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Abstract

We propose in this work a unified formulation of mixed and primal discretization methods
on polyhedral meshes hinging on globally coupled degrees of freedom that are discontinuous
polynomials on the mesh skeleton. To emphasize this feature, these methods are referred
to here as discontinuous skeletal. As a starting point, we define two families of discretiza-
tions corresponding, respectively, to mixed and primal formulations of discontinuous skeletal
methods. Each family is uniquely identified by prescribing three polynomial degrees defining
the degrees of freedom and a stabilization bilinear form which has to satisfy two properties
of simple verification: stability and polynomial consistency. Several examples of methods
available in the recent literature are shown to belong to either one of those families. We
then prove new equivalence results that build a bridge between the two families of methods.
Precisely, we show that for any mixed method there exists a corresponding equivalent primal
method, and the converse is true provided that the gradients are approximated in suitable
spaces. A unified convergence analysis is also carried out delivering optimal error estimates
in both energy- and L2-norm.

2010 Mathematics Subject Classification: 65N08, 65N30, 65N12

Keywords: Polyhedral meshes; hybrid high-order methods; virtual element methods; mixed
and hybrid finite volume methods; mimetic finite difference methods

1 Introduction

Over the last few years, discretization methods that support general polytopal meshes have re-
ceived a great amount of attention. Such methods are often formulated in terms of two sets of
degrees of freedom (DOFs) located inside mesh elements and on the mesh skeleton, respectively.
The former can often be eliminated (possibly after hybridization) by static condensation, whereas
the latter are responsible for the transmission of information among elements, and are therefore
globally coupled. To emphasize the role of the second set of DOFs, these methods are referred
to here as “skeletal”. Skeletal methods can be classified according to the continuity property of
skeletal DOFs on the mesh skeleton. We focus here on “discontinuous skeletal” methods, where
skeletal DOFs are single-valued polynomials over faces fully discontinuous at the face boundaries.
Since this terminology is not classical in the sense of standard finite elements, we explicitly point
out that here single-valued means that interface values match from one element to the adjacent
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one. Discontinuous, on the other hand, refers to the fact that skeletal DOFs are discontinuous at
vertices in 2d and edges in 3d.

Let Ω Ă Rd, d ě 1, denote an open, bounded, connected polytopal set, and let f P L2pΩq. To
avoid unnecessary complications, we consider the following pure diffusion model problem: Find
u : Ω Ñ R such that

´△u “ f in Ω,

u “ 0 on BΩ.
(1.1)

We introduce a unified formulation of discontinuous skeletal discretizations of problem (1.1) which
encompasses a large number of schemes from the literature. As a starting point, we define two
families of discretizations corresponding, respectively, to mixed and primal discontinuous skele-
tal methods. Each family is uniquely identified by prescribing three polynomial degrees defining
element-based and skeletal DOFs, and a stabilization bilinear form which has to satisfy two prop-
erties of simple verification: stability expressed in terms of a uniform norm equivalence, and
polynomial consistency. Several examples of methods available in the recent literature are shown
to belong to either one of those families. We then prove new equivalence results, collected in The-
orems 17, 18, and 20 below, which build a bridge between the two families of methods. Precisely,
we show that for any mixed method there exists a corresponding equivalent primal method, and
the converse is true provided that the gradients are approximated in suitable spaces. A unified
convergence analysis is also carried out delivering optimal error estimates in both energy- and
L2-norms; cf. Theorems 22 and 24 below.

A fundamental and inspiring example is presented in Section 3: it refers to the well-known
equivalence between the lowest-order Raviart–Thomas element and the nonconforming Crouzeix–
Raviart element on triangular meshes. In some sense, the framework presented in this paper
extends, with suitable modifications, this equivalence to recent methods supporting general poly-
topal meshes.

Polytopal methods were first investigated in the context of lowest-order discretizations starting
from several different points of view. In the context of finite volume schemes, several families
of polyhedral methods have been developed as an effort to weaken the conditions on the mesh
required for the consistency of classical five-point schemes. The resulting methods are expressed
in terms of local balances, and an explicit expression for the numerical fluxes is usually available.
Discontinuous skeletal methods in this context include the Mixed and Hybrid Finite Volume
schemes of [35, 39]. Continuous skeletal methods have also been considered, e.g., in [40].

Relevant features of the continuous problem different from local conservation have inspired
other approaches. Mimetic Finite Difference methods are derived by using discrete integration
by parts formulas to define the counterparts of differential operators and L2-products; cf. [13] for
an introduction. Discontinuous skeletal methods in this context include, in particular, the mixed
Mimetic Finite Difference scheme of [18]. An example of continuous skeletal method is provided,
on the other hand, by the nodal scheme of [16]. In the Discrete Geometric Approach [24], the
formal links with the continuous operators are expressed in terms of Tonti diagrams [45]. We also
cite in this context the Compatible Discrete Operator framework of [15]. To different extents, all
of the previous methods can be linked to the seminal ideas of Whitney on geometric integration.
Other methods that deserve to be cited here are the cell centered Galerkin methods of [26, 27],
which can be regarded as discontinuous Galerkin methods with only one unknown per element
where consistency is achieved by the use of cleverly-tailored reconstructions.

The close relation among the Mixed [35] and Hybrid [39] Finite Volume schemes and mixed
Mimetic Finite Difference methods [18] has been investigated in [36], where equivalence at the
algebraic level is demonstrated for generalized versions of such schemes; cf. also [46, Section 7] for
further insight into the link with submesh-based polyhedral implementations of classical mixed
finite elements. The results of [36] are recovered here as a special case. A unifying point of view for
the convergence analysis has been recently proposed in [37] under the name of Gradient Schemes.
Finally, the methods discussed above can often be regarded as lowest-order versions of more recent
polytopal technologies such as, e.g., Virtual Elements and Hybrid High-Order methods.

A natural development of polytopal methods was headed to increase the approximation order.
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It has been known for quite some time that high-order polyhedral discretizations can be obtained
by fully nonconforming approaches such as the discontinuous Galerkin method. An exposition of
the basic analysis tools in this framework can be found in [31]; cf. also [28, 29] for polynomial
approximation results on polyhedral elements based on the Dupont-Scott theory [38] and [8, 2,
19] for further developments. Particularly interesting among discontinuous Galerkin methods is
the hybridizable version introduced in [20, 23], which constitutes a first example of high-order
discontinuous skeletal method.

Very recent works have shown other possible approaches to the design of high-order polytopal
discretizations combining element-based and skeletal unknowns. A first example of arbitrary-order
discontinuous skeletal methods are primal [34, 30] and mixed [33] Hybrid High-Order methods.
Hybrid High-Order methods were originally introduced in [32] in the context of linear elasticity.
The main idea consists in reconstructing high-order differential operators based on suitably selected
DOFs and discrete integration by parts formulas. These reconstructions are then used to formulate
the local contributions to the discrete problem including a cleverly tailored stabilization that
penalizes high-order face-based residuals. A study of the relations among primal Hybrid High-
Order methods, Hybridizable Discontinuous Galerkin (HDG) methods, and High-Order Mimetic
Finite Differences [42] can be found in [22], where the corresponding numerical fluxes in the spirit of
HDG methods are identified. The hybridization of the original mixed Hybrid High-Order method
was studied in [1] (these results are recovered as a special case in this work).

Another framework including both continuous and discontinuous skeletal methods is provided
by Virtual Elements [9, 10]. Virtual Elements can be described as finite elements where the ex-
pressions of the basis functions are not available at each point, but suitable projections thereof
can be computed using the selected DOFs. Such computable projections are then used to approx-
imate bilinear forms, which also include a stabilization term that penalizes differences between the
DOFs and the computable projection. We are particularly interested here in mixed [17, 11, 12]
and nonconforming [6] Virtual Elements, both of which are discontinuous skeletal methods.

The rest of this paper is organized as follows. In Section 2 we formulate the assumptions on
the mesh and introduce the main notation. In Section 3 we recall the classical equivalence of
lowest-order Raviart–Thomas and nonconforming finite element methods. In Sections 4 and 5 we
introduce the families of mixed and primal discontinuous skeletal methods under study, and provide
several examples of lowest-order and high-order methods that fall in each category. In Section 6
we show how to obtain, starting from a discontinuous skeletal method in mixed formulation,
an equivalent primal method. Conversely, in Section 7, we show how to derive an equivalent
mixed formulation starting from a discontinuous skeletal method in primal formulation. Section 8
contains a unified convergence analysis yielding optimal error estimates in the energy- and L2-
norms.

2 Mesh and notation

Let H Ă R
`
˚ denote a countable set of meshsizes having 0 as its unique accumulation point. We

consider refined mesh sequences pThqhPH where, for all h P H, Th “ tT u is a finite collection of
nonempty disjoint open polytopal elements such that Ω “

Ť
TPTh

T and h “ maxTPTh
hT (hT

stands for the diameter of T ). For X Ă Rd, we denote by |X |N the N -dimensional Hausdorff
measure of X . A hyperplanar closed connected subset F of Ω is called a face if |F |d´1 ą 0 and
(i) either there exist distinct T1, T2 P Th such that F “ BT1 X BT2 (and F is an interface) or
(ii) there exists T P Th such that F “ BT X BΩ (and F is a boundary face). The set of interfaces
is denoted by F i

h, the set of boundary faces by Fb
h , and we let Fh :“ F i

h YFb
h . For all T P Th, the

sets FT :“ tF P Fh | F Ă BT u and F i
T :“ FT X F i

h collect, respectively, the faces and interfaces
lying on the boundary of T and, for all F P FT , we denote by nTF the normal to F pointing out
of T . Symmetrically, for all F P Fh, TF :“ tT P Th | F Ă BT u is the set containing the one or two
elements sharing F .

We assume that pThqhPH is admissible in the sense of [31, Chapter 1], i.e., for all h P H, Th
admits a matching simplicial submesh Th and there exists a real number ̺ ą 0 (the mesh regularity
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parameter) independent of h such that the following conditions hold: (i) For all h P H and all
simplex S P Th of diameter hS and inradius rS , ̺hS ď rS ; (ii) for all h P H, all T P Th, and all
S P Th such that S Ă T , ̺hT ď hS . We refer to [31, Chapter 1] and [28, 29] for a set of geometric
and functional analytic results valid on admissible meshes.

Let X be a mesh element or face. For an integer l ě 0, we denote by PlpXq the space spanned
by the restriction to X of d-variate polynomials of total degree l. We denote by p¨, ¨qX and }¨}X
the usual inner product and norm of L2pXq. The index is dropped when X “ Ω. The L2-projector
πl
X : L1pXq Ñ P

lpXq is defined such that, for all v P L1pXq,

pπl
Xv ´ v, wqX “ 0 @w P P

lpXq. (2.1)

Let a mesh element T P Th be fixed. For all integer l ě 0 we set

G
l
T :“ ∇P

l`1pT q, G
l

T :“
 
τ P P

lpT qd | pτ ,∇wqT “ 0 @w P P
l`1pT q

(
,

and denote by πl
G,T : L1pT qd Ñ G

l
T and πl

G,T
: L1pT qd Ñ G

l

T the L2-orthogonal projectors on G
l
T

and G
l

T , respectively. Clearly, we have the direct decomposition

P
lpT qd “ G

l
T ‘ G

l

T . (2.2)

For further use, at the global level, we also define the space of broken polynomials

P
lpThq :“

 
vh P L2pΩq | vT :“ vh|T P P

lpT q @T P Th
(
.

Throughout the paper, to avoid naming constants, we use the abridged notation a À b for the
inequality a ď Cb with real number C ą 0 independent of h. We will also write a « b to mean
a À b À a.

3 An inspiring example

In order to put the following discussion into perspective, we start by recalling an important
inspiring example, viz. the well-known equivalence between lowest-order Raviart–Thomas element
and nonconforming Crouzeix–Raviart element on triangular meshes.

The Raviart–Thomas element [44] is widely used for the approximation of problems involving
Hpdiv; Ωq when Th is a matching triangular mesh. A popular implementation of the Raviart–
Thomas scheme makes use of a hybridization procedure, introducing a Lagrange multiplier in
order to enforce the continuity of the normal component of vectors from one element to the other.
As a starting point, problem (1.1) is written in mixed form as follows: Find the flux σ P Hpdiv; Ωq
and the potential u P L2pΩq such that

pσ, τ q ` pdiv τ , uq “ 0 @τ P Hpdiv; Ωq,

´pdivσ, vq “ pf, vq @v P L2pΩq.

Taking the Raviart–Thomas finite element space RT
0pThq Ă Hpdiv; Ωq for the flux and the space of

piecewise constants P
0pThq Ă L2pΩq for the potential, its discretization reads: Find σh P RT

0pThq
and uh P P0pThq such that

pσh, τ hq ` pdiv τh, uhq “ 0 @τ h P RT
0pThq,

´pdivσh, vhq “ pf, vhq @vh P P
0pThq.

(3.1)

The hybridized version of (3.1) consists in introducing the space Λh of piecewise constants on the
internal portion of the mesh skeleton, and in solving the following problem which involves the
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discontinuous Raviart–Thomas space RT
0,dpThq: Find σh P RT

0,dpThq, uh P P0pThq, and λh P Λh

such that

pσh, τ hq ` pdiv τh, uhq `
ÿ

TPTh

ÿ

FPF i

T

pτ h¨nTF , λhqF “ 0 @τ h P RT
0,dpThq,

´pdivσh, vhq “ pf, vhq @vh P P
0pThq,

ÿ

TPTh

ÿ

FPF i

T

pσh¨nTF , µhqF “ 0 @µh P Λh.

(3.2)

The usual way of solving problem (3.2) is to invert the (block-diagonal) mass matrix corresponding
to the variables in RT

0,dpThq and to consider a statically condensed linear system of the form

AΛ “ F (3.3)

where A is symmetric and positive definite.
Let now NCpThq be the nonconforming Crouzeix–Raviart space of [25] on the same mesh Th; i.e.,

the space of piecewise affine functions which are continuous on the midnodes of the interelement
edges. Denoting by NC0pThq the subspace of NCpThq with DOFs lying on BΩ set to zero, the
approximation of problem (1.1) reads: Find uh P NC0pThq such that

p∇huh,∇hvhq “ pf, vhq @vh P NC0pThq, (3.4)

where ∇h denotes the broken gradient operator on Th. The matrix form of (3.4) is

BU “ G

with B symmetric and positive definite. It is now well understood that the matrices A and B are
identical, as well as the corresponding right hand sides F and G. This important equivalence is a
consequence of the results of [5, 43], [4, 21], and has been reported in this form in [46].

A natural question is whether results of this type can be obtained for higher order schemes
on general polytopal meshes. The results that we are going to present aim at describing a uni-
fied setting where the equivalence of primal, mixed, and hybrid formulation can be proved. For
a discussion of lowest-order Raviart–Thomas and Crouzeix–Raviart elements in the framework
introduced in the following section, we refer to Examples 4 and 13, respectively.

4 A family of mixed discontinuous skeletal methods

In this section we introduce a family of mixed discontinuous skeletal methods and provide a few
examples of members of this family.

4.1 Local spaces

For a given integer k ě 0 corresponding to the skeletal polynomial degree, we let l and m be two
integers such that

maxp0, k ´ 1q ď l ď k ` 1, m P t0, ku. (4.1)

Let a mesh element T P Th be given. We define the following space of flux degrees of freedom
(DOFs):

Σ
k,l,m
T

:“ pGl´1
T ‘ G

m

T q ˆ

˜
ą

FPFT

P
kpF q

¸
. (4.2)

For a generic element τ T of Σk,l,m
T we use the notation τ T “ pτT , pτTF qFPFT

q with τ T “ τG,T `
τ

G,T . For a fixed Lebesgue index s ą 2, we let Σ`pT q :“ tτ P LspT qd | div τ P L2pT qu and define

the local flux reduction map I
k,l,m
Σ,T : Σ`pT q Ñ Σ

k,l,m
T such that, for all τ P Σ`pT q,

I
k,l,m
Σ,T τ :“

`
πl´1

G,Tτ ` πm

G,T
τ ,

`
πk
F pτ ¨nTF q

˘
FPFT

˘
. (4.3)
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The space Σ
k,l,m
T is equipped with the L2pT qd-like norm }¨}Σ,T such that, for all τT P Σ

k,l,m
T ,

}τT }2Σ,T :“ }τT }2T `
ÿ

FPFT

hF }τTF }2F

“ }τG,T }2T ` }τ
G,T }2T ` `

ÿ

FPFT

hF }τTF }2F ,
(4.4)

where to pass to the second line we have used the orthogonal decomposition (2.2). Finally, we
define the following space of local potential DOFs:

U l
T :“ P

lpT q. (4.5)

4.2 Local reconstruction operators

The family of mixed discretizations of problem (1.1) relies on operator reconstructions defined at

the element level. Let T P Th. The discrete divergence Dl
T : Σk,l,m

T Ñ U l
T is such that, for all

τT P Σ
k,l,m
T ,

pDl
T τT , qqT “ ´pτT ,∇qqT `

ÿ

FPFT

pτTF , qqF @q P U l
T . (4.6)

The right-hand side of (4.6) resembles an integration by parts formula where the role of the vector
function represented by τ T in volumetric and boundary integrals is played by the element-based
and face-based DOFs, respectively.

The local reconstruction Pk
T : Σk,l,m

T Ñ G
k
T of the irrotational component of the flux is such

that, for all τ T P Σ
k,l,m
T ,

pPk
TτT ,∇wqT “ ´pDl

Tτ T , wqT `
ÿ

FPFT

pτTF , wqF @w P P
k`1pT q, (4.7)

where again the right-hand side is designed to resemble an integration by parts formula where
the continuous divergence operator is replaced by Dl

T , while the role of normal trace of the vector
function represented by τT is played by boundary DOFs.

Remark 1. The flux DOFs τ
G,T P G

m

T do not intervene in the definitions of either Dl
T nor Pk

T .

Finally, we define the full vector field reconstruction Sk
T : Σk,l,m

T Ñ PkpT qd such that, for all

τT P Σ
k,l,m
T ,

Sk
TτT :“ Pk

TτT ` τ
G,T . (4.8)

The following properties hold:

Dl
T I

k,l,m
Σ,T τ “ πl

T pdiv τ q @τ P Σ`pT q, (4.9)

Pk
T I

k,l,m
Σ,T τ “ τ @τ P G

k
T . (4.10)

Defining the space

S
k,m
T

:“

#
G
k
T if m “ 0,

PkpT qd if m “ k,
(4.11)

it follows from (4.10) together with the orthogonal decomposition (2.2) and the definitions (4.3)

of the reduction map I
k,l,m
Σ,T and (4.8) of Sk

T that

Sk
T I

k,l,m
Σ,T τ “ τ @τ P S

k,m
T , (4.12)

which expresses the polynomial consistency of Sk
T .
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4.3 Local bilinear form

Let T P Th. We approximate the L2pT qd-product of fluxes by means of the bilinear form mT :

Σ
k,l,m
T ˆ Σ

k,l,m
T Ñ R such that

mT pσT , τT q :“ pSk
TσT ,S

k
Tτ T qT ` sΣ,T pσT , τT q (4.13a)

“ pPk
TσT ,P

k
T τT qT ` pσ

G,T , τG,T qT ` sΣ,T pσT , τT q, (4.13b)

where the right-hand side is composed of a consistency and a stabilization term.

Assumption 1 (Bilinear form sΣ,T ). The symmetric, positive semi-definite bilinear form sΣ,T :

Σ
k,l,m
T ˆ Σ

k,l,m
T Ñ R satisfies the following properties:

(S1) Stability. It holds, for all τT P Σ
k,l,m
T , with norm }¨}Σ,T defined by (4.4),

}τT }2m,T :“ mT pτ T , τT q « }τT }2
Σ,T ;

(S2) Polynomial consistency. For all χ P S
k,m
T , with local flux reduction map I

k,l,m
Σ,T defined

by (4.3),

sΣ,T pIk,l,m
Σ,T χ, τ T q “ 0 @τ T P Σ

k,l,m
T .

4.4 Global spaces and mixed problem

We define the following global discrete spaces for the flux:

qΣk,l,m

h :“
ą

TPTh

Σ
k,l,m
T , Σ

k,l,m
h

:“

#
τ h P qΣk,l,m

h

ˇ̌
ˇ

ÿ

TPTF

τTF “ 0 @F P F
i
h

+
. (4.14)

The restriction of a DOF vector τh P qΣk,l,m

h to a mesh element T P Th is denoted by τT P Σ
k,l,m
T ,

and we equip qΣk,l,m

h (hence also Σ
k,l,m
h ) with the L2pΩqd-like norm (cf. (4.4) for the definition of

}¨}Σ,T )

}τh}2
Σ,h :“

ÿ

TPTh

}τT }2
Σ,T . (4.15)

The global space for the potential is spanned by broken polynomials of total degree l:

U l
h :“ P

lpThq. (4.16)

The global L2pΩqd-like product on qΣk,l,m

h is defined by element-by-element assembly setting, for

all σh, τ h P qΣk,l,m

h ,

mhpσh, τhq :“
ÿ

TPTh

mT pσT , τT q. (4.17)

We also need the global divergence operator Dl
h : qΣk,l,m

h Ñ U l
h such that, for all τh P qΣk,l,m

h ,

pDl
hτhq|T “ Dl

T τT @T P Th.

Problem 1 (Mixed problem). Find pσh, uhq P Σ
k,l,m
h ˆ U l

h such that,

mhpσh, τhq ` puh,D
l
hτhq “ 0 @τh P Σ

k,l,m
h , (4.18a)

´pDl
hσh, vhq “ pf, vhq @vh P U l

h. (4.18b)

Using standard arguments relying on the coercivity of mh (a consequence of (S1)) and the
existence of a Fortin interpolator (cf. (4.9)), one can prove that problem (4.18) is well-posed; cf.,
e.g., [14].
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Ref. Name k l m sΣ,T

[44] RT
0 Finite Element 0 0 0 Eq. (4.22)

[18] Mimetic Finite Difference
0 0 0 Eq. (4.20)

[36] Mixed Finite Volume
[24] Discrete Geometric Approach 0 0 0 Eq. (4.26)
[33] Mixed High-Order ě 0 k 0 Eq. (4.27)
[17] Mixed Virtual Element ě 1 k ´ 1 0 Eq. (4.28)
[12] Mixed Virtual Element ě 0 k k Eq. (4.29)

Table 1: Examples of methods originally introduced in mixed formulation.

Remark 2 (Hybridization and static condensation). Various possibilities are available to make the
actual implementation of the method (4.18) more efficient. A first option consists in implementing
the equivalent primal reformulation (6.16) described in detail below; cf. also Remark 10. Another
option, in the spirit of [3], consists in locally eliminating element-based flux DOFs and element-
based potential DOFs of degree ě 1 by locally solving small mixed problems. The resulting global
problem is expressed in terms of the skeletal flux DOFs plus one potential DOF per element.

4.5 Examples

We provide in this section a few examples of discontinuous skeletal methods originally introduced
in a mixed formulation which can be traced back to (4.18). Each method is uniquely defined by
prescribing the three polynomial degrees k, l, and m (in accordance with (4.1)) and the expression
of the local stabilization bilinear form sΣ,T for a generic mesh element T P Th. A synopsis is
provided in Table 1.

Example 3 (The Mimetic Finite Difference method of [18] and the Mixed Finite Volume method
of [36]). The Mimetic Finite Difference method of [18] and the Mixed Finite Volume method of [36,
Section 2.3] (which is a variation of the one originally introduced in [35]) correspond to the choice
k “ l “ m “ 0. We present them together since an equivalence result was already proved in [36].
In the lowest-order case, explicit expressions can be found for both D0

T and S0
T “ P0

T : For all

τT P Σ
0,0,0
T ,

D0
T τT “

1

|T |d

ÿ

FPFT

|F |d´1τTF , S0
TτT “ P0

TτT “
1

|T |d

ÿ

FPFT

|F |d´1τTF pxF ´ xT q, (4.19)

where xF is the barycenter of F and xT is an arbitrary point associated with T which may or
may not belong to T . The stabilization is parametrized by a symmetric, positive definite matrix
BT “ pBT

FF 1 qF,F 1PFT
:

sΣ,T pσT , τ T q “
ÿ

FPFT

ÿ

F 1PFT

pS0
TσT ¨nTF ´ σTF qBT

FF 1 pS0
TτT ¨nTF 1 ´ τTF 1 q. (4.20)

It is worth noting that the original Mixed Finite Volume method of [35] does not enter the present
framework as the corresponding stabilization bilinear form sΣ,T pσT , τ T q “

ř
FPFT

hT |F |d´1σTF τTF

violates (S2) (it is, however, weakly consistent).

Example 4 (The lowest-order Raviart–Thomas element). We assume that T is an element from
a matching simplicial mesh Th, and consider the lowest order Raviart–Thomas space RT

0pT q :“
P
0pT qd `xP

0pT q of [44]. Clearly, the vector space Σ0,0,0
T contains the standard DOFs for RT

0pT q

defined by the flux reduction map I
0,0,0
Σ,T as the average values of the normal components on each

face. It can be checked that RT
0pT q “ span

`
ϕT

F

˘
FPFT

where, with xT and xF barycenters of T
and F P FT , respectively,

ϕT
F pxq :“

|F |d´1

|T |d
pxF ´ xT q `

|F |d´1

d|T |d
px ´ xT q @x P T,
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and it holds pϕT
F ¨nTF q|F “ 1 and pϕT

F ¨nTF 1 q|F 1 “ 0 for all F 1 P FT ztF u (in d “ 2, this formula

is a variation of [7, Eq. (4.3)]). Let tT P RT
0pT q and τ T “ pτTF qFPFT

:“ I
0,0,0
Σ,T tT , so that

tT “
ř

FPFT
ϕT

F τTF . Straightforward computations show that

div tT “ D0
Tτ T , π0

T tT “ S0
Tτ T “ P0

Tτ T ,

with explicit expressions for D0
T and S0

T “ P0
T given by (4.19). Hence, we can rewrite the L2-

product of two functions sT , tT P RT
0pT q with DOFs σT :“ I

0,0,0
Σ,T sT and τ T :“ I

0,0,0
Σ,T tT as

follows:

psT , tT qT “ pπ0
TsT , π

0
T tT qT ` psT ´π0

T sT , tT ´π0
T tT qT “ pS0

TσT ,S
0
T τT qT ` sΣ,T pσT , τ T q, (4.21)

where, observing that pϕT
F ´ π0

Tϕ
T
F qpxq “

|F |d´1

d|T |d
px ´ xT q,

sΣ,T pσT , τT q :“
ÿ

FPFT

ÿ

F 1PFT

BT
FF 1σTF τTF 1 , BT

FF 1 :“
|F |d´1|F 1|d´1

d2|T |2d

ż

T

}x ´ xT }22 dx. (4.22)

From (4.21) it is clear that sΣ,T verifies both (S1) and (S2).

Example 5 (The Discrete Geometric Approach of [24]). Denote by xT an arbitrary point in T ,
and assume that T is star-shaped with respect to T . The Discrete Geometric Approach of [24] is
a lowest-order method corresponding to k “ l “ m “ 0 based on the stable flux reconstruction
such that, for all τT P Σ

0,0,0
T ,

S
dga
T τT :“

ÿ

GPFT

|G|d´1τTGϕTG, (4.23)

where, for all G P FT , the restriction of the basis function ϕTG to any pyramid PTF of apex xT

and base F P FT satisfies, denoting by xF the barycenter of F and setting hTF :“ distpxT , F q,

ϕTG|PTF
:“

pxG ´ xT q

|T |d
`

ˆ
pxF ´ xT q b nTF

|T |dhTF

´
δFG

|G|d´1hTG

Id

˙
pxT ´ xGq, (4.24)

where δFG “ 1 if F “ G, 0 otherwise. The local bilinear form mT is then defined setting, for all
σT , τ T P Σ

0,0,0
T ,

mT pσT , τT q :“ pSdga
T σT ,S

dga
T τT qT . (4.25)

Plugging (4.24) into (4.23), and using the second formula in (4.19), we can identify in the expression

of Sdga
T two L2pT qd-orthogonal contributions observing that, for all τ T P Σ

0,0,0
T and all F P FT , it

holds
pSdga

T τT q|PTF
“ S0

TτT ` h´1
TF pS0

Tτ ¨nTF ´ τTF qpxT ´ xF q,

where the first term in the right-hand side represents the consistent part of the flux, while the
second acts as a stabilization. Hence, a straightforward computation shows that the bilinear form
mT defined by (4.25) can be recast in the form (4.13a) with stabilization bilinear form

sΣ,T pσT , τT q “
ÿ

FPFT

}xT ´ xF }22
dhTF

pS0
TσT ¨nTF ´ σTF ,S

0
Tτ T ¨nTF ´ τTF qF . (4.26)

Note that this expression can be recovered from (4.20) taking BT “ diag
´

}xT ´xF }2
2

|F |d´1

dhTF

¯
FPFT

.

Example 6 (The Mixed High-Order method of [33]). The Mixed High-Order method of [33]
corresponds to the choice l “ k and m “ 0, for which Sk

T “ Pk
T holds. The stabilization term is

defined by penalizing face-based residuals in a least-square fashion:

sΣ,T pσT , τT q “
ÿ

FPFT

hF pSk
TσT ¨nTF ´ σTF ,S

k
T τT ¨nTF ´ τTF qF . (4.27)

When k “ 0, this stabilization bilinear form coincides with (4.20) with BT “ diagphF |F |d´1qFPFT
.
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Example 7 (The Virtual Element method of [17]). Let d “ 2. We consider the Mixed Virtual
Element method of [17] when the diffusion tensor (denoted by K in the reference) is the 2 ˆ 2
identity matrix I2. In this case, while the DOFs for the flux [17, Eq. (3.8)] do not coincide with
the ones in (4.2), the resulting method [17, Eq. (6.1)] can be recast in the form (4.18) (note,
however, that this is no longer true for more general diffusion tensors). For a given integer k ě 1,
the underlying finite-dimensional local virtual space is

S
vem,1pT q :“ ttT P Hpdiv;T q X Hprot;T q |

div tT P P
k´1pT q, rot tT P P

k´1pT q, and tT |F ¨nTF P P
kpF q for all F P FT u,

where rot tT :“ B1tT,2 ´ B2tT,1. Observing that, when K “ I2, for all tT P S
vem,1pT q, rot tT does

not contribute to defining div tT nor the projection on G
k
T defined by [17, Eq. (5.5)], it can be

showed that the stabilization term in [17, Eq. (5.6)] actually enforces a zero-rot condition on the
discrete solution. Hence, we can equivalently reformulate the method [17, Eq. (6.1)] in terms of
the zero-rot subspace

S
vem,1prot0;T q :“ ttT P S

vem,1pT q | rot tT “ 0u.

This equivalent reformulation corresponds to the mixed form (4.18) with polynomial degrees
l “ k ´ 1, and m “ 0, and stabilization bilinear form sΣ,T defined as described hereafter. We

preliminarily observe that the reduction map I
k,k´1,0
Σ,T (cf. (4.3)) defines an isomorphism from

S
vem,1prot0;T q to Σ

k,k´1,0
T . Assume that a basis for Σ

k,k´1,0
T has been fixed (a scaled mono-

mial basis is proposed in the original reference), and denote by Svem,1
Σ,T the bilinear form on

S
vem,1prot0;T q ˆ S

vem,1prot0;T q represented by the identity matrix in this basis. The stabi-
lization bilinear form is then given by

sΣ,T pσT , τT q :“ Svem,1
Σ,T pPk

TσT ´ sT ,P
k
T τT ´ tT qT , (4.28)

where sT and tT are the unique functions of Svem,1prot0;T q such that σT “ I
k,k´1,0
Σ,T sT and

τT “ I
k,k´1,0
Σ,T tT . This stabilization essentially corresponds to penalising in a least-square sense

the high-order differences πk´2
G,T pPk

Tτ T ´ τG,T q and pPk
Tτ T ¨nTF ´ τTF q, F P FT .

Example 8 (The Virtual Element method of [12]). A different Virtual Element method in dimen-
sion d “ 2 was presented in [12] in the context of more general elliptic problems featuring variable
diffusion as well as advective and reactive terms. In the pure diffusion case (which, in the original
notation from the reference, corresponds to κ “ I2, b “ 0, and γ “ 0), the method corresponds
to the choice l “ m “ k with k ě 0. The underlying virtual space is, this time,

S
vem,2pT q :“ ttT P Hpdiv;T q X Hprot;T q |

div tT P P
kpT q, rot tT P P

k´1pT q, and ptT ¨nTF q|F P P
kpF q for all F P FT u.

The local flux reduction map I
k,k,k
Σ,T defines an isomorphism from S

vem,2 to Σ
k,k,k
T , which contains

the DOF defined by [12, Eqs. (16)–(18)]. The stabilization bilinear form is defined in a similar
manner as in the previous example: Given a bilinear form Svem,2

Σ,T on S
vem,2pT q ˆS

vem,2pT q with

the same scaling as the L2pT qd-inner product of fluxes, we set

sΣ,T pσT , τ T q :“ Svem,2
Σ,T pSk

TσT ´ sT ,S
k
Tτ T ´ tT qT , (4.29)

where sT and tT are the unique functions of S
vem,2pT q such that σT “ I

k,k,k
Σ,T sT and τT “

I
k,k,k
Σ,T tT . This stabilization essentially corresponds to penalising in a least-square sense the high-

order differences πk´1
G,T pPk

T τT ´ τG,T q and pSk
T τT ¨nTF ´ τTF q, F P FT . For further developments

on Hpdiv; Ωq- and Hpcurl; Ωq-conforming Virtual Elements we refer to [11].
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5 A family of primal discontinuous skeletal methods

We introduce in this section a family of primal discontinuous skeletal methods and provide a few
examples of members of this family.

5.1 Local space

Let a mesh element T P Th and three polynomial degrees k, l, and m as in (4.1) be fixed. We
define the following local space for the potential:

U
k,l
T

:“ U l
T ˆ

˜
ą

FPFT

P
kpF q

¸
,

where, recalling (4.5), U l
T “ PlpT q. The local potential reduction map I

k,l
U,T : H1pT q Ñ U

k,l
T is

such that, for all v P H1pT q,

I
k,l
U,T v :“ pπl

T v, pπk
F vqFPFT

q. (5.1)

We define on U
k,l
T the H1pT q-like seminorm }¨}U,T such that, for all vT P U

k,l
T ,

}vT }2U,T :“ }∇vT }2T `
ÿ

FPFT

h´1
F }vF ´ vT }2F , (5.2)

and observe that, by virtue of a local Poincaré inequality, the map }¨}U,T defines a norm on quotient
space

U
k,l
T,˚ :“ U

k,l
T {Ik,lU,TP

0pT q, (5.3)

where two elements of Uk,l
T belong to the same equivalence class if their difference is the interpolate

of a constant function over T . Clearly, dimpUk,l
T,˚q “ dimpUk,l

T q ´ 1.

5.2 Local gradient reconstruction

Let T P Th. The family of primal methods hinges on the local gradient reconstruction operator
Gk

T : Uk,l
T Ñ S

k,m
T (cf. (4.11)) defined such that, for all vT P U

k,l
T ,

pGk
T vT , τ qT “ ´pvT , div τ qT `

ÿ

FPFT

pvF , τ ¨nTF qF @τ P S
k,m
T , (5.4)

where the right-hand side is devised so as to resemble an integration by parts formula where the
role of the function represented by vT inside volumetric and boundary terms is played by element-
and face-based DOFs, respectively.

Remark 9 (Polynomial degree m). The polynomial degree m does not intervene in the defini-
tion (5.1) of the local space of potential DOFs. Its role is to determine the arrival space for the
discrete gradient operatorGk

T which, recalling (4.11), is either G
k
T (if m “ 0) or PkpT qd (if m “ k).

Adapting the arguments of [34, Lemma 3] (cf., in particular, Eq. (17) therein), it can be
checked that the following commuting property holds: For all v P H1pT q,

Gk
T I

k,l
U,T v “ π

k,m
S,T ∇v, (5.5)

where πk,m
S,T denotes the L2-orthogonal projector on S

k,m
T and the potential reduction map I

k,l
U,T is

defined by (5.1).
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5.3 Local bilinear form

We define, for all T P Th, the local bilinear form aT : Uk,l
T ˆ U

k,l
T Ñ R as follows:

aT puT , vT q :“ pGk
TuT ,G

k
T vT qT ` sU,T puT , vT q, (5.6)

where, as for the bilinear form mT defined by (4.13a), the right-hand side is composed of a
consistency and a stabilization term.

Assumption 2 (Bilinear form sU,T ). The symmetric, positive semi-definite bilinear form sU,T :

U
k,l
T ˆ U

k,l
T Ñ R satisfies the following properties:

(S11) Stability. It holds, for all vT P U
k,l
T , with seminorm }¨}U,T defined by (5.2),

}vT }2a,T :“ aT pvT , vT q « }vT }2U,T .

(S21) Polynomial consistency. For all w P Pk`1pT q, with local potential reduction map I
k,l
U,T

defined by (5.1),

sU,T pIk,lU,Tw, vT q “ 0 @vT P U
k,l
T .

5.4 Global space and primal problem

We define the following global spaces of potential DOFs with single-valued interface unknowns:

U
k,l
h

:“ U l
h ˆ

˜
ą

FPFh

P
kpF q

¸
, U

k,l
h,0

:“
!
vh P U

k,l
h | vF “ 0 @F P F

b
h

)
, (5.7)

where the subspace U
k,l
h,0 embeds the homogeneous Dirichlet boundary condition. For a generic

DOF vector vh P U
k,l
h we use the notation vh “ ppvT qTPTh

, pvF qFPFh
q, and we denote by vT P U

k,l
T

its restriction to T . We also denote by vh P PlpThq the piecewise polynomial function such that

vh|T “ vT for all T P Th. On U
k,l
h , we define the global H1pΩq-like seminorm }¨}U,h such that, for

all vh P U
k,l
h ,

}vh}2U,h :“
ÿ

TPTh

}vT }2U,T , (5.8)

with }¨}U,T given by (5.2). Following a reasoning analogous to that of [32, Proposition 5], it can be

easily checked that the map }¨}U,h defines a norm on U
k,l
h,0. We will also need the global potential

reduction map I
k,l
U,h : H1pΩq Ñ U

k,l
h such that, for all v P H1pΩq,

I
k,l
U,hv “ ppπl

T vqTPTh
, pπk

F vqFPFh
q.

Clearly, the restriction of Ik,lU,h to a mesh element T P Th coincides with the local potential reduction

map defined by (5.1). Also, Ik,lU,h maps elements of H1
0 pΩq to elements of Uk,l

h,0. Finally, we define

the global bilinear form ah : Uk,l
h ˆ U

k,l
h Ñ R by element-by-element assembly setting

ahpuh, vhq :“
ÿ

TPTh

aT puT , vT q.

Problem 2 (Primal problem). Find uh P U
k,l
h,0 such that

ahpuh, vhq “ pf, vhq @vh P U
k,l
h,0. (5.9)

Remark 10 (Static condensation). In the actual implementation of the method (5.9), element-based
DOFs can be locally eliminated by static condensation. The procedure is essentially analogous to
the one described, e.g., in [22, Section 2.4], to which we refer for further details.
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Ref. Name k l m sU,T

[39] Hybrid Finite Volume 0 0 0 Eq. (5.11)
[36] Hybrid Finite Volume 0 0 0 Eq. (5.13)
[41] Hybridizable Discontinuous Galerkin ě 0 k ` 1 k Eq. (5.18)
[22] Hybridizable Discontinuous Galerkin ě 0 Eq. (4.1) k Eq. (5.15)
[34] Hybrid High-Order ě 0 k 0 Eq. (5.15)
[22] Hybrid High-Order ě 0 Eq. (4.1) 0 Eq. (5.15)

[42, 6] High-Order Mimetic ě 0* k ´ 1 0 Eq. (5.19)

Table 2: Examples of methods originally introduced in primal formulation. * The High-Order
Mimetic method enters the present framework only for k ě 1.

5.5 Examples

We collect in this section a few examples of discontinuous skeletal methods originally introduced
in a primal formulation which can be traced back to (5.9). Each method is uniquely defined by
prescribing the three polynomial degrees k, l, and m (in accordance with (4.1)) and the expression
of the local stabilization bilinear form sU,T for a generic mesh element T P Th. A synopsis is
provided in Table 2.

Example 11 (The Hybrid Finite Volume method of [39] and its generalization of [36]). The
Hybrid Finite Volume method of [39, Section 2.1] corresponds to k “ l “ m “ 0. In this case, an
explicit expression for the gradient operator G0

T defined by (5.4) is available: For all vT P U
0,0
T ,

G0
T vT “

1

|T |d

ÿ

FPFT

|F |d´1vFnTF . (5.10)

For every element T P Th, the stabilization bilinear form is such that

sU,T puT , vT q “
ÿ

FPFT

|F |d´1
η

hTF

δ0TFuT δ
0
TF vT , (5.11)

where η ą 0 is a user-dependent stabilization parameter, hTF as in Example 5 and the face-based
residual operator δ0TF : U0,0

T Ñ P0pF q is such that, denoting by xF the barycenter of F and by
xT an arbitrary point associated with T which may or may not belong to T ,

δ0TF vT :“ vT ` G0
T vT ¨pxF ´ xT q ´ vF . (5.12)

In [36, Section 2.2], the following generalization of (5.11) is proposed: For a given positive definite
matrix BT “ pBT

FF 1 qF,F 1PFT
,

sU,T puT , vT q “
ÿ

FPFT

ÿ

F 1PFT

δ0TFuTB
T
FF 1δ0TF 1vT . (5.13)

Example 12 (The Hybrid High-Order method of [34] and the variants of [22]). The original
Hybrid High-Order method of [34] corresponds to the choice l “ k and m “ 0. In [22], variants
corresponding to l “ k ´ 1 (when k ě 1) and l “ k ` 1 have also been proposed. Let an element

T P Th be fixed, and define the potential reconstruction operator pk`1
T : Uk,l

T Ñ Pk`1pT q such

that, for all vT P U
k,l
T ,

∇pk`1
T vT “ Gk

T vT and ppk`1
T vT ´ vT , 1qT “ 0. (5.14)

Note that the first condition makes sense since, having supposed m “ 0, Gk
T vT P G

l
T . The

stabilization bilinear form is defined as follows:

sU,T puT , vT q “
ÿ

FPFT

h´1
F pδkTFuT , δ

k
TF vT qF , (5.15)
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where, for all F P FT , the face-based residual operator δkTF : Uk,l
T Ñ PkpF q is such that, for all

vT P U
k,l
T ,

δkTF vT “ πk
F

`
pk`1
T vT ´ vF ´ πl

T ppk`1
T vT ´ vT q

˘
. (5.16)

As already observed in [34, Section 2.5], in the lowest-order case k “ 0 the face-based residuals
defined by (5.12) and (5.16) coincide, and the stabilization (5.15) can be recovered from (5.13)
selecting BT “ diagph´1

F |F |d´1qFPFT
(the only difference with respect to (5.11) is the change of

local scaling hTF Ð hF ).

Example 13 (The Crouzeix–Raviart finite element). Let T be an element belonging to a matching
simplicial mesh Th with barycenter xT , and consider the Crouzeix–Raviart element NCpT q of [25].
We study the solution of problem (5.9) using the Hybrid Finite Volume method of Example 11
(or, equivalently, the Hybrid High-Order method of Example 12 with k “ l “ m “ 0) but with
right-hand side discretized as ÿ

TPTh

pf, p1T vT qT , (5.17)

where the potential reconstruction p1T is defined according to (5.14) but with average value on T

set to 1
d`1

ř
FPFT

vF (here, hTF is the orthogonal distance of xT from F ). We start by noticing

that it holds π0
Fp

1
T vT “ p1T vT pxF q “ vF for all vT P U

k,l
T and all F P FT with xF barycenter of

F . As a consequence, for the face-based residual operator (5.12) it holds for all vT P U
0,0
T that

δ0TF vT “ ´π0
T pp1T vT ´ vT q “ vT ´ p1T vT pxT q.

Then, observing that element-based DOFs do not contribute to the consistency term in (5.6) nor
to the right-hand side, we infer that the stabilization term is actually enforcing the condition
p1T vT pxT q “ vT for all T P Th. As a result, denoting by uh P U

0,0
h,0 the solution of problem (5.9)

with right-hand side modified as in (5.17), the piecewise affine field equal to p1TuT inside each
mesh element T P Th coincides with the Crouzeix–Raviart solution (3.4).

Example 14 (The Hybridizable Discontinuous Galerkin method of [41] and the variants of [22]).
The Hybridizable Discontinuous Galerkin originally proposed in [41, Remark 1.2.4] corresponds
to the case l “ k ` 1 and m “ k and stabilization

sU,T puT , vT q “
ÿ

FPFT

h´1
F pπk

F puT ´ uF q, πk
F pvT ´ vF qqF . (5.18)

As pointed out in [22, Remark 2], this stabilization coincides with (5.15) when l “ k ` 1. Moti-
vated by this remark, variants corresponding to the choices l “ k ´ 1 (when k ě 1) and l “ k and
m “ k are proposed therein. It is worth noting here that the original Hybridizable Discontinuous
Galerkin method of [20, 23] does not fit in the present framework since the corresponding stabi-
lization bilinear form is only polynomially consistent up to degree k, i.e., it does not satisfy (S21).
Correspondingly, the orders of convergence are reduced (cf. [22, Table 1] for further details).

Example 15 (The High-Order Mimetic method of [42, 6]). The High-Order Mimetic method
of [42] (subsequently referred to as Nonconforming Virtual Element method in [6]) provides a
high-order generalization of the concepts underlying Mimetic Difference Methods (cf., e.g., [13]).
Its lowest-order version, corresponding to the case k “ 0 and l “ ´1, violates (4.1), and therefore
does not enter our unified framework. For k ě 1, on the other hand, it corresponds to the choices
l “ k ´ 1 and m “ 0. To write the corresponding bilinear form, define the finite-dimensional local
virtual space

UkpT q :“
 
vT P H1pT q | △vT P P

k´1pT q and p∇vT q|F ¨nTF P P
kpF q for all F P FT

(
.

Clearly, Pk`1pT q Ă UkpT q, and it can be proved that Ik,k´1
U,T defines an isomorphism from UkpT q

to U
k,k´1
T . Denote by ShomT : UkpT q ˆ UkpT q Ñ R a bilinear form whose representation in the
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canonical basis of UkpT q is spectrally equivalent to the unit matrix. The stabilization bilinear

form is obtained setting, for all uT , vT P U
k,l
T ,

sU,T puT , vT q :“ hd´2
T ShomT ppk`1

T uT ´ uT , p
k`1
T vT ´ vT q, (5.19)

where uT and vT are the unique functions in UkpT q such that uT “ I
k,k´1
U,T uT and vT “ I

k,k´1
U,T vT ,

while the operator pk`1
T is defined by (5.14). The stabilization (5.19) essentially corresponds to pe-

nalizing in a least-square sense the high-order differences πl
T ppk`1

T vT ´ vT q and πk
F ppk`1

T vT ´ vF q,
F P FT , with scaling factor choosen so that the uniform equivalence in (S11) holds.

6 From mixed to primal methods

In this section we obtain from (4.18) an equivalent primal problem by hybridization. The pri-
mal hybrid problem is then shown to belong to the family (5.9) of primal discontinuous skeletal
methods.

6.1 Mixed hybrid formulation of mixed methods

We define the bilinear form bh : qΣk,l,m

h ˆU
k,l
h Ñ R (with spaces qΣk,l,m

h and U
k,l
h defined by (4.14)

and (5.7), respectively) such that, for all pτ h, vhq P qΣk,l,m

h ˆ U
k,l
h ,

bhpτ h, vhq :“
ÿ

TPTh

bT pτ T , vT q, bT pτT , vT q :“ pDl
T τT , vT qT ´

ÿ

FPFT

pτTF , vF qF . (6.1)

For further use, we note that it holds for all T P Th, all τ T P Σ
k,l,m
T , and all vT P U

k,l
T ,

bT pτ T , vT q “ ´pτG,T ,∇vT qT `
ÿ

FPFT

pτTF , vT ´ vF qF , (6.2)

as can be easily checked replacing Dl
T by its definition (4.6) and accounting for Remark 1. Hence,

using the Cauchy–Schwarz inequality and recalling the definitions (4.4) and (5.2) of }¨}Σ,T and
}¨}U,T , we infer the following boundedness result for bT :

|bT pτ T , vT q| ď }τT }Σ,T }vT }U,T . (6.3)

Problem 3 (Mixed hybrid problem). Find pσh, uhq P qΣk,l,m

h ˆ U
k,l
h,0 such that,

@T P Th, mT pσT , τ T q ` bT pτ T , uT q “ 0 @τT P Σ
k,l,m
T , (6.4a)

´bhpσh, vhq “ pf, vhq @vh P U
k,l
h,0. (6.4b)

Compared to the mixed problem (4.18), the single-valuedness of interface flux unknowns is

enforced here by Lagrange multipliers (corresponding to the skeletal DOFs in U
k,l
h,0) instead of

being embedded in the discrete space. Equation (6.4a) defines a set of local constitutive relations
connecting flux to potential DOFs inside each mesh element. Equation (6.4b), on the other hand,
expresses local balances and a global transmission condition. In what follows, we will eliminate flux
unknowns by locally inverting (6.4a), ending up with a problem in the hybrid potential unknowns
only.

6.2 Mixed-to-primal potential-to-flux operator

For all T P Th, we define the local mixed-to-primal potential-to-flux operator ςk,l,mT : Uk,l
T Ñ Σ

k,l,m
T

such that, for all vT P U
k,l
T ,

mT pςk,l,mT vT , τT q “ ´bT pτ T , vT q @τT P Σ
k,l,m
T . (6.5)
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Recalling the reformulation (6.2) of bT , (6.5) equivalently rewrites

mT pςk,l,mT vT , τT q “ p∇vT , τG,T qT `
ÿ

FPFT

pvF ´ vT , τTF qF @τ T P Σ
k,l,m
T . (6.6)

We next state some useful properties for the potential-to-flux operator.

Lemma 16 (Properties of the mixed-to-primal potential-to-flux operator). Let a mesh element
T P Th be given and let sΣ,T be a bilinear form satisfying Assumption 1. Then, the corresponding

potential-to-flux operator ς
k,l,m
T given by (6.5) is well defined and has the following properties:

1) Stability and continuity. For all vT P U
k,l
T , it holds

}ςk,l,mT vT }Σ,T « }vT }U,T , (6.7)

with norms }¨}Σ,T and }¨}U,T defined by (4.4) and (5.2), respectively.

2) Commuting property. For all w P Pk`1pT q, we have

ς
k,l,m
T I

k,l
U,Tw “ I

k,l,m
Σ,T ∇w. (6.8)

3) Link with the discrete gradient operator. It holds, with operators Gk
T and Sk

T defined by (5.4)
and (4.8), respectively, that

Gk
T :“ Sk

T ˝ ς
k,l,m
T . (6.9)

Proof. Problem (6.5) is well-posed owing to assumption (S1) expressing the coercivity of mT . As

a result, ςk,l,mT is well defined.

1) Stability and continuity. Using (S1) followed by the definition (6.5) of ςk,l,mT and the bound-

edness (6.3) of bT , we infer, for all vT P U
k,l
T ,

}ςk,l,mT vT }2Σ,T À }ςk,l,mT vT }2m,T “ ´bT pςk,l,mT vT , vT q ď }ςk,l,mT vT }Σ,T }vT }U,T . (6.10)

To prove the converse inequality, let τT P Σ
k,l,m
T in (6.6) be such that τT “ ∇vT and τTF “

h´1
F pvF ´ vT q for all F P FT , and observe that

}vT }2U,T “ mT pςk,l,mT vT , τ T q À }ςk,l,mT vT }Σ,T }τT }Σ,T “ }ςk,l,mT vT }Σ,T }vT }U,T , (6.11)

where we have used the Cauchy–Schwarz inequality together with (S1) to bound mT and the
definitions (4.4) of }¨}Σ,T and (5.8) of }¨}U,T to infer }τT }Σ,T “ }vT }U,T and conclude.

2) Commuting property. Let w P Pk`1pT q. Using the definition (6.5) of ςk,l,mT with vT “ I
k,l
U,Tw

and recalling (6.1), we infer, for all τT P Σ
k,l,m
T ,

mT pςk,l,mT I
k,l
U,Tw, τ T q “ ´pπl

Tw,D
l
T τT qT `

ÿ

FPFT

pπk
Fw, τTF qF

“ ´pw,Dl
T τ T qT `

ÿ

FPFT

pw, τTF qF “ p∇w,Pk
T τT qT ,

(6.12)

where we have used the definitions (2.1) of πl
T and πk

F to pass to the second line and the defini-

tion (4.7) of Pk
T to conclude. On the other hand, using the definition (4.13a) of mT followed by

the polynomial consistency (4.12) of Sk
T together with (S2), for all τ T P Σ

k,l,m
T we have that

mT pIk,l,m
Σ,T ∇w, τ T q “ pSk

T I
k,l,m
Σ,T ∇w,Sk

T τT qT ` sΣ,T pIk,l,m
Σ,T ∇w, τ T q

“ p∇w,Sk
TτT qT “ p∇w,Pk

T τT qT ,
(6.13)

where the last equality follows from the definition (4.8) of Sk
T together with the orthogonal de-

composition (2.2). Subtracting (6.13) from (6.12), we infer, for all τ T P Σ
k,l,m
T ,

mT pςk,l,mT I
k,l
U,Tw ´ I

k,l,m
Σ,T ∇w, τ T q “ 0,

from which (6.8) follows since mT is coercive on Σ
k,l,m
T owing to (S1).
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3) Link with the discrete gradient operator. Let vT P U
k,l
T , τ P S

k,m
T , and set τT :“ I

k,l,m
Σ,T τ .

Recalling the definition (4.13a) of mT , and using the polynomial consistency (4.12) of Sk
T together

with (S2), it is readily inferred that

mT pςk,l,mT vT , τ T q “ ppSk
T ˝ ς

k,l,m
T qvT , τ qT . (6.14)

On the other hand, recalling the definitions (4.3) of Ik,l,m
Σ,T and (6.1) of bT , we get

bT pτT , vT q “ pvT ,D
l
Tτ T qT ´

ÿ

FPFT

pvF , τTF qF

“ pvT , π
l
T pdiv τ qqT ´

ÿ

FPFT

pvF , π
k
F pτ ¨nTF qqF

“ pvT , div τ qT ´
ÿ

FPFT

pvF , τ ¨nTF qF “ ´pGk
T vh, τ qT ,

(6.15)

where we have used the commuting property (4.9) of Dl
T in the second line and the definition (2.1)

of πl
T and πk

F and (5.4) of Gk
T in the third. To conclude, plug (6.14) and (6.15) into the defini-

tion (6.5) of ςk,l,mT .

6.3 Equivalent primal formulations of mixed methods

We start by showing a link among problems (4.18), (6.4), and the following

Problem 4 (Primal hybrid problem). Find pσh, uhq P qΣk,l,m

h ˆ U
k,l
h,0 such that

σT “ ς
k,l,m
T uT @T P Th, (6.16a)

with potential-to-flux operator ςk,l,mT defined by (6.5) and uh solution of

ahpuh, vhq “ pf, vhq @vh P U
k,l
h,0, (6.16b)

where the bilinear form ah on U
k,l
h ˆ U

k,l
h is such that

ahpuh, vhq :“
ÿ

TPTh

aT puT , vT q, aT puT , vT q :“ mT pςk,l,mT uT , ς
k,l,m
T vT q. (6.17)

The well-posedness of (6.16b) is an immediate consequence of point 1) in Theorem 18 below.

Theorem 17 (Link among the mixed, mixed hybrid and primal hybrid problems). For all T P Th,

let sΣ,T satisfy Assumption 1. Let pσh, uhq P qΣk,l,m

h ˆU
k,l
h,0, and let uh P U l

h be such that uh|T “ uT

for all T P Th. Then, the following statements are equivalent:

(i) pσh, uhq solves the mixed hybrid problem (6.4);

(ii) σh P Σ
k,l,m
h and pσh, uhq solves the mixed problem (4.18);

(iii) pσh, uhq solves the primal hybrid problem (6.16).

Proof. The equivalence (i) ðñ (ii) classically follows from the theory of Lagrange multipliers.
Let us prove the equivalence (i) ðñ (iii). We first show that if pσh, uhq solves the mixed hybrid
problem (6.4), then it solves the primal hybrid problem (6.16). Equation (6.16a) immediately
follows from (6.4a) recalling the definition (6.5) of the potential-to-flux operator. As a consequence,

it holds for all T P Th and all vT P U
k,l
T ,

´bT pσT , vT q “ ´bT pςk,l,mT uT , vT q “ mT pςk,l,mT uT , ς
k,l,m
T vT q “ aT puT , vT q,
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where we have used the definition (6.5) of the potential-to-flux operator together with the sym-
metry of mT in the second equality and the definition (6.17) of the bilinear form aT to conclude.
This implies that (6.4b) is equivalent to (6.16b). By similar arguments, we can prove that if
pσh, uhq solves the primal hybrid problem (6.16), then it solves the mixed hybrid problem (6.4),
thus concluding the proof.

We close this section with our main result, viz. the existence of a primal method belonging
to the family (5.9) whose solution coincides with that of the mixed method (4.18) for given
stabilization bilinear forms satisfying Assumption 1. In the light of Theorem 17, it suffices to
state the equivalence with respect to the corresponding mixed hybrid formulation (6.4).

Theorem 18 (Link with the family of primal discontinuous skeletal methods). For all T P Th,

let sΣ,T satisfy Assumption 1 and set with ς
k,l,m
T defined by (6.5):

sU,T puT , vT q :“ sΣ,T pςk,l,mT uT , ς
k,l,m
T vT q. (6.18)

Then,

1) Properties of sU,T . The stabilization bilinear forms sU,T , T P Th, satisfy Assumption 2;

2) Link with primal methods. uh P U
k,l
h,0 solves the primal problem (5.9) with stabilization as

in (6.18) if and only if pσh, uhq P qΣk,l,m

h ˆU
k,l
h,0 with σh such that σT “ ς

k,l,m
T uT for all T P Th

solves the mixed hybrid problem (6.4).

Proof. 1) Properties of sU,T . Let T P Th. The bilinear form sU,T is clearly symmetric and
positive semi-definite. It then suffices to prove conditions (S11) and (S21). To prove (S11), observe

that for all vT P U
k,l
T we have

}vT }a,T “ }ςk,l,mT vT }m,T « }ςk,l,mT vT }Σ,T « }vT }U,T ,

where we have used the definition (6.17) of aT , (S1), and the stability and continuity (6.7) of

ς
k,l,m
T . Let us prove (S21). Letting w P P

k`1pT q, for all vT P U
k,l
T we have

sU,T pIk,lU,Tw, vT q “ sΣ,T pςk,l,mT I
k,l
U,Tw, ς

k,l,m
T vT q “ sΣ,T pIk,l,m

Σ,T ∇w, ς
k,l,m
T vT q “ 0,

where we have used the definition (6.18) of sU,T , the commuting property (6.8), and (S2).
2) Link with primal methods. Compare the primal hybrid formulation (6.16) with the primal

formulation (5.9) and recall the equivalence with the mixed hybrid formulation (6.4) stated in
Theorem 17.

7 From primal to mixed methods

In this section we show that the primal discontinuous skeletal methods of Section 5 with m “ 0
can be recast into the mixed formulation introduced in Section 4. This enables us to close the
circle and show a precise equivalence relation between the family (4.18) of mixed discontinuous
skeletal methods and the family (5.9) of primal discontinuous skeletal methods.

7.1 Primal-to-mixed potential-to-flux operator

We assume from this point on that, for a given integer k ě 0, l is as in (4.1) and

m “ 0.

The crucial ingredient is the primal-to-mixed potential-to-flux operator ςk,lT : Uk,l
T Ñ Σ

k,l,0
T such

that, for all wT P U
k,l
T , ςk,lT wT solves

´ bT pςk,lT wT , vT q “ aT pwT , vT q @vT P U
k,l
T . (7.1)

18



The use of a similar notation as for the mixed-to-primal potential-to-flux operator is motivated
by the fact that these two operators share the same properties (compare Lemmas 16 and 19) and
play very much the same role.

Lemma 19 (Properties of the primal-to-mixed potential-to-flux operator). Let a mesh element
T P Th be given and let sU,T be a bilinear form satisfying Assumption 2. Then, the corresponding

potential-to-flux operator ς
k,l
T given by (6.5) is well defined and has the following properties:

1) Stability and continuity. For all vT P U
k,l
T , it holds with norms }¨}Σ,T and }¨}U,T defined

by (4.4) and (5.2), respectively,

}ςk,lT vT }Σ,T « }vT }U,T . (7.2)

2) Commuting property. For all w P Pk`1pT q, we have

ς
k,l
T I

k,l
U,Tw “ I

k,l,0
Σ,T ∇w. (7.3)

3) Link with the discrete gradient operator. It holds, with operators Gk
T , Pk

T , and Sk
T defined

by (5.4), (4.7), and (4.8), respectively, that

Gk
T “ Pk

T ˝ ς
k,l
T “ Sk

T ˝ ς
k,l
T . (7.4)

Additionally, ςk,lT defines an isomorphism from U
k,l
T,˚ (cf. (5.3)) to Σ

k,l,0
T .

Proof. Let T P Th. To show that ςk,lT is well defined we prove the following inf-sup condition: For

all τ T P Σ
k,l,0
T ,

}τT }Σ,T ď S :“ sup
vT PUk,l

T,˚
zt0U,T u

bT pτ T , vT q

}vT }U,T

. (7.5)

Let v
τ ,T P U

k,l
T be such that ∇vτ ,T “ τT and vτ ,F ´ vτ ,T “ hF τTF (v

τ ,T is defined up to an

element of Ik,lU,TP0pT q, coeherently with the fact that we write U
k,l
T,˚ in the supremum). It can be

checked that }v
τ ,T }U,T “ }τT }Σ,T and it holds, recalling the reformulation (6.2) of the bilinear

form bT ,
}τT }2Σ,T “ ´bT pτT , vτ ,T q ď S}vτ ,T }U,T “ S}τT }Σ,T ,

which proves (7.5). To prove the well-posedness of problem (7.1) it only remains to observe that,

for all vT P I
k,l
U,TP0pT q, equation (7.1) becomes the trivial identity 0 “ 0, which can be intepreted

as a compatibility condition. Finally, the fact that ςk,lT defines an isomorphism from U
k,l
T,˚ to Σ

k,l,0
T

follows observing that ςk,lT is injective as a result of (7.5) and dimpUk,l
T,˚q “ dimpΣk,l,0

T q.
1) Stability and continuity. Combining the inf-sup condition (7.5) with the definition (7.1) of

ς
k,l
T , and using the Cauchy–Schwarz inequality followed by (S1), we get for all vT P U

k,l
T that

}ςk,lT vT }Σ,T ď sup
wT PUk,l

T,˚
zt0U,T u

bT pςk,lT vT , wT q

}wT }U,T

“ sup
wT PUk,l

T,˚
zt0U,T u

aT pvT , wT q

}wT }U,T

À }vT }U,T .

On the other hand, (S1) followed by the definition (7.1) of ςk,lT and the boundedness (6.3) of the
bilinear form bT yields

}vT }2U,T À aT pvT , vT q “ ´bT pςk,lT vT , vT q ď }ςk,lT vT }Σ,T }vT }U,T ,

which concludes the proof of (7.2).
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2) Commuting property. Let w P Pk`1pT q. For all vT P U
k,l
T it holds

´bT pςk,lT I
k,l
U,Tw, vT q “ aT pIk,lU,Tw, vT q “ p∇w,Gk

T vT qT “ ´bT pIk,l,0
Σ,T ∇w, vT q,

where we have used the definition (7.1) of ςk,lT in the first equality, the definition (5.6) of aT together

with (S21) in the second equality, and concluded recalling the definitions (5.4) ofGk
T , (4.3) of I

k,l,0
Σ,T ,

and (6.1) of bT . As a consequence,

bT pIk,l,0
Σ,T ∇w ´ ς

k,l
T I

k,l
U,Tw, vT q “ 0 @vT P U

k,l
T ,

which, accounting for the inf-sup condition (7.5), implies (7.4).

3) Link with the discrete gradient operator. Let vT P U
k,l
T and w P Pk`1pT q. Recalling the

definitions (6.1) of bT and (5.1) of Ik,lU,T , we infer that

´bT pςk,lT vT , I
k,l
U,Twq “ ´pDl

T ς
k,l
T vT , π

l
TwqT `

ÿ

FPFT

ppςk,lT vT qTF , π
k
FwqF

“ ´pDl
T ς

k,l
T vT , wqT `

ÿ

FPFT

ppςk,lT vT qTF , wqF “ ppPk
T ˝ ς

k,l
T qvT ,∇wqT ,

where we have used the definition (2.1) of πl
T and πk

F to pass to the second line and the defini-

tion (4.7) of Pk
T to conclude. On the other hand, by the definition (5.6) of aT together with the

polynomial consistency of Gk
T (a consequence of (5.5)) and (S21), we have

aT pvT , I
k,l
U,Twq “ pGk

T vT ,∇wqT .

Substituting the above relations into the definition (7.1) of ςk,lT we infer that Gk
T vT “ Pk

T ˝ ς
k,l
T .

Additionally, since we have supposedm “ 0, we also have Sk
T “ Pk

T , thus concluding the proof.

7.2 Equivalent mixed formulation of primal methods

We close this section by showing the existence of a mixed method belonging to the family (4.18)
whose solution coincides with that of the primal problem (5.9). In the light of Theorem 17, we
state the equivalence result in terms of the corresponding mixed hybrid formulation (6.4).

Theorem 20 (Link with the family of mixed discontinuous skeletal methods). For all T P Th, let

sU,T satisfy Assumption 2 and set, for all σT , τT P Σ
k,l,0
T ,

sΣ,T pσT , τT q :“ sU,T ppςk,lT q´1σT , pςk,lT q´1τT q, (7.6)

where it is understood that pςk,lT q´1τ T and pςk,lT q´1σT are defined up to an element of Ik,lU,TP0pT q.
Then,

1) Properties of sΣ,T . The stabilization bilinear forms sΣ,T , T P Th satisfy Assumption 1;

2) Link with mixed methods. pσh, uhq P qΣk,l,0

h ˆ U
k,l
h,0 solves the mixed hybrid problem (6.4) with

stabilization as in (7.6) if and only if uh solves the primal problem (5.9) and, for all T P Th,

σT “ ς
k,l
T uT with ς

k,l
T defined by (7.1).

Proof. 1) Properties of sΣ,T . Let T P Th. The bilinear form sΣ,T is clearly symmetric and
positive semi-definite. It then suffices to prove conditions (S1) and (S2). Let us start by (S1).
Recalling the definition (4.13a) of the bilinear form mT , property (7.4) for the potential-to-flux

operator ςk,lT defined by (7.1), and (7.6), we infer for all wT , vT P U
k,l
T that

mT pςk,lT wT , ς
k,l
T vT q “ aT pwT , vT q. (7.7)
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Let now τ T P Σ
k,l,0
T be such that τ T “ ς

k,l
T vT with vT P U

k,l
T (the existence of such vT , defined

up to an element of Ik,lU,TP0pT q, follows from Lemma 19). We have that

}τT }Σ,T « }vT }U,T « }vT }a,T “ }τT }m,T ,

where the first norm equivalence follows from (7.2), the second from (S21), and the last one
from (7.7). Property (S1) follows.

Let us now prove (S2). Let χ P G
k
T be such that χ “ ∇w with w P Pk`1pT q. For all vT P U

k,l
T it

holds,
sΣ,T pIk,l,0

Σ,T χ, ς
k,l
T vT q “ sU,T ppςk,lT q´1I

k,l,0
Σ,T χ, vT q “ sU,T pIk,lU,Tw, vT q “ 0,

where we have used the definition (7.6) of sΣ,T , the commuting property (7.3), and concluded
using (S21).

2) Link with mixed methods. We let pσh, uhq P qΣk,l,0

h ˆ U
k,l
h,0 solve the mixed hybrid prob-

lem (6.4) with sΣ,T given by (7.6), and we show that uh solves (5.9) and σT “ ς
k,l
T uT for all

T P Th. Making τT “ ς
k,l
T vT with vT P U

k,l
T in (6.4a), it is inferred

0 “ mT pσT , ς
k,l
T vT q ` bT pςk,lT vT , uT q “ mT pσT ´ ς

k,l
T uT , ς

k,l
T vT q.

Since Σ
k,l,0
T “ ς

k,l
T U

k,l
T as a result of Lemma 19 and vT is arbitrary in U

k,l
T , this means that

σT “ ς
k,l
T uT @T P Th. (7.8)

Plugging this relation into (6.4b), and recalling the definition (7.1) of ςk,lT , we infer that it holds

for all vh P U
k,l
h,0,

pf, vhq “ ´
ÿ

TPTh

bT pσT , vT q “ ´
ÿ

TPTh

bT pςk,lT uT , vT q “ ahpuh, vhq,

which shows that uh solves the primal problem (5.9). Following a similar reasoning one can prove

that, if uh solves (5.9), then pσh, uhq with σT “ ς
k,l
T uT for all T P Th solves (6.4).

8 Analysis

In this section we carry out a unified convergence analysis encompassing both mixed and primal
discontinuous skeletal methods. Recalling Theorems 17, 18, and 20, we focus on the mixed hybrid

problem (6.4). Let three integers k ě 0 and l,m as in (4.1) be fixed, set Xk,l,m
h

:“ qΣk,l,m

h ˆ U
k,l
h,0,

and define the bilinear form Ah : Xk,l,m
h ˆ X

k,l,m
h Ñ R such that

Ahppσh, uhq, pτ h, vhqq :“ mhpσh, τhq ` bhpτ h, uhq ´ bhpσh, vhq. (8.1)

Problem (6.4) admits the following equivalent reformulation: Find pσh, uhq P qΣk,l,m

h ˆ U
k,l
h,0 such

that,

Ahppσh, uhq, pτ h, vhqq “ pf, vhq @pτ h, vhq P qΣk,l,m

h ˆ U
k,l
h,0. (8.2)

8.1 Stability and well-posedness

We equip the space X
k,l,m
h with the norm }¨}X,h such that, for all pτh, vhq P X

k,l,m
h ,

}pτh, vhq}2X,h :“ }τ h}2Σ,h ` }vh}2U,h,

with norms }¨}Σ,h on qΣk,l,m

h and }¨}U,h on U
k,l
h defined by (4.15) and (5.8), respectively.
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Lemma 21 (Well-posedness). For all pχ
h
, whq P X

k,l,m
h it holds

}pχ
h
, whq}X,h À sup

pτ
h
,v

h
qPXk,l,m

h
zt0

X,h
u

Ahppχ
h
, whq, pτ h, vhqq

}pτh, vhq}X,h

. (8.3)

Consequently, problem (8.2) is well-posed.

Proof. We start by proving the following inf-sup condition for bh: For all vh P U
k,l
h,0,

}vh}U,h À sup
τhP qΣk,l,m

h zt0
Σ,hu

bhpτ h, vhq

}τh}Σ,h

. (8.4)

Fix an element vh P U
k,l
h,0, and let τ v,h P qΣk,l,m

h be such that, for all T P Th, τ v,T “ ∇vT and

τv,TF “ h´1
F pvF ´ vT q. Denoting by S the supremum in (8.4) from (6.2) it is inferred that

}vh}2U,h “ bhpτ v,h, vhq ď S}τ v,h}Σ,h,

and (8.4) readily follows observing that, by the definitions (4.4) and (5.2) of the local norms,
}τ v,T }Σ,T “ }vT }U,T . The inf-sup condition (8.3) on Ah and the well-posedness of problem (6.4)
are then classical consequences of the }¨}Σ,h-coercivity of mh (itself a consequence of (S1)) and
the inf-sup condition (8.4) on bh; cf., e.g., [14].

8.2 Energy error estimate

We estimate the error defined as the difference between the solution of the mixed hybrid prob-

lem (6.4) and the projection ppσh, puhq P qΣk,l,m

h ˆ U
k,l
h,0 of the exact solution defined as follows:

pσh :“ I
k,l,m
Σ,h ∇hquh @T P Th, puh :“ I

k,l
U,hu,

where quh P P
k`1pThq is such that, for all T P Th, quT :“ quh|T is the local elliptic projection of u

satisfying
∇quT “ πk

G,T∇u and pquT ´ u, 1qT “ 0, (8.5)

while Ik,l,m
Σ,h is the global flux reduction map on qΣk,l,m

h whose restriction to every mesh elements T P

Th coincides with I
k,l,m
Σ,T defined by (4.3). Optimal approximation properties for quh on admissible

mesh sequence are proved in [34, Lemma 3] and, in a more general framework, in [29].

Theorem 22 (Energy error estimate). Let u P H1
0 pΩq be the weak solution of problem (1.1), and

assume the additional regularity u P Hk`2pΩq. Then, it holds

}pσh ´ pσh, uh ´ puhq}X,h À hk`1}u}Hk`2pΩq. (8.6)

Proof. The following error equation descends from (8.2): For all pτ h, vhq P qΣk,l,m

h ˆ U
k,l
h,0,

Ahppσh ´ pσh, uh ´ puhq, pτ h, vhqq “ Ehpτ h, vhq,

with consistency error

Ehpτh, vhq :“ pf, vhq ` bhppσh, vhq ´ mhppσh, τ hq ´ bhpτh, puhq. (8.7)

Recalling the inf-sup condition (8.3), we then have that

}pσh ´ pσh, uh ´ puhq}X,h À sup
pτ

h
,v

h
qPXk,l,m

h
zt0

X,h
u

Ehpτ h, vhq

}pτh, vhq}X,h

. (8.8)
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To conclude, it suffices to bound Ehpτh, vhq. Denote by T1, . . . ,T4 the addends in the right-hand
side of (8.7). Recalling that f “ ´△u a.e. in Ω, integrating by parts element-by-element, and
using the fact that the normal component of ∇u is continuous across all interfaces F P F i

h and
that vF vanishes on boundary faces F P Fb

h , we have that

T1 “
ÿ

TPTh

˜
p∇u,∇vT q `

ÿ

FPFT

p∇u¨nTF , vF ´ vT qF

¸
.

Using the commuting property (4.9) of Dl
T to infer Dl

T pσT “ △quT , and integrating by parts
element-by-element, we have that

T2 “ ´
ÿ

TPTh

˜
p∇u,∇vT qT `

ÿ

FPFT

p∇quT ¨nTF , vF ´ vT qF

¸
,

where we have used the definition (8.5) of quT to write ∇u instead of ∇quT in the first term. The
Cauchy–Schwarz inequality yields

|T1 ` T2| ď

˜
ÿ

FPFT

hF }∇pu ´ quT q}2F

¸ 1

2

ˆ

˜
ÿ

FPFT

h´1
F }vF ´ vT }2F

¸ 1

2

À hk`1}u}Hk`2pΩq}vh}U,h,

(8.9)
where we have used the optimal approximation properties of quT to conclude.

Recalling the definition (4.13b) of mT , using the polynomial consistency (4.10) of Pk
T together

with (S2), and expanding Pk
T τT according to its definition (4.7) (with w “ quT ), it is inferred that

T3 “ ´
ÿ

TPTh

p∇quT ,P
k
T τT qT “

ÿ

TPTh

˜
pquT ,D

l
Tτ T qT ´

ÿ

FPFT

pquT , τTF qF

¸
.

Recalling (6.2) together with the definitions (5.1) of Ik,lU,T and (2.1) of πl
T and πk

F , we get that

T4 “
ÿ

TPTh

˜
´pu,Dl

TτT qT `
ÿ

FPFT

pu, τTF qF

¸
.

Using the Cauchy–Schwarz inequality, we then obtain

|T3 ` T4| ď

«
ÿ

TPTh

˜
h´2
T }u ´ quT }2T `

ÿ

FPFT

h´1
F }u ´ quT }2F

¸ff 1

2

ˆ

«
ÿ

TPTh

˜
h2
T }Dl

Tτ T }2T `
ÿ

FPFT

hF }τTF }2F

¸ff 1

2

À hk`1}u}Hk`2pΩq}τT }Σ,T ,

(8.10)
where we have used the optimal approximation properties of quT and the inverse inequality }Dl

TτT }T À
h´1
T }τT }Σ,T to pass to the second line. Combining (8.9) with (8.10), we infer the bound

|Ehpτh, vhq| À hk`1}u}Hk`2pΩq}pτ h, vhq}X,h,

which, plugged into (8.8), yields the desired result.

8.3 L
2-error estimate

In this section we prove a sharp L2-error estimate on the potential under the following usual
elliptic regularity assumption: For all g P L2pΩq, the unique solution z P H1

0 pΩq of the problem

p∇z,∇vq “ pg, vq @v P H1
0 pΩq, (8.11)

satisfies
}z}H2pΩq ď CΩ}g}L2pΩq, (8.12)

with real number CΩ ą 0 only depending on Ω. In the proof we will need the following consistency
property for the bilinear form bh.
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Proposition 23 (Consistency of bh). For all χ P Hpdiv; Ωq such that χ|T P Σ`pT q for all T P Th,
it holds

bhpIk,l,m
Σ,h χ, vhq “ pdivχ, vhq @vh P U

k,l
h,0. (8.13)

Proof. Recall the expression (6.1) of bh and use commuting property (4.9) for Dl
T together with

the fact that χ has continuous normal components across interfaces F P F i
h and vF “ 0 on all

F P Fb
h .

Theorem 24 (L2-error estimate). Let the assumptions of Theorem 22 hold true, and further
assume elliptic regularity, f P Hk`δpΩq with δ “ 1 if k P t0, 1u and l “ 0, δ “ 0 otherwise. Then,
it holds

}puh ´ uh} À hk`2}u}Hk`2pΩq ` hk`2}f}Hk`δpΩq. (8.14)

Proof. Let z solve (8.11) with g “ uh ´ puh and set, for the sake of brevity,

pχ
T
:“ I

k,l,m
Σ,h ∇z, pzh :“ I

k,l
U,hz.

Then, we have
}puh ´ uh}2 “ pu ´ uh,△zq “ ´pf, zq ´ bhppχ

T
, uhq, (8.15)

where for the first addend we have integrated by parts twice and used the fact that ´△u “ f ,
while for the second addend we have used the consistency property (8.13) of bh with χ “ ∇z

and vh “ uh. Using (6.4a) we get, denoting by ς
k,l,m
h the global mixed-to-primal potential-to-flux

operator whose restriction to every mesh element T P Th coincides with ς
k,l,m
T defined by (6.5),

´bhppχ
T
, uhq “ mhppχ

T
,σhq

“ mhppχ
T

´ ς
k,l,m
h pzh,σhq ` ahppzh, uhq

“ mhppχ
T

´ ς
k,l,m
h pzh,σh ´ pσhq ` mhppχ

T
´ ς

k,l,m
h pzh, pσhq ` pf, pzhq,

(8.16)

where we have inserted ˘ς
k,l,m
h pzh and used the fact that σT “ ς

k,l,m
h uh together with the defini-

tion (6.17) of the primal hybrid bilinear form ah to pass to the second line, and we have inserted
˘pσh and used (6.16b) (with vh “ pzh) to conclude. Plugging (8.16) into (8.15), and observing that
pf, pzhq “ pπl

hf, zq with πl
h denoting the L2-orthogonal projector on U l

h (cf. (4.16)), we arrive at

}puh ´ uh}2 “ pπl
hf ´ f, z ´ πl

hzq ` mhppχ
T

´ ς
k,l,m
h pzh,σh ´ pσhq ` mhppχ

T
´ ς

k,l,m
h pzh, pσhq. (8.17)

Denote by T1,T2,T3 the terms in the right-hand side of (8.17). For T1, if k P t0, 1u and l “ 0, we
have

|T1| ď }πl
hf ´ f}}z ´ πl

hz} À h2}f}H1pΩq}z}H1pΩq, (8.18)

while, in all the other cases,

|T1| ď }πl
hf ´ f}}z ´ πl

hz} À hk`2}f}HkpΩq}z}H2pΩq. (8.19)

For T2, the Cauchy–Schwarz inequality followed by (S1) and the energy error estimate (8.6)
yields

|T2| À }pχ
T

´ ς
k,l,m
h pzh}Σ,h}σh ´ pσh}Σ,h À hk`2}z}H2pΩq}u}Hk`2pΩq. (8.20)

To estimate the quantity }pχ
T

´ ς
k,l,m
h pzh}Σ,h in (8.20), let qzh P Pk`1pThq be the broken ellip-

tic projection such that qzT :“ qzh|T is defined as in (8.5) with u replaced by z, observe that

I
k,l,m
Σ,h ∇hqzh “ ς

k,l,m
h I

k,l
U,hqzh by (6.8), and use (6.7) to infer

}pχ
T

´ ς
k,l,m
h pzh}Σ,h ď }Ik,l,m

Σ,h p∇z ´ ∇hqzhq}Σ,h ` }ςk,l,mh I
k,l
U,hpz ´ qzhq}Σ,h

À }Ik,l,m
Σ,T p∇z ´ ∇hqzhq}Σ,h ` }Ik,lU,hpz ´ qzhq}U,h À h}z}H2pΩq,
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where the conclusion follows from the stability of the L2-projector and the optimal approximation
properties of qzh.

For T3, recalling the definitions (4.17) of mh, (4.13a) of mT , and (S2), we have

T3 “
ÿ

TPTh

pSk
T ppχ

T
´ ς

k,l,m
T pzT q,Sk

T pσT qT

“
ÿ

TPTh

pPk
T pχT

´ ∇qzT ,∇quT qT

“
ÿ

TPTh

˜
p∇pz ´ qzT q,∇quT qT `

ÿ

FPFT

pπk
F p∇z¨nTF q ´ ∇z¨nTF , quT qF

¸

“
ÿ

TPTh

ÿ

FPFT

pπk
F p∇z¨nTF q ´ ∇z¨nTF , quT ´ uqF ,

where we have used the definition (4.8) of Sk
T together with the orthogonal decomposition (2.2)

and the fact that pSk
T ˝ ς

k,l,m
T qpzT “ Gk

TpzT “ ∇qzT (cf. (6.9) and (5.5)) to pass to the second line,

the definition (4.7) of Pk
T (with τT “ pχ

T
and w “ quT ) together with the fact that Dl

T pχT
“ △z

and an integration by parts to pass to the third line, and concluded in the fourth line using the
fact that qzT is a local elliptic projection to cancel the first term together with the fact that the
quantity pπk

F p∇z¨nTF q ´ ∇z¨nTF q is single-valued on every interface F P F i
h and u “ 0 on all

F P Fb
h to insert u into the second term.

Using the Cauchy–Schwarz inequality and the optimal approximation properties of πk
F and quT ,

we conclude
|T3| À hk`2}u}Hk`2pΩq}z}H2pΩq. (8.21)

Using (8.18)–(8.21) to estimate the right-hand side of (8.17) followed by the elliptic regular-
ity (8.12) to bound }z}H2pΩq À }puh ´ uh}, the desired result follows.
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[36] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference,
hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS),
20(2):1–31, 2010.

[37] J. Droniou, R. Eymard, T. Gallouet, and R. Herbin. Gradient schemes: a generic framework for
the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models
Methods Appl. Sci. (M3AS), 23(13):2395–2432, 2013.

[38] T. Dupont and R. Scott. Polynomial approximation of functions in Sobolev spaces. Math. Comp.,
34(150):441–463, 1980.
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