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Abstract—Remote sensing of soil moisture has reached a level
of good maturity and accuracy for which the retrieved products
are ready to use in real-world applications. Due to the importance
of soil moisture in the partitioning of the water and energy fluxes
between the land surface and the atmosphere, a wide range of ap-
plications can benefit from the availability of satellite soil moisture
products. Specifically, the Advanced SCATterometer (ASCAT) on
board the series of Meteorological Operational (Metop) satellites is
providing a near real time (and long-term, 9+ years starting from
January 2007) soil moisture product, with a nearly daily (sub-daily
after the launch of Metop-B) revisit time and a spatial sampling of
12.5 and 25 km. This study first performs a review of the climatic,
meteorological, and hydrological studies that use satellite soil mois-
ture products for a better understanding of the water and energy
cycle. Specifically, applications that consider satellite soil mois-
ture product for improving their predictions are analyzed and dis-
cussed. Moreover, four real examples are shown in which ASCAT
soil moisture observations have been successfully applied toward:
1) numerical weather prediction, 2) rainfall estimation, 3) flood
forecasting, and 4) drought monitoring and prediction. Finally, the
strengths and limitations of ASCAT soil moisture products and the
way forward for fully exploiting these data in real-world applica-
tions are discussed.
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NOMENCLATURE

AMSR2 Advanced microwave scanning radiometer 2.
AMSR-E Advanced microwave scanning radiometer for

EOS (earth observing system).
ASAR Advanced SAR.
ASCAT Advanced scatterometer.
CCI Climate change initiative.
CCI SM Climate change initiative soil moisture product.
ECMWF European Centre for Medium-Range Weather

Forecasts.
ECV Essential climate variables.
EnKF Ensemble Kalman filter.
EnKS Ensemble Kalman smoother.
ERS European remote sensing.
ESA European Space Agency.
ESM Earth system model.
EUMETSAT European Organization for the Exploitation of

Meteorological Satellites.
EUMETCast EUMETSAT’s multicast distribution system.
GCOM-W Global Change Observation Mission for Water.
GCOS Global climate observing system.
GEO Group on earth observations.
GLEAM Global Land Evaporation Amsterdam Model.
GPCC Global Precipitation Climatology Centre.
GPM Global precipitation measurement.
GPS Global positioning system.
GRACE Gravity recovery and climate experiment.
H SAF Satellite application facility on support to oper-

ational hydrology and water management.
IMERG Integrated multi-satellite retrievals for GPM,

global precipitation measurement.
IPCC Intergovernmental Panel on Climate Change.
Metop Meteorological operational satellites.
NASA National Aeronautics and Space Administration.
NDVI Normalized difference vegetation index.
NEP Net ecosystem productivity.
NOAA National Oceanic and Atmospheric Administra-

tion.
NRT Near real-time.
NWP Numerical weather prediction.
RC Rainfall correction.
SAR Synthetic aperture radar.
SMAP Soil moisture active and passive.
SMART Soil moisture analysis tools.
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SMOPS Soil Moisture Operational Product System.
SMOS Soil moisture and ocean salinity.
SSM Surface soil moisture.
SWI Soil water index.
SWVI Soil wetness variation index.
TMI TRMM microwave imager.
TMPA TRMM multi-satellite precipitation analysis.
TRMM Tropical rainfall measuring mission.
UNFCCC United Nations Framework Convention on cli-

mate change.
UTC Universal coordinated time.
WGHM WaterGAP Global Hydrology Model.

I. INTRODUCTION

SOIL moisture plays a fundamental role in the hydrological
cycle [158]. Indeed, the partitioning of water and energy

fluxes between the land surface and the atmosphere is strongly
dependent on the amount of water stored in the soil, i.e., soil
moisture. On this basis, it is evident that the use of advanced
technologies for improving the monitoring of soil moisture on
a global scale will have large societal benefits (e.g., [124]).
Currently, three different approaches are used for the monitor-
ing of soil moisture from the point to the global scales: in situ
observations, hydrological or land surface models, and remote
sensing.

The monitoring of soil moisture over large areas through in
situ observations is highly challenging (e.g., [130], [181]), but
recent technologies are trying to fill the gap. For example, cos-
mic ray, global positioning system (GPS), distributed tempera-
ture sensing (DTS) and geophysical measurements (e.g., electri-
cal resistivity, electromagnetic induction) ([150], [161], Larson
et al. (2013), [33], [73]) are providing the opportunity to extend
in space ground-based soil moisture measurement techniques
(time and frequency domain reflectometry, gravimetric method,
neutron probes) which are characterized by high accuracy but
a very limited spatial representativeness (e.g., [61]). It should
be underlined here that the spatial variability of soil moisture is
characterized by the so-called “temporal stability” concept, i.e.,
the persistence in time of stable soil moisture spatial patterns
[176]. Temporal stability can mitigate the spatial discrepancies
between point measurements and the scale needed in the appli-
cations as it was shown that the temporal soil moisture evolution
from point data might be considered representative of larger ar-
eas, e.g., >100–200 km2 [29], [180], and vice versa large scale
measurements are well correlated with point information (e.g.,
[24], [62], [134]) and useful for local scale (<50 km2) appli-
cations (e.g., [117]). Notwithstanding temporal stability, it is
evident that the development of techniques providing measure-
ments at 0.1–1 km scale would be vital [20]. However, the new
techniques mentioned above (GPS, cosmic ray, geophysical)
are still in their infancy. As a result, their broader applications
still requires further investigations. Additionally, an underrep-
resented but important issue of in situ sensors is related to their
maintenance. Indeed, it is highly difficult to find long-term in
situ soil moisture time series with good quality and consistency
over time [61].

Hydrological and/or land surface models are able to provide
soil moisture estimates at the desired temporal and spatial reso-
lution (e.g., subhourly and 100 m, [17]). However, every model
is affected by uncertainties due to input data (i.e., meteoro-
logical observations and ancillary information as soil type and
land use), calibration and model structure (e.g., [149]). More-
over, the spatial resolution of modeled soil moisture data often
does not match the density of input meteorological observations
(i.e., rainfall). In other words, if the models are forced with
low density raingauge observations (as it usually happens), the
derived modeled soil moisture data should be treated as rep-
resentative of the resolution at which key model forcings are
measured (which is commonly much coarser than the model
grid size). Another fundamental issue affecting the modeling of
soil moisture is related to the calibration of the soil parameters
[182]. For instance, the saturated hydraulic conductivity, affect-
ing the vertical and lateral movement of the water in the soil, is
characterized by large variability [125], [203] and it cannot be
observed over large areas and at different depths as it would be
required [83]. The same applies to other soil hydrological prop-
erties, e.g., porosity, pore size distribution. Additionally, many
key hydrologic processes are extremely difficult to parameter-
ize (e.g., irrigation, dam operation, snow melting, interception),
especially in challenging regions (deserts, pluvial forests, high
altitudes). Based on these, and others, limitation, it is evident
that simulated soil moisture data from hydrological and/or land
surface models should be taken with caution. Again, the avail-
ability of actual soil moisture observations over large areas will
be highly beneficial for these models [52], [168].

Remote sensing provides the unique opportunity to estimate
global scale surface (2–7 cm) soil moisture measurements over
large areas with good spatial (∼20 km) and temporal (∼daily)
coverage. Currently, several satellite soil moisture products are
available from microwave, optical, and thermal sensors. We un-
derline that recent advances in thermal and optical remote sens-
ing for soil moisture estimation have been made (e.g., [103],
[141]), but the present review will focus only on active and
passive microwave-based products, with a particular focus on
the Advanced Scatterometer (ASCAT) soil moisture product, as
they are most widely used and most advanced. At the time of
writing (November 2016), four quasi-operational, i.e., available
either in near real time (NRT) or few days after sensing, coarse
resolution satellite surface soil moisture products are available:
1) the soil moisture active and passive (SMAP) mission (L-
band radiometer) starting from April 2015 with ∼36 km/2-day
spatial/temporal resolution [67]; 2) the Advanced Microwave
Scanning Radiometer 2 (AMSR2) onboard the Global Change
Observation Mission for Water, GCOM-W, satellite (C- and X-
band radiometers) starting from July 2012 with ∼25 km/1-day
spatial/temporal resolution [93]; 3) the Soil Moisture and Ocean
Salinity (SMOS) mission product (L-band radiometer) starting
from January 2010 with ∼50 km/2-day spatial/temporal resolu-
tion [91]; and 4) ASCAT onboard Metop-A and Metop-B satel-
lites (C-band scatterometer) starting from January 2007 with
∼25 km/1-day spatial/temporal resolution [193]. Additionally,
the ESA (European Space Agency) Climate Change Initiative
(CCI) soil moisture product (CCI SM, [107]) is based on the
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merging of multiple active and passive microwave sensors thus
providing a nearly daily product from 1978 to 2014 (at the time
of writing) that is updated every year. Recently, higher resolution
(∼1 km) soil moisture products are becoming available based
on the disaggregation of coarse resolution products [112], [138]
and, in the near future, from Sentinel-1 satellites (e.g., [132]).
Others satellite sensors are currently employed for soil mois-
ture retrieval, e.g., the WindSat Polarimetric Radiometer, and
FengYun-3, but the delivery of the corresponding soil moisture
products is still in a preliminary stage.

The brief overview reported above clearly underlines the
amount of satellite soil moisture datasets that are currently avail-
able, their temporal coverage and spatial resolutions. Several
validation studies have already demonstrated the accuracy (e.g.,
agreement with ground references) and reliability (e.g., time
consistency) of these products through comparisons with in situ
observations and land surface/hydrological modeling (e.g., [8],
[24], [62] to cite a few). By way of example, the Pearson cor-
relations with in situ observations was found to be in the range
0.5–0.8 (interquartile range) with median values around 0.6 [24],
[62], [134]. Therefore, there are many applications that could
benefit from the use of satellite soil moisture products thanks to
their long-term record (e.g., 36 years for ESA CCI SM product)
and availability in near real time. Note that the ASCAT soil
moisture product has a latency of only 130 min after satellite
pass through the Satellite Application Facility on support to Op-
erational Hydrology and Water Management (H SAF) project
of EUMETSAT (European Organization for the Exploitation of
Meteorological Satellites).

In synthesis, satellite soil moisture products can be used for
evaluating and testing the structure of hydrological and land
surface modeling [108], [168], for initializing meteorological,
climate, hydrological, and crop/vegetation forecasts ([98], [99],
[57], [100]), and in a data assimilation framework to constrain
and update modeling states/parameters [25], [40], [63], [116],
[146]. Additionally, the data can be used for studying the land-
climate interactions and feedbacks [158] for monitoring of nat-
ural hazards (i.e., flooding, drought, heatwave, wildfire) and a
number of other processes such as carbon sequestration, dust
emissions, vehicle mobility [124]. The benefits obtained in
recent studies employing satellite soil moisture datasets (e.g.,
[168], [193]) should encourage us to carry out new investiga-
tions to foster their use in different communities (hydrology,
geomorphology, agriculture, etc.).

The main purpose of this review paper is to first underline
the number of applications that could significantly benefit from
the use of satellite soil moisture products. Therefore, the pa-
per aims at assessing the status of satellite soil moisture prod-
ucts from the end user perspective, i.e., by mainly considering
their spatial/temporal resolution, their consistency over time,
their long-term availability, and their capability in improving
the applications. Specifically, we will focus on the ASCAT soil
moisture product(s), provided for free by EUMETSAT, which
currently is the only satellite soil moisture product available
operationally in near real time. Moreover, it is the only soil
moisture product based on a sensor with a commitment to op-
erational continuity in case of sensor failure (differently from

SMOS and SMAP). Therefore, it is definitely the most suitable
product for operational hydrologic, climatic, and meteorological
applications.

The paper is organized as follows. In Section II, the AS-
CAT instrument, the soil moisture retrieval algorithm and the
ASCAT-derived soil moisture products are described shortly.
In Section III, a general overview of the applications using
satellite soil moisture products, by considering both active and
passive microwave sensors, is given. In Section IV, four success-
ful applications employing ASCAT soil moisture (and passive
microwave) datasets are reported. Finally, in Section V, we high-
light the strengths and limitation of using satellite soil moisture
products for improving applications and some suggestions for
the full exploitation of the data in an operational context are
given in Section VI.

II. ASCAT INSTRUMENT, SOIL MOISTURE ALGORITHM

AND PRODUCTS

In this section, we describe the instrument design of ASCAT,
the surface soil moisture retrieval algorithm developed by the
Vienna University of Technology and the ASCAT soil moisture
products.

A. ASCAT on-Board Metop

The Advanced Scatterometer (ASCAT) on-board the series
of Metop (Meteorological Operational Platform) satellites is a
real aperture radar system operating in C-band (5.255 GHz)
and measuring the Normalized Radar Cross Section (NRCS),
also called backscattering coefficient. Three Metop satellites
constitute the space segment of the EUMETSAT Polar System
(EPS), each with a nominal lifetime in orbit of about 5 years.
The first satellite (Metop-A) was launched in October 2006 and
the second satellite (Metop-B) in September 2012. The third
and last satellite (Metop-C) is expected to be launched in 2018
superseding Metop-A. At the moment, Metop-A and Metop-B
are operational and flying in a sun-synchronous 29 day repeat
cycle orbit with a separation of half an orbital period (∼51 min).
The satellites are crossing the equator at a Local Solar Time
(LST) of ∼09:30 A.M. and P.M. in descending and ascending
orbit direction, respectively [74].

The instrument design of ASCAT is based on the experience
of the scatterometer flown on the ERS-1 and ERS-2 satellite
mission, including further improvements like increased spatial
resolution and coverage, better radiometric accuracy and stabil-
ity, as well as external transponder for in-orbit calibration [71].
ASCAT has two sets of three fan-beam antenna mounted broad-
side each covering a 550 km swath separated by ∼700 km.
The individual antennas (fore, mid, and aft antenna) are ori-
ented at 45°, 90°, and 135° with respect to the satellite ground
track and the incidence angle range varies between 34° and 65°
(fore and aft antennas) and 25°–55° (mid antenna). Based on
a spatial averaging applied in the along- and across-track di-
rection a backscatter triplet is generated per orbit grid node for
each swath. An operational backscatter product (ASCA_SZO,
50-km spatial resolution, 25-km spatial sampling) and a research
backscatter product (ASCA_SZR, ∼25-km spatial resolution,
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12.5-km spatial sampling) are the main outputs in the Metop AS-
CAT Level 1b processing chain (http://eoportal.eumetsat.int).
Ongoing changes in the Level 1 processor configuration and
backscatter calibration lead to inconsistencies in the product his-
tory. Therefore, Fundamental Climate Data Records (FCDR) are
produced on demand, which are based on a uniform Level 1 pro-
cessing configuration and calibration. In 2015, the first Metop-
A ASCAT FCDR has been generated by EUMETSAT covering
the period January 2007 to March 2014 (http://www.eumetsat.
int/website/home/News/DAT_2704008.html).

B. Soil Moisture Retrieval Algorithm

The ERS (European Remote Sensing) and ASCAT instru-
ments were not designed as dedicated soil moisture sensors;
however, their multiangle measurement capability together with
a high temporal coverage (<1 day) make them a suitable in-
strument monitoring coarse-scale soil moisture changes. The
semiempirical change detection method developed by the Vi-
enna University of Technology (TU Wien), or the so-called
TU Wien surface soil moisture retrieval algorithm, takes ad-
vantage of these key features. In the beginning, the TU Wien
algorithm was tested for specific study areas on scatterometer
data from the ERS-1 and ERS-2 satellite missions [190] and
a first global realization covering 1992–2000 was released in
2002 [154]. Despite changes and improvements in the instru-
ment design of ASCAT, only minor modifications were needed
in the soil moisture processing chain [14] leading to a first near
real-time (NRT) soil moisture data service from Metop ASCAT
implemented at EUMETSAT. This service is now part of the
H SAF NRT soil moisture data streams as described in the next
section.

The TU Wien surface soil moisture retrieval algorithm has
been developed out of the need to circumvent the lack of ade-
quate backscatter models and the core conception of the model
has not changed ever since its formulation [190]. However, a
subject of ongoing research was, and still is, a better estimation
of model parameters and error propagation [128], elimination
of azimuthal effects [13] and improved vegetation correction
[185]. The shortcomings of available theoretical models and
high-quality reference datasets are the major constraints testing
the performance of algorithmic improvements.

The definition of the TU Wien surface soil moisture retrieval
algorithm is motivated by physical models and empirical ev-
idence. The main model assumptions can be summarized as
follows:

1) a linear relationship between backscatter (expressed in
dB) and soil moisture,

2) an empirical description of the incidence angle depen-
dency of backscatter,

3) vegetation effects cancel each other via the so-called
“cross-over angles” and

4) surface roughness and land cover are temporally constant.
The change detection algorithm is comparing backscatter
measurements normalized at a common reference inci-
dence angle to the historically lowest/highest observation
in the backscatter time series, thereby, also accounting for

dynamic vegetation effects. The retrieved soil moisture
information are thus given in degree of saturation units
ranging between a completely dry (0%) and saturated soil
surface (100%) representing the thin remotely sensed soil
surface layer (0.5–2 cm). A conversion to absolute soil
moisture units (e.g., m3 m−3) is possible by using addi-
tional information on soil properties [193].

C. ASCAT-Derived Soil Moisture Products

Reflecting the different application areas and meeting the de-
mands of a diverse user community, several distinct ASCAT
soil moisture data production lines have been set up, delivering
free and open soil moisture data to a growing number of sci-
entific and operational users [193]. The first service providing
ASCAT soil moisture products is EUMETSAT’s H SAF. At the
H SAF website (http://hsaf.meteoam.it) users can find product
documentation, e.g., Product User Manual (PUM), Algorithm
Theoretical Baseline Document (ATBD), and following a suc-
cessful registration are allowed to access the following ASCAT
soil moisture products:

1) 25- and 50-km surface soil moisture (SSM) data expressed
in relative units (degree of saturation) representing the thin
remotely sensed soil surface layer (0.5–2 cm). These data
are available in near real time (NRT) as swath images
at the native ASCAT orbital grid nodes (referred to as:
H101 Metop-A ASCAT NRT SSM 12.5 km sampling,
H102 Metop-A ASCAT NRT SSM 25 km sampling, H16
Metop-B ASCAT NRT SSM 12.5 km sampling, H104
Metop-B ASCAT NRT 25 km sampling) or data records
in time series format resampled to a discrete global grid
(Metop ASCAT SSM time series data records: H25, H108-
H112). While the NRT data service has been tailored to
meet the strict data latency requirements (delivery of the
data within ∼130 min after sensing) of the NWP commu-
nity and other operational data users working at regional
to global scales, the data records addresses scientific and
other nonoperational data users interested in analyzing
soil moisture data time series [194].

2) 25-km root-zone soil moisture data at four layers (0–7,
7–28, 28–100, 100–289 cm) are derived by assimilating
the ASCAT NRT SSM data in the ECMWF Land Data
Assimilation System [56]. This product, referred to as
SM-DAS-2 or H14, is available at a 24-h time step, with
a global daily coverage at 00:00 Universal Coordinated
Time (UTC). This product serves users requiring gap-free
root-zone soil moisture data sampled at regular spatial-
temporal intervals.

3) 1-km surface soil moisture data expressed in relative units
(degree of saturation) are derived by downscaling the AS-
CAT NRT SSM data with static downscaling parameters
estimated from SAR data using the method described by
[191]. This product, referred to as disaggregated H08
Metop ASCAT NRT SSM at 1 km, is available only
over the European continent only and was developed to
meet the high demand for higher resolution soil moisture
data. However, as already noted by [193], its added value
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compared to the ASCAT NRT SSM data product is mod-
est. Therefore, discussions on how to redesign the H08
data service are currently underway.

Building upon the 25- and 50-km ASCAT surface soil mois-
ture products provided by H SAF, several other operational
data services are providing value-added soil moisture products.
Specifically, in many applications the knowledge of root-zone
soil moisture is needed. For that, Wagner et al. [190] proposed
the soil water index (SWI) method that allows us to obtain root-
zone soil moisture estimates from surface soil moisture obser-
vations. The method is based on an exponential filter and has the
effect of smoothing and retarding the soil moisture time series,
mimicking the diffusion process of the water into the deeper soil
layers [5, 37]. Based on this approach, the Copernicus Global
Land Service (http://land.copernicus.eu) offers ASCAT-based
0.1° SWI data that quantifies soil moisture conditions at various
soil depths at daily and ten-day time steps (for the ten-daily prod-
uct, the SWI data are averaged over the respective time periods).
In terms of its product characteristics, the SWI is comparable to
the SM-DAS-2 or H14 product (mentioned above), yet with the
important distinction that the SWI is much closer to the original
satellite measurements because it is obtained without the use of
a complex land surface modeling scheme.

Furthermore, ASCAT surface soil moisture products are an
important input to the multisatellite soil moisture data records
produced by ESA’s Climate Chance Initiative (http://cci.esa.
int) and by the Copernicus Climate Change Service (http://
climate.copernicus.eu). These two services are dedicated to pro-
ducing and updating soil moisture data records that shall be as
long, complete, and consistent as possible [62], [109], [192].
Given the long-term and stable nature of the well-calibrated C-
band backscatter measurements provided by the series of Euro-
pean scatterometers, these measurements constitute a backbone
to any climate soil moisture data record.

All data products mentioned above contain uncertainty esti-
mates and various quality flags along with the soil moisture data
fields themselves. The uncertainty estimates are typically de-
rived from error analysis which propagates the noise of the AS-
CAT backscatter measurements and known uncertainties of the
model parameterizations through the processing chains [128].
In case when soil moisture retrieval errors cannot be modeled
in this way, or when soil moisture retrieval is not possible due
to physical reasons (snow cover, frozen soil conditions, open
water surfaces, high topographic complexity, urban areas, etc.),
masks derived from ancillary datasets are provided.

While the algorithms and processing chains used to produce
the different ASCAT soil moisture products have improved sig-
nificantly over the years [13], [14], [128], the core scientific
algorithms as originally proposed by Wagner et al. [189] for
the ERS 1/2 scatterometers and improved for use on a global
scale by Scipal et al. [154] have remained remarkably stable.
One important reason for that has been our limited capability to
quantify soil moisture retrieval errors in detail, which itself was
due to lack of suitable reference data and shortcomings in the
validation methods. Fortunately, this has changed significantly
in recent years due to increasing use of advanced error charac-
terization methods such as triple collocation [77], [156], [163],

frequency-domain analysis techniques [165], or data assimila-
tion increment analysis [46], and the increasing availability of
global in situ data [60], high-quality global land surface mod-
els [12], and other satellite soil moisture datasets [54], [90].
Therefore, our understanding of the strength and weaknesses of
the ASCAT data products has improved significantly in recent
years as summarized in [193]. This has motivated new research
addressing the vegetation parameterization in the soil moisture
retrieval algorithm [185] and efforts to characterize, and subse-
quently minimize, the spurious effects of subsurface scattering
in dry environments [79]. These efforts can be expected to lead
both to an improved error characterization and further improve-
ments to the soil moisture retrieval algorithms.

In parallel to the steady improvements of the ASCAT soil
moisture services, also the soil moisture data derived from the
historic ERS-1 and ERS-2 scatterometer measurements keep on
being improved through recurrent reprocessing activities. The
purpose of these reprocessing activities is to ensure that the ERS
Scatterometer data are brought up to the latest standard of the
ASCAT data in terms of the instrument calibration and the soil
moisture retrieval algorithm [45]. The historic ERS scatterome-
ter data together with the Metop ASCAT data records form the
most consistent multidecadal global soil moisture data record,
and hence represents an essential input into soil moisture data
records. Last, but not least, it should be mentioned that studies
with Ku-band scatterometers also suggest that these instruments
can be used for soil moisture retrieval over bare to sparsely veg-
etated areas [31], [122].

III. OVERVIEW OF (POTENTIAL) APPLICATIONS OF COARSE

RESOLUTION SATELLITE SOIL MOISTURE PRODUCTS

In recent years, a couple of papers already reviewed the main
applications of satellite soil moisture products and we suggest
these studies for a complete overview of the topic [158],
[168], [193]. Recently, the SMAP mission initiated the “Early
Adopter” program (http://smap.jpl.nasa.gov/science/early-
adopters/) which aims to provide specific support to end users
in order to accelerate the use of SMAP products. A full list of
Early Adopters, subdivided by application’s type, can be found
in [124] and [69]. It provides an excellent summary of users
interested in exploiting satellite soil moisture products for their
applications.

Here, we provide a brief summary with an attempt to high-
light the more recent results and applications. Moreover, we
will focus on the use of coarse resolution (>10 km) satellite
soil moisture products thus excluding applications using high
resolution data (∼100 m, Synthetic Aperture Radars, SARs),
e.g., precision agriculture, biodiversity monitoring, and nutrient
transport. As outlined above, soil moisture commonly governs
the interaction between land surface and the atmosphere is thus
an important variable in meteorological, climatic, and land ap-
plications. In the sequel, we separate the main applications based
on the domain (i.e., “meteorological and climatic” and “land”
applications) and we include also new applications in which the
potential of satellite soil moisture products is still to be assessed.
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The applications treated in Section IV will be briefly mentioned
here as fully described later in the text.

A. Meteorological and Climatic Applications

Influencing the exchanges of water and energy between the
soil and the lower atmosphere, soil moisture is an important
variable for meteorological [57] and climate [158] applications.
Indeed, global scale numerical weather prediction (NWP) cen-
ters as ECMWF (European Centre for Medium-Range Weather
Forecasts) and Met Office have already included in their op-
erational analysis the assimilation of the ASCAT soil moisture
product. The importance of soil moisture and the use of satellite
observations for NWP [35], [56], [58], [155] will be analyzed
in depth in Section IV-A.

The maturity of satellite soil moisture products has moti-
vated the Global Climate Observing System (GCOS) to include
soil moisture among the Essential Climate Variables (ECVs)
in 2010 to support the work of the United Nations Framework
Convention on Climate Change (UNFCCC) and the Intergov-
ernmental Panel on Climate Change (IPCC). Through the ESA
CCI, a long-term satellite-based soil moisture product is be-
ing delivered based on the combination of multiple C-, X-,
and L-band microwave sensors [62], [107]. Additionally, within
the European Copernicus program, synergistic studies includ-
ing high-resolution sensors (e.g., Sentinel-1) will be carried out.
Starting from these activities, a number of climate services are
expected to grow for accelerating the technological transition
from research (and public) to commercial (and private) sector
[127].

For climate applications, the interactions and feedbacks be-
tween soil moisture and climate variables and fluxes have been
the object of several studies (e.g., [65], [110], [200], and see
[158] for a detailed review). In particular, satellite soil moisture
products were considered in the analysis of the coupling be-
tween soil moisture and evapotranspiration [95], [114], [118],
[157], soil moisture and air temperature [82], [119], [120], and
soil moisture and precipitation [78], [167], [174], [175]. For
instance, Martens et al. [114] used the satellite soil moisture
product from SMOS mission for improving evapotranspira-
tion estimation. SMOS data are assimilated through a simpli-
fied nudging scheme into the process-based evaporation model
named GLEAM (Global Land Evaporation Amsterdam Model).
First results highlighted that the assimilation of SMOS obser-
vations is slightly beneficial for the estimation of soil moisture
(increase in Pearson correlation of ∼4% when compared with
in situ observations) and quite neutral for evapotranspiration es-
timation. Hirschi et al. [82] analyzed the relationship between
surface and root-zone soil moisture, obtained from the ESA
CCI SM product, with the number of hot days on a global scale
highlighting the important role of soil measurement depth in the
coupling between soil moisture and temperature. Specifically
under dry conditions, the soil moisture-temperature coupling is
underestimated when using surface soil moisture products (di-
rectly sensed by satellite sensors) and it is better represented
if root-zone observations are considered. The soil moisture-
precipitation coupling has been the subject of several studies

based on in situ observations, satellite data and modeling. In
these studies, satellite soil moisture products were used for ex-
tending in space the first studies based on in situ observations
[65], and for performing an observation-based validation of the
soil moisture-precipitation feedbacks of global climate models
Taylor et al. (2011). Indeed, soil moisture impacts on precip-
itation have been strongly debated. A recent study by Guillod
et al. [78] tried to reconcile the previous investigation by using
remote-sensing data and a common analysis framework and ob-
tained that spatial and temporal correlations with opposite signs
coexist within the same region and dataset. Very recently, Tut-
tle and Salvucci [175] collected AMSR-E derived soil moisture
products and ground-based precipitation observations for the
contiguous United States over 10 years. The feedback between
soil moisture and rainfall was found to be generally positive
in the western United States but negative in the east and it
can be explained based on the different climates in the two re-
gions. Overall, several open issues in the coupling and feedbacks
between different variables (soil moisture, evapotranspiration,
temperature, precipitation) is present but satellite soil moisture
products have opened new opportunities for the observational
analyses of land-climate interactions [119].

Another important peculiarity of soil moisture is represented
by the so called “soil moisture memory,” i.e., the persistence of
water stored in the soil that induces persistence in the climate
system [158]. As the timescales of soil moisture memory span
weeks to a couple of months [68], soil moisture anomalies are
associated with evaporation anomalies that may lead to subse-
quent precipitation anomalies [99]. Therefore, several studies
have addressed the potential of using soil moisture observations
for the initialization of subseasonal and seasonal forecasts [94],
[96], [100], [131], [177]. For instance, Bisselink et al. [18] per-
formed different regional climate simulations over Europe by
using AMSR-E soil moisture product as initial condition. In gen-
eral, for two case studies in 2003 and 2005, the use of AMSR-E
data resulted in a better performance for predicting temperature
when compared with observations, with increase in average
Pearson correlation from 0.60 to 0.73 in 2003. Schneider et al.
[153] used ASCAT and Envisat ASAR (Advanced SAR) soil
moisture products for reducing model bias and increasing the
spatial resolution of ECMWF (European Centre for Medium-
Range Weather Forecasts) forecasts and results confirmed that
the incorporation of the new information added skill to seasonal
forecasts.

B. Land Applications

Several studies have clearly demonstrated the potential of
soil moisture in land processes such as floods and drought.
Rainfall estimation, flood forecasting, and drought monitor-
ing/prediction will be treated in Section IV.B–IV.D. Indeed,
in these applications, satellite soil moisture products have been
used quite extensively (e.g., [21], [23], [28], [47], [66], [116],
[133], [135], [142], [197]).

Among the water-related natural hazards, soil moisture ob-
servations are needed also for the study of slope instability
processes such as landslides and soil erosion (e.g., [19], [75]).
Differently from floods and droughts, only three studies by Ray
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et al. [143], [144], with AMSR-E, and Brocca et al. [26], with
ASCAT, demonstrated that satellite soil moisture products can
provide useful information for the detection and prediction of
landslide events. Similarly, only Todisco et al. [171] recently
suggested the use of satellite soil moisture observations from
ASCAT for predicting event soil loss at a plot scale with quite
successful results in central Italy. The spatial mismatch between
the targeted areas, typically a hillslopes or a small catchment,
and the spatial resolution of satellite soil moisture product is
the main reason for the limited use of these products. However,
these first studies highlighted that the integration of satellite soil
moisture products with meteorological information (i.e., rain-
fall) adds skill to the prediction of landslide and erosion and it
represents an important topic that needs further investigations.

Satellite soil moisture products are also used for monitoring
extreme conditions, i.e., drought and wildfire in very dry con-
ditions and flooding in very wet conditions, and more generally
for disaster monitoring. On the one hand, Lacava et al. [104]
demonstrated the capability of the Soil Wetness Variation In-
dex (SWVI) obtained by the Advanced Microwave Sounding
Unit (AMSU) to monitor flooding conditions in Hungary (April
2000). Indeed, SWVI maps are able to detect the location and
the extension of the areas affected by flood. Temimi et al. [169]
and Naeimi et al. [129] obtained similar results in Iowa (US)
and Mekong by using AMSR-E and ASCAT soil moisture prod-
ucts, respectively. Therefore, satellite soil moisture products are
useful predictors of extreme wet conditions that may lead to
flash floods occurrence and flooding. On the other hand, wild-
fire occurrence is often associated with drought. Indeed, strong
Pearson correlations (in the range 0.64–0.94) between live fuel
moisture content, a key variable in fire risk assessment, and soil
moisture observations was obtained by using in situ observations
(e.g., [139]). Therefore, satellite soil moisture products can be
employed also for improving large scale fire forecast. Some
initial examples of this were carried out by [10] in Africa by
using the ASCAT derived SWI and by Piles et al. [137] in east-
ern Spain by considering a downscaled SMOS product. These
studies showed that the spatial and temporal variability of dry
soil moisture conditions can be related to fire occurrence. Over-
all, the highlighted applications showed that globally available,
homogenous, and continuously updated satellite soil moisture
datasets are an important factor for the effective assessment and
monitoring of risk related processes. After the identification of
appropriate warning threshold for hazard assessment, and the
integration with vulnerability and susceptibility factors, these
datasets can be effectively employed to determine potential risk
and societal impacts [193].

Soil moisture is the main factor limiting plant growth, partic-
ularly in arid, semi-arid, and temperate climates. By regulating
crop growth, soil moisture is a valuable indicator for agricultural
monitoring and crop yields forecast [168] and microwave-based
satellite soil moisture products have been frequently used in
these applications [21], [51], [86], [160], Muñoz et al. (2014),
[38], [41], [199]. For instance, Champagne et al. [38] used
SMOS soil moisture observations for monitoring agricultural
conditions in Canada highlighting the capability of SMOS to
identify periods of drought and excess water potentially leading

to crop losses. Zribi et al. [204] developed a simplified approach
for predicting next month NDVI (Normalized Difference Veg-
etation Index) based on current month NDVI and soil moisture
obtained from the ERS (European Remote Sensing) scatterom-
eter during rainy season in Tunisia (see also [80] for a similar
global-scale study). Closely related to the agricultural applica-
tion, monitoring of soil moisture from satellite sensors has large
potential to improve food security, mainly in developing coun-
tries such as Africa, southern America, and southeastern Asia.
For instance, one of the main targets of SMAP mission is to con-
tribute to the predictions of the Famine Early Warning Systems
Network (http://www.fews.net/), which is currently primarily
based on weather forecasts [69]. Soil moisture plays an impor-
tant role also in the carbon cycle, and specifically in controlling
the terrestrial carbon uptake [41]. Verstraeten et al. [183] inte-
grated SWI data derived from the ERS scatterometer into the
ecosystem carbon balance model C-Fix to assess 10-daily Net
Ecosystem Productivity (NEP) patterns of Europe obtaining a
general improvement in model predictions when compared with
ground observations of Net Ecosystem Productivity (average in-
crease in Pearson correlation from 0.7 to 0.72).

Soil moisture is an important variable also for the spread of
plant pathogens (e.g., fungal diseases), and vector-borne human
and animal diseases [168], [193]. Typical examples are repre-
sented by malaria carried out by the mosquito [123] and the
Bluetongue virus of cattle carried out by biting midges [136].
These diseases have always been a serious public health issue
for people and their livestock in tropical and subtropical regions
but, due to global warming, these problems were also observed
in mid-latitudes. So far, satellite soil moisture products have
not been used for epidemic risk assessment and meteorological
observations are usually employed for determining spatial and
temporal occurrence of incidence rates (e.g., [42]). We carried
out some preliminary analysis (not shown for brevity) looking
at the correlation between scatterometer-derived soil moisture
products and malaria incidence rates in Africa. In Mpumalanga
and Botswana regions, where malaria data are available, a sub-
stantial good agreement is obtained (Pearson correlation be-
tween 0.6 and 0.7); thus, revealing the potential of these obser-
vations for this important application.

Finally, other applications that will benefit from spatial-
temporal remotely sensed soil moisture estimates are related
to the quantification of greenhouse gas emissions, the mapping
of dust emissions, the evaluation of ground mobility of military
vehicles, but no studies have been published on these topics so,
even using ground-based soil moisture information [69].

IV. REAL-WORLD APPLICATIONS WITH ASCAT SOIL

MOISTURE PRODUCTS

In the following paragraphs, four specific applications are
considered: 1) numerical weather prediction, 2) rainfall esti-
mation, 3) flood forecasting, and 4) drought monitoring and
prediction. For each application, a very short rational is given
first for the use of remotely sensed soil moisture. After that, spe-
cific case studies are described in which ASCAT soil moisture
products have been successfully employed.
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A. Numerical Weather Prediction

Soil moisture is a crucial component of the continental branch
of the hydrological cycle whose representation is nowadays fully
integrated in numerical weather prediction (NWP) systems. In
particular, soil moisture is a key variable for near surface weather
forecasts [56], [58]. It constitutes a water reservoir which inter-
acts with the atmosphere on a large range of spatial and time
scales [95], [131]. Soil moisture accumulates in the root zone
and it is released to the atmosphere through the soil evaporation
and vegetation transpiration which results from soil–vegetation–
atmosphere interaction processes. It is largely influenced by
atmospheric conditions and it also varies depending on local
surface conditions, such as soil and vegetation types as well as
on the orography. In global mean annual terms, more than 60%
of precipitation over land results from land evapotranspiration
which (in turn) results from soil moisture–plant–atmosphere in-
teractions. Soil moisture has also a very large influence on air
temperature and air relative humidity whose high quality fore-
cast is a strategic objective for NWP. Therefore, representing
accurate soil moisture conditions in NWP model is of crucial
importance to ensure reliable forecasts of near surface weather
variables [36], [56]–[58]. Soil moisture is particularly impor-
tant for weather forecast in situations where there is a strong
coupling between the surface and the atmosphere and in case
of extreme weather conditions. Soil moisture controls the evap-
orative cooling at the surface, and in extreme hot conditions,
low soil moisture availability causes a positive feedback to the
atmosphere. In regions with convective precipitation, such as
in Sahel, soil moisture influences the mesoscale circulation and
convective rain is more likely over drier soil than over wet soils
[167].

There have been several challenges in the past 30 years con-
cerning the development of the soil moisture representation in
weather forecasting systems. In fact it is relatively recent that
weather forecasting systems account for the physical processes
that occur at the surface. In the 1970s and 1980s, weather fore-
casting and climate models were mostly representing atmo-
spheric dynamic and physics, and land surface processes were
accounted for in a very simplistic way. It was only in the 1990s
that the scientific community started to invest in developing
physically based soil moisture and land surface processes rep-
resentations in models for climate and weather forecast appli-
cations [11], [184]. This was made possible by increased com-
puting capabilities. However, using observations to constrain
soil moisture was still marginal and we needed to wait until the
2000s to see research developments on the use of observations
to improve the accuracy of soil moisture in weather forecast
systems [111]. Advances in atmospheric data assimilation have
provided inspiration for the land surface model developments
but with simplified and adjusted methods that are pertinent to
land surface specificities, such as high spatial variability of sur-
face parameters due to heterogeneities and long-time scales in-
volved in the land surface processes.

As discussed in previous sections, several satellite instru-
ments provide soil moisture information from space, such
as ASCAT and more recently SMOS and SMAP. These

instruments open new possibilities for improving soil moisture
for NWP applications. ASCAT is particularly relevant for op-
erational NWP applications since the products are available on
the dedicated EUMETCast (EUMETSAT’s Multicast Distribu-
tion System) system and the operational continuity of ASCAT
is ensured on the Metop and Metop-SG satellite series. AS-
CAT soil moisture data assimilation is currently operational in
several NWP centers such as ECMWF, the UK Met Office,
and the Korean Meteorological Agency. Operational monitor-
ing constitutes an important step of the data assimilation for
NWP applications. It typically includes first guess departure
(observations-model) statistics in the observation space. Fig. 1
illustrates monitoring of ASCAT surface soil moisture products
as it is done operationally at ECMWF. It shows global maps of
mean first guess departure (ASCAT surface soil moisture mi-
nus ECMWF model top layer soil moisture), for August 2016,
for both Metop-A and Metop-B ASCAT soil moisture prod-
ucts available on EUMETCast. These two products enter the
ECMWF land surface data assimilation system for operational
NWP. This analysis is useful for detecting regional problems
(i.e., high values of first guess departures) in the satellite data
or the ECMWF model. It also illustrates the consistency of the
ASCAT-A and ASCAT-B innovation statistics in the ECMWF
data assimilation system.

However, using these data in NWP models has proven to be
both technically and scientifically challenging as it requires the
accurate representation of spatial heterogeneities and a good
consistency between the water reservoir and fluxes in differ-
ent components of the Earth system models. Scipal et al. [155]
showed that assimilating ERS surface soil moisture product us-
ing a simple nudging approach improves both soil moisture and
near surface weather forecasts compared to the model without
data assimilation. However, when compared to the operational
system that was in place at the time of their study, which was
using proxy air temperature information to analyze soil, they
found that assimilating ERS surface soil moisture with a nudg-
ing scheme slightly degrades the performances of the near sur-
face weather forecasts. In a more recent study, De Lannoy et al.
[55] presented results of ASCAT soil moisture data assimilation
in the ECMWF NWP system based on ASCAT implementa-
tion preoperational experiments. In the ECMWF NWP system,
ASCAT soil moisture and screen level (near surface) air temper-
ature and air humidity are combined in a simplified Extended
Kalman Filter data assimilation system to analyze soil moisture.
They showed that the two types of observations are very com-
plementary to correct the model soil moisture states, providing
soil moisture increments (corrections) in different regions and
at different soil depth, whereas ASCAT increments are mostly
confined to the top soil moisture layer, near surface observa-
tions of air temperature and humidity, which are more linked
to evaporation processes, allow to correct soil moisture in the
root zone. In turn, ASCAT data assimilation is not limited to
conditions with strong soil-air coupling, and it is therefore most
efficient to use in areas and/or periods with weak coupling. So,
there is a good complementarity between ASCAT surface soil
moisture and proxy observation of air temperature to analyze
soil moisture.
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Fig. 1. Real-time monitoring of ASCAT soil moisture product through the ECMWF Integrated Forecasting System (http://www.ecmwf.int/en/forecasts/quality-
our-forecasts/monitoring/soil-moisture-monitoring). Maps show the temporally averaged statistics of the first guess departure (observations-model) of the two soil
moisture products currently available from Metop-A (a) and Metop-B (b) from the ECMWF soil moisture analysis in August 2016.

One of the major challenges in NWP system is to improve
the consistency between the surface fluxes and water reservoirs
which is currently achieved by combining different and comple-
mentary observations types to consistently constraint different
components of the NWP systems. In the future, more missions
related to land water storage and river discharge will provide
further information that, when combined with ASCAT surface
soil moisture products and in situ observations, will help to
further improve NWP models.

B. Rainfall Estimation

Rainfall is by far the most important hydrometeorological
variable for many climatic and hydrological applications [85].
The Group on Earth Observations (GEO) has identified precip-
itation as the first most important parameter, and soil moisture
is the second, because it addressed so many user needs. How-
ever, in large parts of the world, ground-based observations of
rainfall are sparse or absent and satellite-derived products are
often the only source of information, mainly if real-time data
are needed [102]. The retrieval of rainfall in the state-of-the-art
products is based on a “top down” approach, i.e., rainfall is ob-
tained through the inversion of the atmospheric signals scattered
or emitted by hydrometeors [92]. These approaches provide an

estimate of the instantaneous rainfall rate that needs to be ag-
gregated for obtaining 3-hourly or daily estimates. However,
because of its inherently intermittent nature (i.e., high temporal
variability), rainfall is difficult to be determined reliably with
a few instantaneous observations of rates [173], and this issue
is particularly challenging for convective precipitation events.
With the purpose of improving the accuracy of satellite rainfall
products, some approaches using satellite soil moisture products
have been recently developed [27], [48], [135], [198], follow-
ing a “bottom up” approach. Among them, Brocca et al. [28]
proposed a new method for directly estimating rainfall using
soil moisture observations, called SM2RAIN. The method is
based on the inversion of the soil water balance equation. It
estimates the rainfall by using the change in time of the amount
of water stored into the soil; thus, considering the “soil as a
natural raingauge.” SM2RAIN has been applied both on a lo-
cal/regional [3], [27], [30], [31], [32] and a global scale [28],
[101] with ground and satellite soil moisture products as input.
Specifically, Brocca et al. [31] applied SM2RAIN to Ku-band
backscattering measurements from RapidScat on board the In-
ternational Space Station. Results in central Italy were found
to be satisfactory with 1-day Pearson correlation higher than
0.6 in the comparison with ground rainfall observations. This
study highlights the large potential of using the constellation of
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Fig. 2. Correlation maps between gauge-based rainfall observations
(GPCC Full Data Daily Product) and two versions of SM2RAIN-ASCAT
product: (a) product delivered by Brocca [28], and (b) new product
(doi:10.13140/RG.2.1.4434.8563). Results are shown for five-day accumulated
rainfall, 1° spatial sampling, and in the period 2007–2012. The insets show
the distribution of R-values (R: Pearson correlation coefficient). The bottom
panel shows higher values everywhere highlighting the significantly improved
performance of the new product.

scatterometers (C- and Ku-band) for providing an accurate rain-
fall product with high spatial-temporal resolution. On a global
scale, Brocca et al. [28] delivered three rainfall products ob-
tained by ASCAT, SMOS, and AMSR-E soil moisture products
with 1° and 1-day spatial-temporal sampling. Quite unexpect-
edly, the ASCAT-derived rainfall product was found to be the
more accurate [28] with performances similar to the real-time
version of TRMM multi-satellite precipitation analysis, TMPA,
product (3B42RT). Koster et al. [101] applied SM2RAIN to
SMAP soil moisture data obtaining Pearson correlation of∼0.77
in areas of high rain gauge density.

Very recently, the rainfall product obtained from ASCAT,
called SM2RAIN-ASCAT, was updated and it is freely avail-
able at http://dx.doi.org/10.13140/RG.2.1.4434.8563. The prod-
uct has a spatial sampling of 0.5°, and a temporal coverage from
January 2007 to June 2015. Fig. 2 shows the comparison of
the Pearson correlation maps obtained with the new ASCAT-
derived product against the one delivered by Brocca et al. [28].
Maps show the correlation between satellite and ground-based
data (Global Precipitation Climatology Centre, GPCC, Full Data
Daily Product, [152]) for five-day accumulated rainfall, 1° sam-
pling (the new product was resampled), in the period 2007–
2012. As it can be seen, the new product provides significantly
higher performances with global scale median Pearson correla-
tion increasing from 0.474 to 0.587. This finding is attributed
to the higher quality of the more recent ASCAT soil mois-
ture product, to the enhancements in the SM2RAIN algorithm
mainly addressing noise reduction, and to the improved cali-
bration that is carried out on pixel-by-pixel basis and with a
higher spatial sampling (0.5° with respect to 1°). Moreover, we
note that further improvements are expected if the more recent
period were analyzed in which ASCAT sensor is available also
onboard Metop-B satellite. A dedicated study by researchers of
the National Research Council and of the Vienna University of

Fig. 3. Integration of SM2RAIN-ASCAT and IMERG (late run) rainfall
products in central Italy (March–December 2015): time series of gauge-based
daily rainfall (Pobs) and IMERG (a), SM2RAIN-ASCAT (b), and SM2RAIN-
ASCAT+IMERG (c) products (R: Pearson correlation coefficient; fRMSE:
fractional RMSE, i.e., RMSE divided by the temporal standard deviation of
observed rainfall). The integrated product (SM2RAIN-ASCAT+IMERG) pro-
vides the best performance scores both increasing the temporal correlation and
reducing the BIAS.

Technology is underway to fully understand the capabilities, i.e.,
spatial-temporal resolution, accuracy, and coverage, of ASCAT
for the retrieval of high-quality rainfall observations over land.

The integration of the “top down” and “bottom up” perspec-
tives is also expected to provide a higher quality rainfall product
that takes advantage of the benefits of both approaches. In fact,
the two perspectives are highly independent and complemen-
tary: the “bottom up” products are able to estimate accurately
the accumulated rainfall but fail during saturated wetness con-
ditions; the “top down” products are able to estimate intense
rainfall events, usually bringing to wet conditions, but fail in
reproducing light rainfall events. First validation results in Italy
have shown promising results [43] as the product integrating
SM2RAIN-ASCAT either the real-time version of TMPA prod-
uct (3B42RT) or the H SAF H05 product is found to outperform
the parent products. Based on these results, in the third phase of
H SAF project (2017–2022), a new precipitation product in near
real-time that integrates SM2RAIN-ASCAT and H SAF precip-
itation products is foreseen. A recent update is shown in Fig. 3 in
which SM2RAIN-ASCAT is integrated with the recently avail-
able late run version of IMERG (Integrated Multi-satellitE Re-
trievals for GPM, Global Precipitation Measurement) product
for one location in central Italy. The daily rainfall time series
for the three products are very well in agreement with obser-
vations (Pearson correlation > 0.78) and the integrated product
SM2RAIN-ASCAT+IMERG is providing the best performance
with a Pearson correlation close to 0.9. It should be under-
lined here that the comparison is carried out at 1-day time scale
and, hence, results are really outstanding as they are based on
satellite-data only.
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C. Flood Forecasting

Floods are among the most dangerous and costly of all nat-
ural disasters causing extensive economic and social damages
worldwide [196]. This issue is compounded by the recent in-
tensification of the frequency and magnitude of extreme events
(e.g., heavy precipitation, storms) likely due to climate change
[34], [87]. In a recent study in the United States (US), Janssen
et al. [88] observed an overall increasing trend in extreme precip-
itation events from 1901 to 2012, and model simulations show
an underestimation of extreme events compared with observa-
tions [9]. Future projections of Earth System Models (ESMs)
suggest further increases in extreme precipitation frequency in
a high-emission scenario. This needs to be considered carefully,
given the knowledge that the models tend to be on the low side
of observations [81], and the increase of the vulnerability and
exposure of assets [89]. The brief summary here reported high-
lights the pressing need for improved methods for the mitigation
of the impact of flood risk on society (e.g., [70]).

Soil moisture is the key variable in the partitioning of rain-
fall in infiltration and runoff thus paying a fundamental role in
flood forecasting [98]. Satellite surface soil moisture products
can bring important benefits in the mitigation of flooding haz-
ard both through an improved initialization of rainfall-runoff
models [15], [22] and data assimilation techniques (e.g., [23],
[25], [106], [117]). However, several issues should be addressed:
1) the spatial mismatch between coarse resolution satellite soil
moisture products and the typical scale of hydrological studies
(200–1000 km2), 2) the shallow penetration depth of satellite
data that contrasts the need of root-zone information in rainfall-
runoff models, and 3) the development of rainfall-runoff models
specifically targeted to the use or assimilation of satellite data
(most of the models were not conceived with this target, e.g.,
by including a shallow soil layer close to the surface). In a data
assimilation framework, additional open questions are present,
e.g., the assessment of the error of observations and modeling,
the selection of the data assimilation approach, the technique
for rescaling observations to model states. Massari et al. [116]
summarized the different issues in a framework of a cooking
recipe in which the three ingredients are the hydrological model,
the data assimilation technique, and the satellite soil moisture
product(s); and the cooking techniques are the different options
(sometimes quite subjective) to be selected to cook the ingredi-
ents. Obviously, the final results depend both on the ingredients
and on the cooking (or the cook). These issues led to the pub-
lication of different studies in the scientific literature in which
a number of conflicting conclusions can be found thus making
difficult a general interpretation of the utility of data assimilation
of satellite soil moisture products into rainfall-runoff modeling
(e.g., [6], [39], [117]).

Notwithstanding the above points, mainly in the last 2–3
years, a number of studies demonstrated the benefit of assim-
ilating satellite soil moisture products for hydrological simu-
lations and flood modeling by performing more detailed stud-
ies. For instance, Wanders et al. [197] and Alvarez-Garreton
et al. [7] obtained that the assimilation of multiple satellite soil
moisture products (SMOS, ASCAT, and AMSR-E) improves the

Fig. 4. Changes in: (a) raw stream flow RMSE (normalized the RMSE ob-
tained prior to any soil moisture data assimilation), (b) normalized log flow
RMSE, (c) raw flow correlation coefficient difference (relative to correlation
obtain prior to any soil moisture assimilation), and (d) log flow correlation
coefficient difference associated with a range of rainfall correction (RC) and
state-updating (EnKF or EnKS) data assimilation approaches. Individual basins
are shown as grey lines and bold lines with square-symbols are averages obtained
across all basins. Overall, stream flow accuracy was maximized by simultane-
ous correction of both rainfall forcing (RC) and antecedent soil moisture states
(EnKF or EnKS) using remotely-sensed soil moisture Adapted from [40].

hydrological simulation for one basin in Europe (Danube River)
and in Australia (Warrego River). Massari et al. [116], following
the previous studies by Brocca et al. [23], [25], assimilated the
ASCAT surface soil moisture product for five basins in central
Italy with different physiographic (topography, soil, land use,
size) characteristics. Results showed that the assimilation im-
proves flood simulation for 4 out 5 basins and that the soil type
and the wetness conditions have a strong impact on the assimila-
tion results. The Efficiency Index, that identifies the percentage
improvement or deterioration due to the soil moisture assimila-
tion, was found varying from 25% to 42% in the four basins.

The success of approaches for directly estimating rainfall via
ASCAT surface soil moisture time series retrievals shown in the
previous paragraph opens up the possibility that ASCAT can
be used to simultaneously improve both prestorm antecedent
soil moisture conditions and within-storm rainfall amounts for
a hydrological forecasting system [49], [115]. Utilizing a com-
bination of SMOS and ASCAT surface soil moisture products,
Chen et al. [40] developed such an approach and applied it to
improve stream flow estimates within a series of moderate-size
basins within the central United States. Antecedent state cor-
rection was performed using both an Ensemble Kalman Filter
(EnKF) and an Ensemble Kalman Smoother (EnKS). Simulta-
neous rainfall correction (RC) was applied via the Soil Moisture
Analysis Tools (SMART; [50]). Fig. 4 summarizes the impact
of correction processes on the accuracy of outlet stream flow
predictions. Overall, stream flow accuracy was maximized by
simultaneous correction of both rainfall forcing (RC) and an-
tecedent soil moisture states (EnKF or EnKS) using remotely
sensed soil moisture. Therefore, ASCAT has demonstrated the
ability to contribute to both prestorm (i.e. infiltration capac-
ity) and within-storm (i.e. storm-scale accumulation) aspects of
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a hydrologic prediction system. Similarly, Ciabatta et al. [44]
found that the correction of ground observed rainfall through
SM2RAIN-ASCAT product provides significant improvement
in flood modeling when compared to the use of rain gauge ob-
servations only in three out of four basins throughout the Italian
territory (the average Nash–Sutcliffe efficiency increases from
0.65 to 0.75 in the validation period). Overall, these types of
approaches are particularly valuable over regions of the world
lacking high-quality operational rain gauge availability.

In summary, several papers concluded that there is a strong
need for further studies focusing on soil moisture data assim-
ilation for the purposes of improving streamflow prediction
from rainfall–runoff models. The current availability of differ-
ent satellite soil moisture products, also for long-term period,
allows to really perform robust and reliable procedures for pro-
viding general guidelines or rules for a proper data assimilation
everywhere. As mentioned above, the availability of the ASCAT
soil moisture product in near real time (130 min after sensing)
makes the product highly suitable for this kind of approach.

D. Drought Monitoring and Prediction

According to the Global Facility for Disaster Risk and Re-
covery [170], an annual average of 224 disasters that could be
linked to hydrometeorological extreme events were recorded
in the 1990s. In the 2000s, this number increased to 344 dis-
asters annually. With regard to drought and extreme temper-
atures, there is a clear positive trend since the 1970s in the
emergency events database (www.emdat.be). However, since
there are many drought indicators, but no common definition of
drought [16], [202], research studies have yielded contradicting
results with respect to trends in drought frequency and severity.
The studies of Sheffield et al. [159] and Dai [53], titled “Little
change in global drought over the past 60 years” and “Increas-
ing drought under global warming in observations and models”
respectively are examples of this contradiction. Hence, even if
the recorded trends might partly be attributed to improvements
in documentation and if the increasing frequency is not as severe
as expected, the number of drought events affecting vulnerable
communities is high. Satellite-derived soil moisture can play a
manifold role in drought management due to its importance in
the global hydrologic cycle [172] and its added-value for the
estimation of drought onset, severity, duration, and frequency.
Consequently, user-focused tools that use satellite soil moisture
for decision-making as an additional source of information are
promising for all drought categories. In general, three drought
categories, which usually do not appear simultaneously, can
be distinguished: meteorological, agricultural, and hydrological
drought. They all have in common that they follow a deficit in
rainfall, which leads to a water shortage for a certain applica-
tion (e.g., agriculture) and/or user group (e.g., farmers) [202].
Additionally, Van Loon et al. [179] highlighted that we need
to rethink the concept of drought to include the human role in
mitigating and enhancing drought.

With regard to meteorological drought, which is usually
the precursor for the two other drought categories, the added-
value of satellite-derived soil moisture lies for instance in the

Fig. 5. ASCAT-derived Soil Water Index (SWI) monthly anomaly for Novem-
ber 2015 for South Africa, scaled between−/+30% anomaly. The south-eastern
regions of South Africa experienced a heat wave, resulting in the most severe
drought event in 23 years, that matches well with the areas characterized by the
lower values of SWI (in red).

validation of rainfall estimations. Inverting the water balance
equation to estimate and validate precipitation amounts via satel-
lite soil moisture observations [27], [28], [48] is a promising
approach to capture critical rainfall deficits early in the season.
This approach can particularly be useful in regions where the
estimation of light precipitation events is problematic due to a
general underestimation of accumulated rainfall [102].

Agricultural drought monitoring requires information about
atmospheric deficits and the response of crops (e.g., via satellite-
derived vegetation indices) before and during the agricultural
season. The rainy season is naturally characterized by an in-
creased cloud cover, which is problematic, e.g., for sensors that
operate in the infrared domain [187]. Since scatterometers used
for soil moisture retrieval operate in the microwave domain
their observations are not impeded by cloud cover [188]. Qiu
et al. [140] highlight the importance of surface soil moisture for
drought monitoring and root-zone soil moisture, as represented
by the SWI [5], [189], for the estimation of the near-future vege-
tation condition. Fig. 5 illustrates SWI anomalies obtained from
ASCAT soil moisture product over South Africa for November
2015. In 2015, the Eastern regions of South Africa experienced
a heat wave, resulting in the most severe drought event in 23
years and the third driest season in 80 years ([147], [148]). The
dark red colors in Fig. 5 match well with local observations and
media reports. The El-Niño-related event resulted in reduced
crop yields, animal production, and increases in maize prices.
An example of drought index in India that used CCI SM product
to better characterize the agriculture drought against variables
only based on vegetation and rainfall is shown in Fig. 6. When
qualitatively compared with ground-truth surveys, the represen-
tation of drought extent is found to be better predicted with the
use of satellite soil moisture products, and a detailed intercom-
parison analysis is underway.

Hydrological drought is defined by the impact of precipitation
shortages on surface and subsurface water supply [201]. Abelen
et al. [2] related ASCAT surface soil moisture to total water
storage (soil moisture, surface water, snow ice, and ground-
water) variations detected via NASA’s (National Aeronautics
and Space Administration) satellite gravity mission Gravity
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Fig. 6. Drought severity index for Marathwada region in Maharashtra, India,
for 15th July, 2013. The image on the left (a) highlights drought condition based
on the IWMI Integrated Drought Severity Index (IDSI) including vegetation
and rainfall data. The image on the right (b) uses CCI soil moisture data in
addition to vegetation and rainfall and, qualitatively, is able to better reproduce
the ground observed drought extent.

Recovery and Climate Experiment (GRACE). In particular, the
GRACE observations corresponded well to daily ASCAT soil
moisture observations in arid environments [1]. Also in case
of the Argentinean La Plata basin, ASCAT surface soil mois-
ture served as a good indicator for total hydrological extreme
events. The observations from ASCAT corresponded well to
water storage change (GRACE) (Pearson correlations up to 0.8
in the North of the La Plata basin) and changes in groundwa-
ter levels (Pearson correlations up to 0.7 in the North of the
La Plata basin) modeled by the WaterGAP Global Hydrology
Model (WGHM) [2].

Besides the direct use of remotely sensed surface soil mois-
ture retrievals for drought monitoring and prediction, the data
are increasingly being assimilated into continuous land surface
models to enhance agricultural drought monitoring products
[21]. Such assimilation requires statistical knowledge of errors
afflicting both modeled and remote sensing-based soil moisture
estimates. As the only long-term scatterometer-based soil mois-
ture dataset in existence, ASCAT surface soil moisture retrievals
play a unique role in providing this type of statistical error char-
acterization. For example, Crow and Yilmaz [52] demonstrate
how ASCAT soil moisture products can be combined with in-
dependent soil moisture datasets acquired from water balance
modeling and passive microwave remote sensing to optimally
parameterize a land data assimilation system tasked with char-
acterizing soil moisture anomalies (via the integration of mul-
tiple satellite-based soil moisture and precipitation retrievals).
This ability to parameterize errors extends to the calculation
of lateral error-covariance information required to fully param-
eterize 2-D data assimilation systems [76]. Therefore, due to
their unique independence with regards to all other available
global soil moisture datasets, ASCAT surface soil moisture can
be used to enhance the overall performance of a land data as-
similation system, and consequently its capability to forecast
drought conditions.

V. DISCUSSION ON STRENGTHS AND LIMITATIONS OF ASCAT
SOIL MOISTURE PRODUCTS

In the previous two sections, the impact of satellite soil
moisture products for different applications is outlined with a

particular emphasis on ASCAT-derived products. In order to
provide current and future end-users (and scientists) interested
in utilizing ASCAT soil moisture products a quick introduction,
the strengths and limitations of ASCAT soil moisture prod-
ucts are discussed here. Whenever possible, the comparisons
with the other soil moisture products obtained from C- and L-
band microwave sensors currently available, i.e., SMAP, SMOS,
AMSR-E, and AMSR2, will also be discussed.

The main strengths of the ASCAT soil moisture product can
be summarized in the following points:

1) The ASCAT sensor is based on a well-established tech-
nology providing high radiometric accuracy, multiple-
viewing capabilities, and high signal-to-noise ratio [193].
Therefore, notwithstanding the nonoptimal wavelength
range of ASCAT (C-band), the quality of the obtained
soil moisture product is found to perform comparably
with SMOS and AMSR-E on a global scale [8], [24]. For
some applications (e.g., [28]), ASCAT soil moisture re-
trievals are found to outperform similar radiometer-based
products from AMSR-E and SMOS. Additionally, the AS-
CAT soil moisture product is the only one that is currently
assimilated operationally by ECMWF and UK Met Office
for global scale weather forecasts.

2) The ASCAT soil moisture product has: 1) high temporal
consistency, 2) is available for more than 9 years, and 3) is
part of a long-term program currently scheduled until mid-
2040s. Such (past and future) continuity is tremendously
important from the end-user perspective, especially for cli-
mate community. Anyhow, even nonclimate applications,
addressing the monitoring or prediction of limited dura-
tion events (e.g., flood forecasting), require a long-term
and consistent data record in order to test and evaluate the
possibility to uptake new satellite-based products. For in-
stance, most of the hydrological models currently used for
flood prediction and forecasting have a structure not suit-
able for ingesting satellite soil moisture observations [25].
The selection of the more appropriate modeling structures
for making them suitable for exploiting satellite informa-
tion needs long-term data (>5 years) in order to build
consistent techniques. Currently, ASCAT is the only sen-
sors with a long-term data record (since 2007) followed
by SMOS which started in 2010.

3) The ASCAT soil moisture product is characterized by
both good spatial-temporal sampling (∼25 km and 1-day)
and wide spatial coverage. Both these characteristics are
expected to improve in the near future with the launch
of the new Metop-SG SCA sensors scheduled in 2020s
[72]. The spatial-temporal resolution of ASCAT is the
best available among the different soil moisture sensors
currently in orbit and it is already appropriate for many
applications (see above).

4) ASCAT datasets are available in near real-time (NRT)
through the EUMETCast system (130 min after sensing).
Obviously, low data latency is a strong prerequisite for all
operational applications such as NWP and flood/landslide
forecasting (e.g., [23], [197]). As described above, re-
cent studies have demonstrated the capability of ASCAT
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soil moisture product for estimating rainfall and, also in
this context, the availability of the data in near real-time
is surely an important added-value. The importance of
having near real-time product is confirmed by the recent
release (January 2016) of real-time SMOS soil moisture
data thanks to the implementation of a new (and faster)
algorithm based on artificial neural networks [151].

Of course, ASCAT soil moisture product is also affected by
several limitations, some of them that are intrinsic in any re-
motely sensed soil moisture product:

1) The sensing depth of all satellite sensors is very shallow.
The estimated depth for C-band and L-band sensors is
around 2 and 7 cm, respectively. In contrast, many ap-
plications need a root-zone soil moisture estimate that
is not possible to obtain from remote sensing. As al-
ready discussed, by modifying the structure of the models,
the incorporation of surface measurements can be easily
achieved in a data assimilation framework. Alternatively,
the approaches developed for estimating root-zone soil
moisture from surface observations, e.g., the SWI method
[189] or the physically based approach proposed by
Manfreda et al. [113] can be used. These approaches are
based on the identification of few parameters; thus, po-
tentially suitable for global scale applications. Addition-
ally, some authors combined surface soil moisture with
vegetation products to estimate root zone soil moisture
(e.g., [47]). For certain applications, SWI has been shown
to effectively duplicate the information content of actual
root-zone soil moisture observations [140]. However, if
surface and root-zone soil moisture levels are decoupled,
as usually occurs in very dry conditions [82], the use of
satellite measurements can be of limited use.

2) Several factors affect ASCAT soil moisture retrieval accu-
racy. The main errors are due to topographic complexity,
high vegetation density (e.g., pluvial forests), frozen soils,
snow cover, and volume scattering in dry soils. Some of
these factors are common to any soil moisture product
(snow cover and frozen soils) while others are more pro-
nounced for scatterometer-based ASCAT retrievals (i.e.,
topography and dry soil volume scattering) with respect
to competing passive microwave products. Overall, the
confounding factors lead to a soil moisture signal char-
acterized by high-frequency noise that, however, can be
reduced by using signal processing techniques [164, 166].

3) With regards to vegetation, both its structure and wa-
ter content may have a strong impact on the quality of
soil moisture retrievals if not properly accounted for. Re-
cent research by Steele-Dunne et al. [161], [162] and van
Emmerik et al. [178] suggests that diurnal variations in
vegetation water content may have a stronger impact on
backscatter than previously thought. Given the fact that
diurnal vegetation effects are currently not accounted for
in the TU Wien soil moisture retrieval model, research is
needed to quantify these effects and to correct them as
far as possible [193]. Recently, an improved estimation
of the incidence angle dependency of backscatter [79]
has allowed to derive a dynamic vegetation correction

facilitating also interannual vegetation variations. First ex-
periments showed promising results over Australia [186]
and a global evaluation work is in progress. Overall, there
is a need for a renewed look on vegetation effects on mi-
crowave observations to explain recent unexpected find-
ings from satellite soil moisture validation studies. Most
importantly, there is a need to explain the relatively good
performance of the ASCAT soil moisture data products
over more densely vegetation compared to C-band pas-
sive microwave soil moisture datasets, i.e., AMSR-E [24],
[46], [64]. Theoretically, L-band sensors should be the
least affected by vegetation [67], but even when com-
pared to L-band SMOS soil moisture data, ASCAT data
quality is very good over vegetated areas [121].

4) The spatial resolution of ASCAT product is too coarse for
certain local scale applications such as precision agricul-
ture and nutrient transport. However, it should be stressed
that this is not the case for all applications. For instance,
Brocca et al. [26] and Matgen et al. [117] demonstrated
that ASCAT soil moisture products can be effectively em-
ployed for improving landslide and flood forecasting in
local scale (<50 km2) case studies. In addition, the “tem-
poral stability” of soil moisture spatial patterns allows for
the possibility to use coarse resolution data for certain
local scale applications, and vice versa [176].

5) The ASCAT soil moisture product is expressed in rela-
tive units (percent of saturation) and not as an absolute
soil moisture value. This is sometimes perceived as an
important issue. Indeed, passive-microwave products are
expressed in absolute volumetric terms (m³/m³) which can
be directly compared with in situ observation. For the AS-
CAT soil moisture product, a direct comparison requires
the knowledge of soil porosity [195]. We note that AS-
CAT soil moisture products are also delivered with the
soil porosity as ancillary information, but the main unit
is in relative terms as global scale soil porosity maps are
affected by significant uncertainties. However, this issue
is outdated as a large number of studies (e.g., [97], [145],
[157]) have demonstrated that the majority of information
in soil moisture observations lies in their characterization
of relative temporal dynamic and not in their absolute
values. Therefore, nearly all current applications require
the rescaling of satellite and modeled soil moisture data
in a common climatology [29]. As a result, the analy-
sis of satellite soil moisture products in terms of bias
has relatively low significance and the units of satellite
data should not be considered as a major drawback (or
an advantage). Finally, we should underline that even the
knowledge of the exact value of soil moisture in volu-
metric terms does not provide the actual information that
is needed for modeling, i.e., the amount of water stored
in the soil (e.g., in mm of water). This information can
only be obtained from knowledge of the effective sensing
depth which is commonly unknown, varying with wetness
conditions, and much lower than that simulated by mod-
els (i.e., ∼1–2 m depending on climate and soil/land use
characteristics).
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By keeping in mind the strengths and limitations of the AS-
CAT soil moisture product, end-users can make informed de-
cisions about when and where to apply to and what results to
expect. However, the full exploitation of satellite soil moisture
products in the different applications still need several steps to
be carried out as described in the following section.

VI. WAY FORWARD FOR IMPROVING THE OPERATIONAL USE

OF (ASCAT) SOIL MOISTURE PRODUCTS

As mentioned at the beginning, current satellite soil moisture
products are mature and accurate enough for being considered
as valuable information for real-world applications. Specifi-
cally, the ASCAT soil moisture product(s), available in near-
real time since 2007, already demonstrated good agreement
with ground observations and having a positive impact in dif-
ferent applications (see Section IV). Even though ASCAT was
not designed for soil moisture monitoring in the first place, its
well-established technology, calibration, and multi-angle mea-
surement capabilities have allowed us to derive a beneficial and
widely recognized soil moisture product. In addition, the Metop
Second Generation (Metop-SG) program is currently sched-
uled until mid-2040s, which has also a scatterometer on the
list of foreseen instruments. The next generation scatterometer,
so-called SCA, will be very similar to ASCAT, but expected
to have improvements in the spatial and radiometric resolution
and accuracy [72]. The Metop ASCAT soil moisture product
has demonstrated its reliability and is surely ready for being
employed in research and operational applications. The contin-
uation of the soil moisture product is also ensured in a long-term
perspective by Metop-SG SCA.

Nevertheless, several communities hardly considered these
datasets (e.g., for studying slope instability processes and/or epi-
demic risk assessment) likely due to nonscientific barriers [4].
We believe that there is a strong need for promoting collabora-
tion and the exchange between the remote sensing community
(data developers) and the different communities of data users in
order to fully exploit satellite soil moisture datasets in real-world
applications. Capacity building is fundamental to globalizing
societal applications of satellite datasets and building consen-
sus on key questions and recommendations [84]. Specifically,
there is a strong need for capacity building to better utilize soil
moisture products and exploring such data in weather insurance
applications when compared to the traditional approaches which
are based only on consideration of precipitation data.

In terms of products, we underline that end users are not
interested in which technology or microwave band is used for
soil moisture retrieval, but mainly that the products meet their
requirements in terms of spatial-temporal resolution, spatial-
temporal coverage, accuracy, and reliability. The more straight-
forward approach to accomplish these requirements is based
on merging multiplatform satellite products as it is commonly
done for precipitation (e.g., in the Global Precipitation Mea-
surement, GPM, mission [85]). A number of examples of
such merged products exist already for soil moisture: 1) the
ESA Climate Change Initiative (ESA CCI, http://cci.esa.int/),
2) the National Oceanic and Atmospheric Administration

Soil Moisture Operational Product System, NOAA SMOPS
(http://www.ospo.noaa.gov/Products/land/smops/), and 3) the
EUMETSAT’s H SAF (http://hsaf.meteoam.it/). However, fur-
ther research is needed to optimize the integration of the different
products (e.g., data merging versus data fusion approaches) in
order to potentially obtain a subdaily soil moisture product with
fine spatial resolution (e.g., ∼5–10 km) [168].

Another fundamental aspect is related to the error character-
ization of the soil moisture products and specifically its spatial-
temporal variability. Indeed, it is a critical aspect when soil
moisture datasets are assimilated in hydrological and land sur-
face modelling (e.g., [52], [63], [145]). In very recent years,
global scale studies analyzing different products using state-
of-the-art techniques were published [59], [77], [165], but the
information obtained from these studies must be conveyed in
the delivered soil moisture products. It should be noted that the
error characterization of more recent products (e.g., AMSR2,
SMAP) cannot be reliably determined until 1–2 years of data is
available.

Finally, to provide access to ASCAT soil moisture also for
nonexperts, the development of web mapping services, cloud
computing facilities, and software and tools that facilitate the
downloading and analysis of satellite soil moisture products will
be highly beneficial [127], [188]. Many end users are not famil-
iar with using large datasets with uncommon formatting and
simply do not take these datasets into account due to technical
constraints. Of course, this is not tolerable and clearly asks for
a community effort at an international level.
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