitoring such parameters

will be useful to build knowledge about the context around the elderly and detect anomalies and

significant changes in their behavior, with the assumption that these anomalies may signal health

related problems. Moreover, increasing the elderly autonomy and assisting them in carrying out
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their activities of daily living (i.e. activities that constitute daily routines, such as walking, eating,

bathing, dressing, cooking, etc.) create the possibility to extend the time older people can live in

their home environment. Nowadays there are several contributions focusing on the elderly because

of the numerous health care needs, and to address the behavior deviations and their consequences.

However, solutions for detecting “unusual” behavior in the user daily living activities based on the

user's plan are missing [9, 17], as well as tools for analyzing such data and acting consequently when

certain conditions are met. Meanwhile, mostly these solutions need training data or are narrowed

by an offline method [18] for the anomaly detection. It is fundamental that data analysis, both for

short-term (alerts generation) and long-term (behavioral analysis) purposes, can be performed

taking into account the specificities of the context where the system is used in order to fit the

particular needs, requirements and routines/tasks of the considered user. In the same way, the

approach to behavior analysis and finding the unusual behaviors should consider that different

people may have different habits (e.g., the time they get up or go to sleep, the number and time

of meals between various users, their special medical care they need, etc.). In addition, the user

monitoring can be beneficial at various levels: in the short-time it allows raising alarms as soon

as the elderly behaves unexpectedly, such as when they open the entrance door in the middle of

the night; the long-time monitoring is instead aimed to make assessments on relevant deviations

from the expected pattern, such as changes in level of physical activity. To address the challenge of

keeping older people healthy, fulfilled and independent in their home for as long as possible, we

propose a solution to identify anomalies using task model specifications for modeling the “normal”

behavior and a Context Manager to detect relevant contextual events occurred in daily life. Later,

based on the anomaly type, the method chooses the best way to persuade the elderly to change their

anomalous behavior. Consequently, it is possible to promptly act upon any specific detection in a

personalized manner in order to provide relevant information. Analyzing and understanding the

unusual behavior in the user behavior, not only helps elderly to receive all the relevant warnings but

is also highly informative for the caregivers and can be even life-saving in particular situations. On

the other hand, applying persuasive techniques increases the chance of acceptance of the proposed

interventions by older adults.

We build our work on previous studies [18] but we propose a new algorithm able to address

a wider set of cases. While, previous work only considered anomalies offline at the end of each

day (i.e., when a complete event sequence is available) and a limited set of anomalies (namely

“Less”, “More”, “Difference”). In this paper, we propose a novel algorithm that detects anomalies

at real-time (i.e., it operates also on partial, incomplete sequences), and provides a more detailed

information about the anomalies detected. The novel algorithm can be exploited into an existing

framework for elderly monitoring, which in particular, comprises a Context Manager and a CTT

Task model simulator. In order to connect the new algorithm to the framework, we also considered

task-related aspects/attributes (e.g., task time and duration, task criticality level, etc.). Each time

a new observation is produced by a sensor, the Context Manager identifies one (or even more)

corresponding events; in turn, these events immediately feed the Anomaly Detection Algorithm.

Due to its ability to operate in real-time, the new algorithm ensures that the anomaly is identified

as soon as the event which triggers a deviation, is detected. This document is structured as follows:

after the Introduction (Section 1), Section 2 is dedicated to the related work; Section 3, describes

our proposed method and the architecture of the framework; In sections 4 and 5, we present our

contributions on checking the possible deviations in the elderly's actual behavior derived from

monitored data; Lastly some conclusions and indications for future work are provided in section 6.
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2 RELATEDWORK
Remote health monitoring is an emerging discipline with strong potential to help the elderly in

their daily life [7]. By monitoring the status of the person (e.g., heart rate, physical activity, location)

via physiological sensors, movement detector, videos, and etc. [27], it is possible to recognize any

change in activity as a deviation from their daily life routine and encourage the elderly toward

healthy behavior. For healthcare professionals, it is significant to determine the accurate status of the

health of a remotely located patient or an aged person, so that, when there is a deviation, appropriate

treatment is vetted in a timely manner. Addressing the anomalies in the user behavior includes

model the "normal" user behavior based on their daily life routines, recognize the occupancy’s

behavior in the context and subsequently detect changes from the usual behavior (profiling strategy

in [4]). The two leading general taxonomies for classifying, and modeling human behavior are

Generic Error Modeling System (GEMS) [28] and phenotypes of erroneous action [13]. GEMS

categorized the possible human behavior mistakes in 3 types: rule-based, knowledge-based and

slip based mistakes. If the user is aware of the problem, we can bring in the play the rule-based

and knowledge-based performance but, if the user has the knowledge about how to perform the

activities, slips are supposed to occur, and such analysis can be supported by a “task model”.

Indeed, Task analytic methods can be used to describe normative human behavior [15]. Such

models (e.g., GOMS [12], AMBOSS [11] , EOFM [6], HAMSTERS [20], ConcurTaskTrees [26]) can

show the mental and physical activities which users perform to reach their goals. These models are

often hierarchical: activities decompose into other activities and, at the lowest level, atomic actions.

Task models have also proven to be of great help for designing and assessing the training program

[19], generation of scenarios to be tested over the applications [8], identify possible usability issues

[25], find and correct human factors issues in automated systems and generate erroneous human

behavior that is a factor in the failure of complex, safety-critical systems [5]. Recent works present

approaches and solutions to detect the anomalous behavior of the user by modeling the user

behavior. Monekosso and Remagnino [23], described a model-based behavior analysis system for

assisted living in which the behavior is defined as any pattern in a sequence of observations and the

models are generated from sensed data. A model-based approach is employed for the detection of

deviation from the expected behavior: given a model of the system, the predicted output generated

by the model is compared to the actual output, and any difference is a potential failure. While

in our research, the identified activities (i.e. cooking, eating, etc.) corresponding to the events

gathered by sensors are contributed by the caregivers and thus susceptible to errors. Meanwhile, to

precisely indicate the nature of the detected anomalies, they used a further examination of a domain

expert, unlike, in our work the anomaly detection algorithm detects the anomalous event along

with its anomaly classification. There are different methods to find the anomaly based on the user

behavior model. In Yi et al., they used Markovian Task Model that aims to model the relationship

and dependencies between several separate actions that build a complex activity. In their work,

they evaluate their approach for human task recognition by performing peanut butter and jelly

sandwich experiment. In this experiment, Yi and Ballard track the eye movement to discover the

object on which the eye is fixated and from that to infer the performed subtask [30]. Jakkula et al.,

[14] describe a method to determine if anomalies can be effectively detected in smart home data

using temporal data mining. They refine Allen's temporal predicates [1, 2] to specify relationships

between time intervals for use in analyzing smart environment data, and apply it to the task of

anomaly detection. They believe anomaly detection is most accurate when it is based on behaviors

that are frequent and predictable. While they use machine learning to recognize frequent patterns,

in our work we exploit task models specified with the help of relevant stakeholders in order to

describe the expected behavior because it is not guaranteed that frequent user patterns represent
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Fig. 1. The task model of the example.

the correct behavior of elder people. Aran et al., [3] proposed a method to detect the anomalies

in elderly daily behavior by monitoring the location and the outing of the user. By defining an

abstract layer they create a common ground for different sensor configuration. Their approach

uses cross-entropy to measure the accuracy of the predicted behavioral changes. basically, by using

k-mean clustering they discover the common behavior pattern and by comparing the sequence

of event gathered through the sensors to the user's past behavior they define the anomalies. For

the evaluation of their proposed method, they used one user written diary as ground truth and

compared it with the sequences of events estimated by the abstraction layer. However, they did not

investigate the anomaly type, while, in our work, we indicate different types of anomalies at the

time of detection. Meng et al., [21] by using the activation status of the sensor and by applying the

probabilistic model on the two-layer hierarchy with daily activities modeled the detailed activity of

the user and send it to the dynamic daily habit modeling and also to the anomaly detection module.

If the similarity between the detected activity and the most similar period in the hierarchy does not

reach a specific threshold, the detected activity will be defined as an anomaly and an alarm could

be sent to the user. To evaluate the performance of their proposed method, they used two public

datasets of fall detection and the Opportunity activity recognition. Although, they are not able yet

to precisely detect the complex activities which trigger the activation of the same set of sensors and,

as in Aran et al., work [3], they do not distinguish between the different degree of anomalies. More

recently, researchers have suggested Machine Learning approaches that most of them require all

the data to have accumulated before anomalies can be identified which by modeling the expected

user behavior using the task model, we have beaten this problem. Although, obstacles to achieving

anomaly detection in real-time include the large volume of data associated with user behavior and

the nature of that data [16]. Using our method, we overcome this obstacle by subscribing to the

Context Manager in order to be notified when the events related to the user daily activity occur in

the context. This way, we just receive the relevant events from the Context Manager.

3 PROPOSED METHOD
The framework for elderly monitoring is based on a task model that describes the planned activities

from the user viewpoint (waking up, having breakfast, taking medicine, etc.). However, this task

model should be created with the collaboration of someone who has an intimate knowledge of the

elderly needs (e.g., caregiver, family member or even the elderly themselves). In particular, the task

model includes the elementary tasks (i.e., the leaves in the task model tree, which describe the basic

activities) that can be associated to one or more events gathered in the context. For highlighting

the importance of our task-related anomalies classification, we bring here an example scenario that

is written as a short story (by the help of the professional psychologist working at the Sunnaas
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Rehabilitation Hospital in Norway) portraying the usual expected morning routine of an elderly.

The task model of this scenario is shown in Fig. 1. Sarah is 74 years old, widow and is living alone

in her home without any assistance. Her morning routine starts with waking up, washing and

getting dressed sometime between 7 and 8 AM. She takes a Red pill with the empty stomach. About

half an hour later she prepares and eats breakfast between 8:30- 9:00 (which decomposed several

activities such as: using refrigerator, gas, microwave, sink, etc.). After having her breakfast, she

takes the Blue pill (which requires having a full stomach). Then, she goes for her daily walk and

comes back home before 11:00 and then takes a nap till 11:30.

From this scenario, it is possible to derive different scenarios which Sarah can perform her tasks

in a different manner from the expected one. In particular, since the activities can be described

concerning a set of task attributes (e.g., temporal relationships, location, time), it is possible to

identify a number of corresponding types of task-related anomalies affecting elderly people like

i) unusually frequent activities (e.g., too many visits to the toilet); ii) violations of task order

relationship (taking medicine before having a meal); iii) missing task (the user forgot to turn off the

gas). Based on this model, the framework operates in three steps. In the first step, it logs the events

occurring in the context where the elderly actually live, and it associates them with timestamps

needed for further analysis. As we will see in the next section describing the architecture of

the system, there is a Deviation Analysis module, which subscribes to the Context Manager to

receive such events. The events considered by the Deviation Analysis module will not be all the

possible events that could be gathered in the current context, but only the ones which are related

to the elementary tasks contained in the task model. In the second step, the framework detects

the anomalies in user behavior (by using an Anomaly Detection Algorithm), by comparing the

expected user behavior (specified in the task model) with the actual user behavior. Several types of

deviations can be identified as a result of this comparison (i.e., Less, More, Difference which will

be more specifically described in the section 4). Thereby, for the purpose of improving the ability

of the framework to detect anomalies, we propose in this paper the novel Anomaly Detection

Algorithm. In the third step, the framework uses the deviation detected, the criticality of the task

with anomaly and the context of the user to undertake the best intervention action to motivate the

users to improve their behavior towards a better lifestyle.

3.1 Preview of the Architecture
Fig. 2 shows the architecture of the framework that we have designed to support the proposed

method. Its behavior can be described according to two main phases: one is devoted to configuring

the analysis and modeling the user behavior. This phase consists of building/selecting the task

model and passing it to the association tool which is a configuration component used to create an

association file. The association file is created to store the mappings between the elementary tasks

and the events in the context model. The other phase executes the real-time analysis of the incoming

events and implements the consequent actions. This phase is centered on the Behavior Analysis

module and composed of four sub-modules: Task Model Simulator, Deviation Analysis, Persuasion

Module, and the Action Generator. The Deviation Analysis subscribes to the Context Manager in

order to be notified each time that an event (related to user daily activity and specified through the

association tool) occurs in the context. Also, the Task Model Simulator by referring to the temporal

relationships between tasks in task model provides the Deviation Analysis with all the tasks that

are logically enabled at any time. So, each time the Deviation Analysis receives an event from

Context Manager, it checks out whether the tasks corresponding to the current event happening

in the context are logically enabled according to the Task Model Simulator. If not, the Anomaly

Detection Algorithm in Deviation Analysis detects the deviation and determines to which category

it belongs (this process is repeated for each new event). Consequently, the Deviation Analysis sends
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Fig. 2. The Architecture of the Solution.

the deviation (i.e., the triggered event with its degree of an anomaly) to the Persuasion Module.

In turn, the Persuasion Module selects the appropriate motivation actions and passes them to the

Action Generation module that delivers the appropriate suggestions/indications to the user.

3.2 Task model
The Task Models considered in this approach are stated according to the ConcurTaskTrees (CTT)

language [24]and are defined in terms of a hierarchical composition of tasks connected by various

temporal operators that describe the temporal relationships among tasks (i.e., enabling (>>), dis-

abling ((︀>), interruption (⋃︀ >), choice ((︀ ⌋︀), iteration ((︀
∗
t ⌋︀), concurrency (⋃︀⋃︀⋃︀) , optionality ((︀t⌋︀) and order

independency (⋃︀ = ⋃︀)). We consider a task model as composed of n tasks such as: Γ = {t1, t2, ..., tn }
which define the expected user behavior. A task t is an activity that should be performed in order to

reach a goal and can range from a very high abstraction level (such as deciding a way to prepare a

food) to a concrete, action-oriented level (such as "open the fridge door") which we named the latter

elementary tasks (i.e., the leaves in the task model tree). In our method, a task can be represented

formally by a 6-tuple, t = <N , ι,θ , ξ ,τs ,τf >, where: N is a task name, ι is a number, defines the

maximum number of iteration of the task (which is set by the caretaker or family member of the

elderly), θ is a boolean show the task optionality, ξ defines the criticality level of the task consists

of {low, medium, high} and [τs , τf ] indicate the time interval in which the task may occur. Given a

set of tasks in a task model, the elementary tasks represent events that may occur in many different

orders according to the temporal operation between them.

Let Σ be the set of all possible sequence of elementary tasks permissible by the CTT task model.

Given an E ∈ Σ, E =< t1, ..., tm > where ∀ i ∈ (︀1,m⌋︀, ti ⧹︂= tj for some j ∈ (︀1,n⌋︀. And, let P be a

sequence of events received from the user context as P = <ε1, ..., εh> where ∀ k ∈ (︀1,h⌋︀, εk ⧹︂= ti
for some i ∈ (︀1,m⌋︀, which means each ε in received sequence p corresponds to an elementary task

in the task model which in turn corresponds to one or multiple data logged from the real context.

Thus, from now on, when we use the ε , it means the event(s) which correspond to a task in the
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Fig. 3. The association tool

task model and they have the same name. Meanwhile, we used binary symbol (○) to combine two

strings. For example, if P =< A,B > and p′ =< C,D > , P ○ P ′ =< A,B,C,D >.

Definition 3.1. In the task model we can define S and F as finite, non-empty Arrays of start and

final elementary task(s). As S ={t1, ..., ts } and F ={tf , ..., tm } for some 1 ≤ s < f ≤m.

Between each task in both the start (S) and the final (F ) arrays, there is a choice (︀ ⌋︀ temporal

operation which specifies two enabled tasks such that, once one has started the other one is no

longer enabled. Refer to the Fig. 1, “waking up” is the start task and “take a nap” is the final task in

our scenario.

3.3 Association tool
The association tool receives as an input the elderly task model and as an output provides an

association file containing the mappings between the elementary tasks (the left panel in the Fig. 3)

in the task model and the event in the context model (see the right panel in the Fig. 3). This is a

solution for finding the target activities. The context model contains the context entities based on

the user context and available sensors. Meanwhile, the customization for a specific user requires

only some refinements in the context model. It is worth pointing out, not all the tasks correspond

to a single entry (e.g., the “take pill” task corresponds to the event: “open pill” dispenser). One

task can have information from multiple entries and be described by a sequence of events (e.g.,

“having breakfast” task depending on the available sensors can correspond to multiple events:

user posture= sit down AND kitchen lamp = on AND oven sensor=on). Therefore, a task will be

considered complete if and only if, all the associated events occur. So, effective processing and

selection of meaningful events in the context model are necessary to have a proper format for later

input to the Deviation Analysis Module.

3.4 Context Manager
The Context Manager (CM) [10] has a client-server architecture. It is a software module composed

of a number of context delegates (running on one or more devices located in the environment where

the elder lives) and a context server. Context delegates take information from sensors and pass it on

to the Context server, which organizes the data into a common vocabulary used for communication

with other platform components. The main goals of this subsystem are detecting the current values
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{ e v en t s : [ {

name : " Sarah / morn ing_rou t in / Red p i l l " ,

r e f : " / Sarah / Environment / @D i sp en s e r p i l l " ,

v a l u e : " open " ,

v e r i f i e d : " t r u e "

] }

Or

{ e v en t s : [ {

name : " Sarah / morn ing_rou t in / Red p i l l " ,

r e f : " / Sarah / Environment / @D i sp en s e r p i l l " ,

v a l u e : " open " ,

v e r i f i e d : " f a l s e "

] }

Listing 1. Notification received from CM.

of a wide range of variables (i.e., related to the user, environment, technology) and informing

other architectural modules about relevant changes in such values. Asynchronous notifications are

automatically sent by the context server to modules that have previously subscribed (in our case,

Deviation Analysis) for a particular state or for changing one or more parameters. The advantage

of the asynchronous approach is that the subscriber module is not required to continuously query

the context server for the current values of the involved parameters. As we mentioned before, P is

a sequence of events (coincide with the data logged from the real context) received from the CM at

the current time. Thus, once the event(s) specified in the association file occur in the current context,

which means the Context Manager determines that the current event is one of those requested

from the subscriber (i.e., the Deviation Analysis), the CM sends a JSON format notification (e.g.,

Listing 1) to the Deviation Analysis. Each notification received from the context manager may

consist of one or multiple events which altogether correspond to one task in the task model. So,

if in the association tool the mapping between the elementary task and the event in the context

model is 1:1, the context manager sends a notification with one event and if the mapping is 1: N,

the CM sends a notification contains multiple events right after the last event occurs.

Each event ε is expressed as 5-tuple , < 𝒩 ,ℛ,γ ,υ,τ > where 𝒩 (“name” in Listing1), is a string

composed of the user name, associated file name and the elementary task name associated with

the context entity. In the following sections ε always corresponds to the elementary task name

in the task model (Redpill in Listing 1) which is exactly the name of the task t1 (see Redpill in
Fig. 1) in the task model. Next element,ℛ indicates the event path in the context model (see “ref”

in Listing1), γ is a value which has been set when we mapped between elementary task and the

context entity in association tool (see “value” in Listing1), υ determine whether the change appear

in γ was verified (see “verified” in Listing1) and finally, τ defines the timestamp of event.

3.5 Task Model Simulator
We implemented a Task Model Simulator, which gets as an input the elderly task model, starts

from the first elementary task and hands out the list of tasks currently enabled (based on the

temporal operators between the tasks). This process continues till it arrives at the final task in

the task model. Indeed, the Task Model Simulator acts as a function f ∶ t ↦ ENt , which is a

map where t is the currently executed elementary task and ENt is the array of enabled tasks

after the executed task. So, for the events in the sequence received from the context manager:

ε2 ∈ ENε1 ⇐⇒ ∃ P ∈ Σ ∶ P =< P1 ○ ε1 ○ ε2 ○ P2 >. Actually, the main goal of the Simulator module is
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<op> s u b s c r i b e _ e v e n t < / op>

< s u b s c r i b e r _ a d d r e s s > h t t p : / / x . i s t i . cnr . i t / a e _h t t p < / s u b s c r i b e r _ a d d r e s >

<even t >

< s imp l e _ even t event_name= " Red p i l l " xPath= " / u s e r / environment /

@Di sp en s r p i l l " / >

< / even t >

< c ond i t i o n op e r a t o r = " eq " >

< e n t i t y R e f e r e n c e xPath= " / u s e r / Sarah / environment / @Di sp en s rp i l l " / >

< c on s t a n t va l u e = " open " type= " boo l " / >

< / c o n d i t i o n >

Listing 2. Example of Subscribtion to the Context Manager.

to detect if the task corresponding to the event(s) in partial sequence (p) detected by the context

manager is one of those enabled according to the temporal relationships between tasks in task

model.

3.6 Deviation Analysis
The Deviation Analysis module receives three elements as input: i) the association file; ii) the

event lastly occurred in the current context (from the Context Manager); iii) the enabled task sets

(produced by the Task Model Simulator). The module subscribes the association file to the Context

Manager in order to be notified when the events specified in the association file occur in the context.

In the Listing 2, you can see an example of an XML message that a Deviation Analysis module

sends to the Context Manager to subscribe for specific medicine intake event. Thus, as soon as

an event (specified in the association file) occurs, the Context Manager sends a notification to

the Deviation Analysis. For example in Listing 1, when the Context Manager determines that the

current value of medicine dispenser is equal to open, immediately notifies the Deviation Analysis

module. Afterward, the Deviation Analysis extracts the event name, value, and timestamp from the

CM notification, it finds the corresponding elementary task and sends these data to the Anomaly

Detection Algorithm. The algorithm checks whether the order and the time of the detected event

correspond to the user expected behavior sequence (defined in task model). If not, the algorithm

specifies the time and the type of the anomaly we encounter.

3.7 Persuasion Module
The goal of the Persuasion Module, is using the detected deviation received from the Deviation

Analysis, the critical level of the involved event and the user context in order to generate persuasive

actions that can be applied to reinforce or change the anomalous behavior of the user. Depending on

the deviation type and the user context, actions can be different such as Activate some functionality;
Generate alarms (to highlight some potentially dangerous situations); Send reminders (to indicate a

task that should have been accomplished); Provide persuasive suggestions (to encourage users to

change their behavior); Send prompt, messages, provide explanation messages, change the state of the
appliance (light, fridge,. . . ). Later, the decided action will be sent to the Action Generation Module.

3.8 Action Generator
The Action Generation module by considering relevant contextual aspects, defines the most suitable

way to render the actions identified by Persuasion Module for addressing the diagnosed deviations.

Thus, based on the current state of the user (i.e., location, disabilities, etc.), it decides where (i.e.,

user smartphone, tablet, TV) and how (i.e., graphically, text, audio) delivers the action to the elderly.
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4 POSSIBLE TASK-RELATED ANOMALIES IN ELDERLY BEHAVIOR
As already mentioned, an anomalous situation is characterized by a dissimilarity between the

observed situation (derived from sensors in the current user context) and the expected one (E)
described in a task model. The identified deviation could be characterized by different degrees of

severity and could be the sign of various situations, the beginning of an unhealthy habit of the

elderly, the insurgence of an illness or even a serious physical/mental decline. Thus, analyzing

the behavior of the elderly can be useful to highlight trends as well as giving recommendations

and health-related reminders to them. In Reason’s taxonomy [28], slips (i.e. the user has the

knowledge about how to perform the activities) occur due to attention failures and can manifest

as omissions, repetitions, and commissions. Our anomalous human behavior generation method,

models these slips in a more systematic categorization of the various types of deviations which we

have associated with specific keywords. In our method, we considered two types of classification

for the different grades of anomalies: i) anomaly in the complete and ii) in the prefix sequences. In

the former, anomalies are defined based on the whole sequence at the end of the day and in the

latter, the different degree of anomalies are considered for the partial sequences (prefixes) which

later will be associated to the one or some types of anomaly in the former classification. The general

classification of the anomalies considering the whole sequence produced by the context manager

at the end of the day (sequence P ) is as follow:
Less: An event that was expected has not been performed. Thus, P is Less and ε is a missing

event if:

P ∉ Σ ∧ P =< P1 ○ P2 > ∧ ∃E ∈ Σ ∶ E =< P1 ○ ε ○ P2 > (1)

More: An event has been performed more than expected time. Hence, P is More and ε is an
extra event if:

P ∉ Σ ∧ P =< P1 ○ ε ○ P2 > ∧ ∃E ∈ Σ ∶ E =< P1 ○ P2 > (2)

Difference: The tasks considered have been performed differently from what the designer

intended in the task model. So, P is Difference and ε is an event out of its order if:

P ∉ Σ ∧ P =< P1 ○ ε1 ○ ε2 ○ P2 > ∧ε2 ∉ ENε1

∃E ∈ Σ ∶ E =< P1 ○ ε1 ○ ε3 ○ P2 > ∧ε3 ≠ ε2
(3)

No-Anomaly: An event has none of the above conditions.

P ∈ Σ (4)

As we mentioned before, in real-time as each event receives from the Context Manager, our partial

sequence (prefix) get changed. The anomalies in prefixes can change as the partial sequence get

completed over time. As we defined in section 3.2, E =< t1, ..., tm > is a sequence of tasks expected
from the user and P =< ε1, ..., εh > is a partial sequence of events received from the context

manager at the current time. Given h ≤m, we define prefix E′= < ε1, ..., εh > where∀i ∈ (︀1,h⌋︀, εi =
tj , for somej ∈ (︀1,m⌋︀ . For finding the anomalies in the prefixes, each time an event receives, we

compare prefix P with the prefix E′. It is worth to mention that, the events time are embedded

in them and the ascending relationship between events time has been preserved means: ε1 ○ ε2 =
εt1
1
○ εt2

2
⇒ t2 > t1. Given P ∉ Σ, the anomalies in the partial sequences are categorized as:

● Less_Partial: An event that was expected to be carried out, has not been performed in the

partial sequence.

p =< P1 ○ εi > ∧∃E ∈ Σ ∶ E =< P1 ○ εi−1 ○ εi ○ P2 > ∧

∄E′ ∈ Σ ∶ E′ =< P1 ○ εi ○ P2 > for any P2 ∧ current − time > εi−1.τf
(5)
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Fig. 4. The example of task-related anomalies

● Difference-Early-time: An event that was expected to be carried out in certain interval of

time, has been performed before its starting time.

p =< P1 ○ ε
t
○ P2 > ∧∃E

′
∈ Σ ∶ E′ =< P1 ○ ε ○ P2 > ∧ t < τs (6)

● Difference-Later-Time: An event that was expected to be carried out in certain interval of

time, has been performed after its completing time is finished.

p =< P1 ○ ε
t
○ P2 > ∧∃E

′
∈ Σ ∶ E′ =< P1 ○ ε ○ P2 > ∧t > τf (7)

● More-Order: An event is performed more times than expected and out of its order.

P =< P1 ○ εi ○ P2 ○ εj >∶ εi = εj ,εj ∉ ENεj−1 ∧

∃E′ ∈ Σ ∶ E′ =< P1 ○ εi ○ P2 ○ εk > ∧εk ≠ εj
(8)

● More-Number: An event is performed more times than expected in his time interval and

order.

P =< P1 ○ εi ○ εj ○ P2 >∶ εi = εj ,∃E′ ∈ Σ ∶ E′ =< P1 ○ εi ○ P2 > (9)

● Difference-Order: An event has been performed in a wrong temporal order.

P =< P1 ○ ε1 ○ ε2 ○ P2 > ∧ ε2 ∉ ENε1 ,∃E
′
∈ Σ ∶ E′ =< P1 ○ ε1 ○ ε3 ○ P2 > ∧ε3 ≠ ε2 (10)

● Difference-Order-Time: An event considered has been performed in a wrong temporal order

and at a wrong time.

P =< P1 ○ ε
t
○ P2 ○ P3 > ∧ ∃E

′
∈ Σ ∶ E′ =< P1 ○ P2 ○ ε ○ P3 > ∧ ∧ ε .t ∉ (︀τs ,τf ⌋︀ (11)

As we referred before, as the prefix sequence evolves (with the occurrence of each new observa-

tion), the output of the anomaly detection (and thus the potential anomaly already identified) may

change or it may remain the same. For example let E =< A(t1−t2),B(t3−t4),C(t5−t6),D(t7−t8) > be a
sequence that will be expected from the user where A, B, C, D are the events (correspond to elemen-

tary tasks) and (︀t1, t8⌋︀ is the time interval of the events performance. Thus, given P =< A(t0),B(t3) >
as a prefix sequence, we have Difference-Early-time anomaly on event A. Assume that at t4 arrives
event A again. So, our prefix sequence become P =< A(t0),B(t3),A(t4) > and subsequently the

anomaly type of the event A changes to More-Order based on equation 8. As you see in Figure 4, an

anomaly type of an event (e.g. event A) may change over time depends on the event attributes, the

time and the order of the event performance.

Lemma 4.1. Anomalies in Equation 5-11 are pairwise disjoint. Given P as a prefix sequence, P cannot
have two or more classification of the anomaly on the same event at the same time.
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ALGORITHM 1: Anomaly detection

Data: event sequence: P = < ε0, ε1, ....εn−1 >
Result: ε with its anomaly type

1 while i < n do
2 if εi .υ = ”true” then
3 if εi .t > τf then marks εi as Difference-Later-Time
4 if εi .t < τs then marks εi as Difference-Early-Time
5 Dup ← Delete_Duplication(P ) and marks Dup asMore

6 constract E by using (P ,S, F ) and marks Dif and Les as Difference and Less
7 while f laд == true do
8 for ∀i ∈ (︀0,n − 1⌋︀ do
9 swapcount ← 0 // number of time we swap the events

10 F_error ← 0 // number of times we encounter nonswappble events

11 if εi ∉ ENεi−1 ∧ εi−1 ∈ ENεi then Swap (εi , εi−1); swapcount + +
12 else F − error + +
13 end
14 end
15 if swapcount > 0 then Flaд = true else Flaд = f alse

16 if F_error > 0 then // there exist 2 non-swappable tasks

17 Sp ← FindShortestPath (εi−1, εi) → E =< P ,Sp , εi >
18 Delete_Duplication (E)

19 Less ← ⋃︀E − P ⋃︀
20 difference1← ⋃︀LCS(P ,E) − P ⋃︀
21 difference2← ⋃︀LCS(E,P) − P ⋃︀
22 Difference← difference1 ∪ difference2
23 end
24 end
25 if ∃ε ∈ Less ∧ current − time > ε .τf then ε .anomaly → Less-Partial
26 if ∃ε ∈ Difference-Later-Time ∪Difference-Early-Time ∧ ε ∈ Difference then

ε .anomaly → Difference-Order-Time
27 if ∃εi ∈ Difference, εi ∉ ENεi−1 then εi .anomaly → Difference-Order
28 if ∃ε ∈ More ∧ εi ∉ ENεi−1 then ε .anomaly → More-Order else ε .anomaly → More-Number
29 end

Proof. Disjoint anomalies cannot happen at the same time. In other words, they are mutually

exclusive. we prove our statement by contradiction. For example, let < A(t1−t2),B(t3−t4),C(t5−t6) > be
a sequence that is expected from the user.We assume, at t4 we have a prefix P as < A(t1),B(t2),C(t3) >
and event B has two kind of anomalies Difference-Order (Equation 10) and Difference-Early-time
(Equation 6) at time t2. So, based on equation 6 : B ∈ ENA, t2 < t3 and based on equation 10

: B ∉ ENA , t2 ∈ (︀t3, t4⌋︀, which obviously, t2 < t3 but t2 ∉ (︀t3, t4⌋︀ and also, event B can not be

enabled by event A and at the same time not be enabled by event A. Thus, event B at t2 has just
Difference-Early-time anomaly. The proofs for other cases are straightforward and omitted for

brevity.

�
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4.1 Anomaly detection Algorithm:
For each received event from the Context Manager, the Anomaly Detection Algorithm 1 starts to

construct an expected sequence (E) permissible by CTT task model, using the currently received

event and the information generated by the Task Model Simulator. Sequence E is one of the possible

sequence of events with respect to the temporal operators between tasks in the user task model and

serves as a ground truth to be compared with the current received event sequence (P ) for finding
the anomalies.

So, first the algorithm checks the interval time of the received event (line 3, 4), if the equation 6

holds, marks it as Difference-Early-Time and if the equation 7 holds, marks the event as Difference-
Later-Time. Then, in line 5 controls if in the partial sequence P , there is any event equal to the

currently received event, if yes, controls the maximum allowed repeated number of event, if the

threshold has been violated marks the received event as More and deletes it from the sequence

P . As we have already mentioned, our algorithm makes the expected sequence E step by step. As

the first step, at line 6 the algorithm finds the start and the final events in the task model and

inserts/shifts them at the start and the end position in the sequence E as E =< S,P , F >. Therefore,
the algorithm controls whether the event sequence P includes any member of the start (S) and the

final (F ) events in the task model. If any member in S and F exists in P but not at the start and the

end of the P (see Ds
and Df

in Table 1), it shifts them to the start and the final position in the E
and marks these events ( see Dif in Table 1) as Difference. While, if any member of S or F do not

exist in P (see Ls and Lf in Table 1), it inserts the start and the final event(s) at the start and the

end of the sequence E and marks these events (see Les equation in Table 1) as Less. Further, the
algorithm (line 7-14) checks if the currently received event corresponds to an enabled event of the

last event in P . If so, the received event was an expected one (according to the task model), then the

process iterates in a similar manner for the next event in the received event sequence. Otherwise

(i.e., Equation 3), it controls the opposite order to see if the previously executed event corresponds

to an enabled event of the currently executed event. If yes, it swaps two consecutive events (which

are not in the right order) for the sake of making the expected sequence ( E ). While, if none of

the above conditions were applicable, it means there are missing event(s) between the currently

received event and the last event in partial sequence P . For finding these missing events (line 17),

the function FindShortestPath() takes in input these two successive events (that are not swappable)

and finds the shortest paths between them. Then, it fills up the distance between these two events

by the missing events and deletes the repetitive events (line 18) in the new sequence if there is any

(for the sake of making expected sequence E). Later, by comparing the received event sequence P
and the expected event sequence E, it finds any missing events and marks them as Less (line 19).
Now, we have an expected sequence E. Next, the Longest Common subsequence (LCS) function
finds the longest subsequence common between two sequences (E,P). It compares the result of

the LCS with P and saves the output (if it is any) as difference1. Later, it repeats this process by
switching the parameters as LCS(P ,E) and compares the result with the partial sequence P and

saves the output as difference2 (line 20-21). Later,at line 22, it merges the result of difference1 and
difference2 and mark them as Difference.
The last step is announcing the anomaly of the received event sequence (line 25- 28). In this

step, the algorithm checks first the events marked as Less , if the current time is grater than their

time interval (τf ) , the algorithm saves these events as a Less-Partial anomaly. Otherwise, they

remain marked as Temporary-Less for the future analysis. If the tasks which have been marked as

Difference-Early-Time orDifference-Later-Time are evenmarked asDifference, their anomaly becomes

Difference-Order-Time , on the other hand, they remain Difference-Early-Time and Difference-Later-
Time . If the events which marked as More are not enabled by their previous event (Equation 10),
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Ds = {εi ∈ P ∶ εi ∈ S ∧ ∃ εj ∉ S, εj ∈ P j < i}

Df = {εi ∈ P ∶ εi ∈ F ∧ ∃ εj ∉ F , εj ∈ P j > i}

Di f = Ds ∪Df

Ls = {εi ∈ S ∶ εi ∉ P}

Lf = {εi ∈ F ∶ εi ∉ P}

Les = Ls ∪ Lf

Table 1. Set the start and the final task.

announces them as More-Order , otherwise, they are More-Number . And finally, for the events

marked as Difference, the algorithm checks again the equation 10 and if its true, it announces these

events as Difference-Order.

5 EVALUATION
We developed a tool to detect the deviations by comparing the expected user behavior (specified

in the Task Model) with the real one. In order to have a systematic analysis of the tool ability to

detect the anomalies, we carried out a laboratory evaluation. In favor of systematically testing the

Anomaly Detection Algorithm, we decided to simulate the event notifications received from the

Context Manager. Simulating the events detected by the Context Manager facilitates understanding

the system’s behavior without actually testing the system in the real world and help us to meet the

experiment objectives. First, we obtained 10000 sequences (Σ) of events which are permissible in

the CTT task model described the expected elderly behavior. Next, we generated the anomalous

sequences (Σ1) obtained by manipulating the Σ and applying one of the anomalies described in

section 4. Then, we created other anomalous sequences (Σ2) that have more than one anomaly type

at different times, obtained by manipulating the previously generated anomalous sequences in (Σ1).

Finally, the Context Manager Simulation sent the events from the Σ, Σ1 and Σ2, one by one, to the

Deviation Analysis module and the Detecting Anomaly Algorithm as a result reports the detected

abnormal events with their anomaly classification, and the corresponding accuracy was assessed.

5.1 Context Manager Simulation
As mentioned earlier, the first step is simulating the event notifications received from the Context

Manager. To this aim, the simulator takes all the elementary tasks in the task model, associate them

with the data necessary to execute the corresponding event (e.g., time, location, value) as in listing

1. Second, for making the initial sequences Σ, the simulator selects randomly an event from those

corresponding to the initially enabled set of events according to the task model. Then, it randomly

chooses an event between all the enabled events after the first event. This process continues until it

arrives at the one of the enabled final events. Meanwhile, the duplicated sequences are deleted. The

next step consists of generating the sequences Σ1 with only one type of anomaly. When creating

Σ1 the algorithm considers all types of anomaly classifications. So, given E ∈ Σ and E1 ∈ Σ1, the

algorithm generates the anomalous sequences as follow:

(1) Less: Randomly omits an event from each sequence in Σ.
Given E ∈ Σ ∶ E =< P1 ○ ε1 ○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ P2 >.

(2) Difference-Early-time: Randomly chooses an event from each sequence in Σ and anticipates

event time one minute before its starting time (τs ). The change is made in such a way to still

respect the events order.

Given E ∈ Σ ∶ E =< P1 ○ ε
t1
1
○ εt2

2
○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ ε

t1
1
○ εt2−1

2
○ P2 >.
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Measure Rate

Sensitivity 99%

Specificity 98%

FPR 2%

Accuracy 95%

Table 2. Algorithm performance summary

(3) Difference-Later-time: Randomly chooses an event from each sequence in Σ and brings the

event time one minute after its final time (τf ) with respect to the events order.

Given E ∈ Σ ∶ E =< P1 ○ ε
t1
1
○ εt2

2
○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ ε

t1
1
○ εt2+1

2
○ P2 >.

(4) Difference-Time-order : Randomly chooses an event from each sequence in Σ and changes the

order and the time of the event.

Given E ∈ Σ ∶ E =< P1 ○ ε
t2 ○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ P2 ○ ε

t3 >, t3 ∉ (︀τs ,τf ⌋︀.
(5) Difference-Order : Randomly chooses an event from each sequence in Σ and changes its order

with respect to the sequence Σ in a way that the event time remains in its time interval.

Given E ∈ Σ ∶ E =< P1 ○ ε
t1
i ○ ε

t2
j ○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ ε

t1
i ○ P2 ○ ε

t2
j >

(6) More-number : Chooses randomly one event from each sequence in the Σ and creates another

instance of the same event that is located in a position allowed by the task model.

Given E ∈ Σ ∶ E =< P1 ○ ε
t
i ○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ ε

t1
i ○ ε

t2
i ○ P2 >, t ∈ (︀t1, t3⌋︀.

(7) More-order : Choose randomly one event from each sequence in Σ and creates another instance

of the same event that is located in a position not allowed by the task model.

Given E ∈ Σ ∶ E =< P1 ○ εi ○ P2 >⇒ E1 ∈ Σ1 ∶ E1 =< P1 ○ εi ○ P2 ○ εi >.

Later, to show that the algorithm is capable of detecting different types of anomalies that occur

at different times, the simulator introduces another type of anomaly, thus obtaining sequences

containing two or more types of anomalies (Σ2). For this aim, the simulator uses the generated

anomalous sequences in Σ1, chooses the anomalous event from each sequence and duplicates, omits

or changes the event order and time to generate another type of anomalous sequences Σ2. Finally,

for validating the algorithm, we fed the Deviation Analysis module by the events in the sequences

Σ, Σ1 and Σ2. The anomaly detection Algorithm detects the anomalies and as an output it provides

the event name with its anomaly type and the time when the anomaly has been detected.

5.2 Results
The experimental results of our Anomaly Detection Algorithm are shown in Table 2. The perfor-

mance of the proposed system is shown in Table 3. We measured sensitivity and specificity to

evaluate algorithm performance. Sensitivity is defined as the capacity of the system for correctly

identifying true abnormal events. While, specificity is defined as the capacity of the system for not

generating false positives. These values were calculated as in equation 12 and 13 :

Sensitivity =
TP

FN +TP
(12)

Speci f icity =
TN

FP +TN
(13)

Actually, Positive/Negative means that the model predicts that the sequence corresponds to

abnormal/normal and True/False means that the prediction is right/wrong. True positives (TP) are
the number of case where abnormal sequences are correctly detected and classified by the system.
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System detection

Abnormal Normal

simulation

Abnormal TruePositive ∶ 18850 FalsePositive ∶ 150
Normal FalseNeдative ∶ 100 TrueNeдative ∶ 9900

Table 3. Experimental results with the simulation

False negatives (FN ) are the number of cases where normal sequences classified as abnormal. True

negatives (TN ) are the number of cases where normal sequences are correctly detected by the

algorithm. False positives (FP) are the number of cases where abnormal sequences are falsely

detected as normal. Another important measure is False Positive Rate (FPR), which is defined as

the number of false positive instances (FP) divided by the number of False Positives (FP) and
True Negatives (TN ). A hight FPR can significantly decrease the utility of the anomaly detection

system. Finally the accuracy of the algorithm is calculated as:

ACCURACY =
TP +TN

TP +TN + FP + FN
(14)

The experimental results, showed that our online Anomaly detection Algorithm has the accuracy

of 95% and a false positive rate of 2%. The algorithm detects the event that triggered the anomaly

and indicates the anomaly type (Equation 1- 11) and when it occurs.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we present a method to detect abnormal elderly behavior in real-time, which is

important in AAL scenarios because these anomalies may represent early signs of health-related

issues. We have developed a profiling strategy in which task models specify the “normal” behavior,

which can also work in case of rare anomaly data. Our solution compares the expected behavior

expressed in such models with the sequence of events generated by the real user. For achieving this

result, we had to simulate the event sequences received from the Context Manager (which represent

the user daily activities). Then, we validated the algorithm performance by sending the simulated

normal and anomalous sequences to the Deviation Analysis module. The experiment results are

promising. For future work, we plan to test the algorithm with data gathered from real users and

act upon the detected deviations in a persuasive manner aiming to help the elderly well-being

(Section 3.7). For this reason, we aim to use behavioral change techniques which are theory-driven

methods and are used in behavior change interventions to define the best motivation action in

Persuasion Module. These techniques can be defined as coordinated sets of activities designed

to change specified behavior patterns. There is a large number of interventions described in the

literature and have been ongoing efforts to categorize such interventions into taxonomies [22].

Lastly, the currently proposed method is convenient for the solitary elderly. Further research to

detect the anomalies based on user activities performed by multiple users is in our interest as well.
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