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Abstract: In this paper, we discuss a new approach to the analysis of multi/hyper-spectral data
sets, based on the Interesting Features Finder (IFF) method. The IFF is a simple algorithm recently
proposed in the framework of Laser-Induced Breakdown Spectroscopy (LIBS) spectral analysis for
detecting ‘interesting’ spectral features independently of the variance they represent in a set of spectra.
To test the usefulness of this method to multispectral analysis, we show in this paper the results of
its application on the recovery of a ‘lost’ painting from the Etruscan hypogeal tomb of the Volumni
(3rd century BCE—1st century CE) in Perugia, Italy. The results obtained applying the IFF algorithm
are compared with the results obtained by applying Blind Source Separation (BSS) techniques and
Self-Organized Maps (SOM) to a multispectral set of 17 fluorescence and reflection images. From this
comparison emerges the possibility of using the IFF algorithm to obtain rapidly and simultaneously,
by varying a single parameter in a range from 0 to 1, several sets of elaborated images all containing
the ‘interesting’ features and carrying information comparable to what could have been obtained by
BSS and SOM, respectively.

Keywords: archaeology; multispectral imaging; Interesting Feature Finder; multi-illumination hyperspec-
tral extraction; blind source separation; Self-Organizing Maps; Laser-Induced Breakdown Spectroscopy

1. Introduction

The human species has used colors since the remote past for decorating objects and rep-
resenting the surrounding environment, in a process which is difficult not to call ‘artistic’ [1].
Some of these expressions of human creativity have been, unfortunately, severely damaged
by the combined effects of time and environment but also, in many cases, by the alteration
of their closed environment, at the time of their discovery, caused by human presence.

The examples of such degradation are innumerable. To remain in the temporal and
geographical framework of the example that will be discussed in this paper, the mural
paintings of the Etruscan hypogeal Tomb of the Monkey in Chiusi, Siena (5th century BCE)
have been seriously damaged by anthropic impact, after the discovery of the tomb in 1846
by the Florentine archaeologist Alessandro François [2]. A similar fate was suffered by the
paintings of the Etruscan tombs of the Blue Demons, which have been recently studied by
Adinolfi et al. [3].

In some cases, the remaining traces of the original paintings can only be interpreted
thanks to the drawings realized by the professional designers which were often called to
document the paintings after the discovery of the tombs [4,5]. However, in some cases,
either we don’t have such documentation [3] or the correspondence to the original of the
drawings can be questioned—for various reasons—the principal one being the difficulty in
accessing the archaeological site [6] and/or the limited legibility of the paintings since the
moment of their discovery.
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The paramount importance of developing scientific tools able to recover the legibility
of ancient ‘lost’ paintings is clear. A common (and powerful) approach to the problem is
the use of multi/hyper-spectral imaging techniques [7,8], which have been developed in
the last decades following technological advances in digital photography and landscape
surveying [9]. However, in most cases, multi/hyper-spectral methods are used for the
identification of the pigments in the painting [10–13] and/or studying the underdrawings
through infrared imaging [14–19]; less frequent are the studies aimed at the recovery of
the legibility of the images. Important works have been done in the past decade towards
the recovery of the visibility of degraded manuscripts [20–23] but some effort has also
been devoted to ancient mural paintings, one noteworthy example being the development
of the DStretch® software [24] and its application to rock [25] and wall [26] paintings.
However, the software uses only three spectral bands (usually RGB) for its analysis, and
this is an important limitation. Other methods have been proposed which exploit the
full multi/hyper-spectral set for revealing hidden details in paintings [27]. Among them,
a particularly efficient procedure is MHX (Multi-illumination Hyperspectral eXtraction),
developed by the National Research Council of Pisa together with Art-Test of Luciano
Marras as a combination of advanced illumination sources (high purity UV sources plus
visible and infrared illuminators), with a dedicated multispectral camera for the acquisition
of low noise, high resolution spectrally resolved images coupled to a series of different
Blind Source Separation (BSS) algorithms, described in detail in ref. [28], for the extraction
of the hidden or invisible features of the painting.

The MHX method has been improved over the years from its initial applications for
manuscripts [23,29–37] to the analysis of ‘lost’ paintings [3,28,38–40].

2. The Volumni Hypogeum

One of the most successfully application of the MHX procedure has been the recent
study of the painted urn of Arnth Velimna in the Etruscan Volumni hypogeal tomb in
Perugia, Italy. The site was frequented from the 3rd century BCE to the 1st century CE and
is part of a vast necropolis that can be dated back to the 5th century BCE.

The complete description of the experimental procedure, the analysis of the multispec-
tral set and its interpretation are described in a paper in press in the prestigious specialized
journal ‘Studi Etruschi’ [41]. However, for the purposes of this paper (the discussion of
a new approach for the analysis of the multispectral set), it would be sufficient here to
summarize the main results of the study.

The urn of Arnth Velimna represents, on its front, the Door of the Hades, a symbolic
element which is present in many Etruscan paintings to signify the passage from the world
of the living to the world of the dead. The painting is strongly degraded, especially in its
upper part, which results in its being completely illegible to the naked eye (see Figure 1a).

The Volumni hypogeum was casually discovered in 1840 during the repairing of a
nearby road. The archaeologist Giovanni Battista Vermiglioli supervised the opening of the
hypogeum and, in the same year, published a drawing of the painting [42] showing two
figures in the upper part which are no longer visible (see Figure 1b).

However, the style of the drawing and the clothing of the two individuals in the
foreground is not fully convincing, a demonstration that the legibility of the painting was
not optimal even in the immediacy of the opening of the tomb.
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further information can be obtained from a direct observation of the single images of the 

Figure 1. (a) The Door of the Hades painted on the Arnth Velimna urn; (b) Drawing by G.B.
Vermiglioli (1840). In Figure 1a are evidenced the region from where the set of multispectral images
here analyzed was acquired (in red) and the region studied for evidencing in detail the demon’s
wings (in blue).

3. Acquisition of the Multispectral Image Set

In an experimental campaign started in April 2021 we acquired with a specialized
multispectral camera (Chroma from DTA, Cascina (Pisa)) a set of 17 low-noise, high-
resolution spectrally resolved images, 9 in UV/Vis reflection (from 350 nm to 750 nm in
50 nm steps), 3 in the infrared band (from 850 nm to 1050 nm in steps of 100 nm) and 5 in
UV-Vis/IR fluorescence (from 450 to 750 nm in steps of 100 nm). For selecting the spectral
bands, we used a set of interferential filters with passbands of ±25 nm around the central
wavelength that were placed in front of the camera objective. The corresponding images
are shown in Figure S1 in the Supplementary Information.

From Figure S1 it can be seen that a few details of the painting reappear, especially
in the UV-IR fluorescence images (750 nm and 850 nm). Moreover, the infrared reflection
images at 950 nm and 1050 nm evidence the presence of a recent writing drawn probably
with a pencil over the heads of the two individuals in the foreground, presumably in a
moment in which the visibility of this part of the painting was already compromised. No
further information can be obtained from a direct observation of the single images of the
hyperspectral set. By applying the BSS algorithms which are part of the MHX procedure,
however, a much better recovery of the painting’s legibility can be achieved.

Two of the BSS images are shown in Figure 2.
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sition of a drawing of the text on the visible image (Figure 2b). 
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2a) and also improve the details of the writing, which reveals the presence of two sets of 

initials and two dates, probably both referring to the year (19) 51 (Figure 2b). Thanks to 

Figure 2. Two images obtained through the application of the MHX BSS method. (a) Upper part of
the Door of the Hades (region outlined in red in Figure 1a) and (b) detail of the writing.

The position of the individuals and of the text in the painting is shown in Figure 3.
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Figure 3. (a) Superposition of the Vermiglioli drawing on the visible image (Figure 1b); (b) Superpo-
sition of a drawing of the text on the visible image (Figure 2b).

The MHX BSS techniques recover very efficiently the legibility of the painting (Figure 2a)
and also improve the details of the writing, which reveals the presence of two sets of initials
and two dates, probably both referring to the year (19) 51 (Figure 2b). Thanks to the MHX
method, it is now possible to compare the recovered image in Figure 2a with the Vermiglioli
1840 drawing (Figure 1b) evidencing the differences in the attire and posture of the couple in
the forefront, with the hand of the woman resting on the shoulder of the man in an intimate act
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that was lost in the Vermiglioli drawing. However, despite the exceptional results of the MHX
BSS algorithms, some doubts remain on the representation of the wings of the individual
(probably a demon) in the background at the left, which can be, on the other hand, guessed by
the fluorescence images at 750 nm and 850 nm (see Figure S1 in the Supplementary Materials).

In fact, the wings do not appear clearly in any of the BSS recovered images (see
Figure 4a,b). In an attempt to solve this last issue, we tried the application of an alterna-
tive method for the analysis of multi/hyper-spectral sets, called Self-Organizing Maps
(SOM) [43]. This method allows for the clustering of the pixels in the multispectral set
according to their spectral components (hypercolors). With respect to other clustering
methods, the SOM algorithm does not require an a priori knowledge of the number of clus-
ters expected; moreover, contrarily to the BSS algorithms, the SOM clusters are associated
to a corresponding prototype hypercolor, a feature that may be important for recovering
information about the spectral response of the original colors of the painting.
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Figure 4. (a) Detail of the MHX BSS image that better recovers the possible outline of the demon
wings. (b) The same image after the application of an intensity threshold, to evidence the brighter
pixels associated to the wings. (c) Detail of the SOM cluster corresponding to the demon wings (see
Supplementary Information Figure S2).

In the case of the Door of the Hades, the SOM algorithm clusters the pixels of the
hyperspectral set in 16 main groups, shown in Figure S2 of the Supplementary Materials.
Also in this case, the outline of the wings does not appear clearly (see Figure 4c), but
essentially confirms the information extracted by the MHX BSS algorithms, as shown in
Figure 4c (the images correspond to the region evidenced in blue in Figure 1).
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The average spectral reflectivity of the pixels in the SOM cluster graphically repre-
sented in Figure 4c is shown in Figure 5.
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Figure 5. Average reflectivity of the spectral points corresponding to the demon wings.

From the reflectivity curve, we can infer that the color of the wings corresponds to
a yellowish white, which is coherent with the few remains still visible in the RGB image
(Figure 6).
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Figure 6. The visible color of the points corresponding to the demon wings (the corresponding SOM
cluster is used as a mask on the RGB image for evidencing the yellowish white color of the remains
of the wings, highlighted by the two red ellipses).

The difficulty of both MHX BSS and SOM algorithms to recover the visibility of the
demon wings leads to the consideration that both algorithms do not perform well in the
presence of details which do not contribute too much to the variance in the hyper/multi-
spectral set. This is particularly evident for SOM, which does not recover the two signatures
in Figure 3, for example, while the MHX BSS algorithm can extract their spectral informa-
tion, instead.

In the case of the wings, not only do they correspond to a small fraction of the pixels
in the image, but also their (hyper)color is similar to the background, hence the difficulties
of both methods in extracting the corresponding information.
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Given this situation, it is thus worth exploring the possibility of using a different
feature extraction method, that would recover the ‘interesting features’ independently of
the variance they represent in the multispectral set.

4. Discussion
4.1. The Interesting Features Finder (IFF) Method

The Interesting Features Finder method has been recently proposed by Wu et al. [44]
for the analysis of spectral sets acquired for multi-elemental Laser-Induced Breakdown
Spectroscopy (LIBS) imaging applications. The progress in LIBS analysis currently allows
the acquisition of large spectral datasets characterized by high spatial (>1 Megapixel) and
spectral (>20,000 spectral points) resolutions [45]; such a large amount of data should
be processed using chemometric methods for determining the chemical nature of the
different components of the sample [46,47]. However, the Principal Component Analysis
approach [48], which is one of the simplest and more used methods for this task, fails to
recover features that express a low variance in the hyperspectral set. In general, all the
techniques based on decorrelation or independence of the sources, as the BSS algorithms
used in the MHX protocol, might potentially suffer from the same problem.

The proposal of the authors of ref. [44] was probably inspired by the Pixel Purity Index
(PPI) method, which determines the extreme points in the hypercolor space by projecting
the hypervectors corresponding to each pixel on many random vectors (>10,000).

In the PPI method, a single image is then built, in which the intensity of each pixel is
proportional to the number of times in which that pixel has been marked as an extreme.
The authors of [44] consider, in fact, the extreme pixels, but are interested in their spectral
signature, instead, because the vectors defined in the hypercolor space by the purest pixels
can be considered as a basis of independent components, and all the other pixels of the
multispectral image can be expressed as linear combinations of these components. A simple
Matlab code for the selection of the extreme points in the hypercolor space is provided by
the authors of [44] as supplementary material in their paper.

4.2. Application of the IFF Method

To exploit the IFF method, it is necessary to reduce the number of the independent
components, removing all the pure pixels that have similar spectral signatures of the
purest one. In the case of the Door of the Hades, imposing an upper threshold of 0.95
on the correlation between the pure pixels for considering the corresponding spectral
components as independent, we obtain a set of 23 components, whose linear combination
would represent the hypercolors of all the pixels of the hyperspectral set.

Having so defined the basis of our hyperspectral set, it is now possible to reproject
the pixels on the new basis to obtain a series of images where the intensity of each pixel is
given by the scalar product of the corresponding hypervector with each vector of the basis.

The resulting 23 images are shown in Supplementary Information Figure S3.
The images obtained using the IFF method are visually similar to the ones that can be

obtained using the MHX BSS algorithms (see Figure 7).
An important difference is, however, that each image is associated to the hypercolor

of the corresponding independent component (pure pixel); this association can be better
exploited by imposing an intensity threshold so that only the pixels very close to the
corresponding pure pixel hypercolor would be displayed in the image. The definition of
this threshold is arbitrary; it may range from 0 (Figure S3) to a value close to 1 (100% of
the maximum intensity); in Supplementary Information Figure S4 we show the same IFF
images of Figure S3 after the application of an intensity threshold of 85% of the maximum.

By applying an intensity threshold, the IFF images become very similar to the SOM
images shown in Figure S2, with some important differences. In this case, the pixels
corresponding to the signatures are, although partially, separated in a single image (see
Figure S4); moreover, there are several images containing very few pixels, which is exactly
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what we were expecting given the characteristic of the IFF method of selecting pure pixels,
independent of their impact on the variance of the hyperspectral set.
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As for the demon wings, their visibility in the IFF image set at the zero and 0.85 thresh-
olds (see Figure 8) is similar to what was obtained using the MHX BSS and the SOM
algorithms, respectively.
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the MHX protocol. However, the IFF is considerably faster than the combination of the 
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Figure 8. IFF image showing the demon’s wings (left: intensity threshold set to 0; right: intensity
threshold set to 0.85 (85% of the maximum)). Detail corresponding to the blue region in Figure 1a.

Therefore, in this specific application, the application of the IFF method does not
improve the legibility of the painting with respect to the BSS and SOM algorithms used
in the MHX protocol. However, the IFF is considerably faster than the combination of the
BSS + SOM algorithms. On a medium-power laptop computer, the non-optimized IFF algo-
rithm produced the 17 images of the multispectral set considered here from 10,000 random
vectors in 28 s, compared to 23 s of the BST algorithm and 164 for the SOM (4 × 4 grid,
1000 epochs).

5. Conclusions

The IFF method, although in the case here discussed does not provide better results
than the BSS methods used in the MHX protocol, is interesting for several reasons. The
method is normally very fast in its application to the typical hyperspectral sets that can
be acquired with a variable filter CCD camera; moreover, each image that can be obtained
is associated with a defined hypercolor and, with the application of a proper intensity
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threshold, it is possible to pass continuously from a visualization comparable to the one
obtained with the most advanced BSS techniques to spectral information substantially
equivalent to the one obtained through the SOM algorithm, with the additional potential
capability of extracting details associated to few pixels and/or characterized by hypercolors
poorly contrasted against the background.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/heritage5040211/s1, Figure S1: Hyperspectral set acquired on
the Door of the Hades (red region in Figure 1a); Figure S2: SOM clustering of the painting. Each
cluster groups the pixel with similar optical properties (the images correspond to the region marked
in red in Figure 1a); Figure S3: IFF Images of the Door of the Hades. The images correspond to the
region marked in red in Figure 1a; Figure S4: As in Figure S3, with a threshold on the pixel intensity
of 0.85 (85% of the maximum)
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