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We analyze the problem of carrying out an efficient itera-
tion to approximate the eigenvalues of some rank structured 
pencils obtained as linearization of sums of polynomials and 
rational functions expressed in (possibly different) interpola-
tion bases. The class of linearizations that we consider has 
been introduced by Robol, Vandebril and Van Dooren in [17]. 
We show that a traditional QZ iteration on the pencil is both 
asymptotically slow (since it is a cubic algorithm in the size 
of the matrices) and sometimes not accurate (since in some 
cases the deflation of artificially introduced infinite eigenval-
ues is numerically difficult). To solve these issues we propose 
to use a specifically designed Ehrlich–Aberth iteration that 
can approximate the eigenvalues in O(kn2) flops, where k
is the average number of iterations per eigenvalue, and n
the degree of the linearized polynomial. We suggest possible 
strategies for the choice of the initial starting points that make 
k asymptotically smaller than O(n), thus making this method 
less expensive than the QZ iteration. Moreover, we show in 
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the numerical experiments that this approach does not suffer 
of numerical issues, and accurate results are obtained.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Polynomials and rational functions are used extensively in mathematics and engi-
neering, for modeling and as approximations of smooth functions [2,3,21]. A particularly 
relevant application is the analysis of closed loop linear systems, which involves also 
matrices of rational functions when MIMO systems are considered [16]. Often one is 
interested in finding the roots of sums of polynomials or rational functions that are 
expressed in different bases, such as interpolation bases with distinct nodes. Robol, Van-
debril and Van Dooren introduced a framework [17] that provides the possibility to 
linearize2 rational functions of the form:

f(λ) = p1(λ)
q1(λ) + p2(λ)

q2(λ) ,

where pi(λ) and qi(x) can be expressed in different polynomial bases. More general forms 
with more than 2 summands are possible (see [17] for further details). The linearizations 
obtained in this setting, as we will see in Section 2, have particular rank structures, which 
suggests that a fast method for finding their eigenvalues might be formulated. This is 
precisely the aim of this work.

We will concentrate on the case where pi(λ) and qi(λ) are expressed in interpolation 
bases, namely the Newton and Lagrange ones. The framework can be extended to cover 
the case of rational and polynomial eigenproblems, that is, to the problem of finding the 
values of λ that make the matrix

F (λ) := P1(λ)−1Q1(λ) + P2(λ)Q−1
2 (λ) (1)

singular, even when the bases in which the Pi(λ) and the Qi(λ) are represented do 
not match. This problem arises, for example, when one wants to verify that a transfer 
function associated to a linear time invariant system has all the eigenvalues in the left 
plane, thus ensuring that the associated system is stable [16]. When the factors of the 
transfer functions have been computed using different interpolation nodes the problem 
fits precisely in the framework that we are describing.

Linearizations are widely used to find roots of polynomials and matrix polynomials. 
Given a polynomial p(λ) one usually constructs a pencil L(λ) := A − λB such that 

2 Here by linearize we mean constructing a linear pencil whose eigenvalues are the solution of the given 
nonlinear equation.
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detL(λ) = p(λ), and then computes its eigenvalues using an approximation method. This 
strategy has the advantage of relying on well-tested and efficient numerical software for 
the approximation of eigenvalues, usually the QZ iteration (or the QR when the pencil 
is monic).

However, there are some drawbacks to this approach. Since we rephrase the rootfind-
ing problem as an eigenvalue one, applying an unstructured method leads to a cubic 
computational cost in the degree and possibly to a higher condition number. In fact, 
once the coefficients of the polynomial are embedded in a companion matrix, the set 
of possible perturbations becomes larger, and the condition number of the eigenvalue 
problem can grow due to this fact [10]. Motivated by the introduction of a new class 
of linearizations for sums of polynomials and rational functions in [17], we develop 
a class of structured iterations for the approximation of the eigenvalues of such pen-
cils.

Our approach is based on the Ehrlich–Aberth method, which is a functional iteration 
for the approximation of roots of polynomials [1,11]. We will shorten it as EAI in the 
following. One advantage is that, even if the linearizations can have spurious infinite 
eigenvalues, the EAI can implicitly deflate them at no additional cost and without intro-
ducing numerical errors. In contrast, the QZ iteration would need an explicit deflation 
step (either a priori or a posteriori). Moreover, the EAI relies on the original input data 
at each step of the iteration, unlike the QR algorithms, making it much easier to exploit 
the structure of the problem.

The advantage of this approach compared to just running the EAI on the scalar poly-
nomial is that it provides a backward stable evaluation method. This can be transparently 
applied to any polynomial basis with a two-term recurrence relation (like monomials, 
Newton and Lagrange, which are described here — and with small adaptations could 
also be extended to three terms recurrence relations). Moreover, the matrix polynomial 
and rational case of (1) can be handled with minimal modifications.

In Section 2 we briefly review the structure and the construction of the pencils 
A − λB introduced in [17]. In Section 3, we recap the definition of the Ehrlich–Aberth 
iteration and we provide efficient strategies for the selection of the starting points. In 
Section 3 we show that computing the Newton correction is the main ingredient in or-
der to apply the EAI. In Section 4, we show how such structure can be exploited to 
compute it in a fast and accurate way. Finally, numerical experiments are reported in 
Section 5.

2. Linearizing interpolation polynomials

It is shown in [17] that linearizations for sums of polynomials and rational functions 
can be realized easily if one knows the so-called dual bases related to the polynomial 
bases of interest. We will briefly recall these concepts and then show how the construction 
can be performed in the Newton and Lagrange cases. These definitions, which are here 
adapted for our needs, go back to the work of Forney [13].
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Definition 2.1. Let φ0(λ), . . . , φk(λ) be a basis for the vector space of scalar polynomials 
of degree at most k. We say that a k × (k + 1) linear pencil A − λB is dual to the 
polynomial basis φj(λ), j = 0, . . . , k, if

(A− λB)

⎡
⎣φk(λ)

...
φ0(λ)

⎤
⎦ = 0. (2)

In the following we will use πφ(λ) to denote the column vector containing φk(λ) . . . φ0(λ).

The concept of duality introduced in [13] is much more general than what is described 
here, since it handles bases with different sizes and degrees. Another important concept 
defined by Forney is the one of minimality. For its definition we rely on the row-degree, 
which can be defined as the maximum of the degrees of the entries in a row. As an 
example, the row-degrees of

[
λ λ2 − 1 1
1 λ 0

]

are 2 and 1.

Definition 2.2. We say that a matrix polynomial P (λ) =
∑d

i=0 Piλ
i ∈ C[λ]k1×k2 is 

minimal if its rows form a basis of a subspace of C(λ)k2 , the vector space of k2-tuples 
of rational functions, and the sum of its row-degrees is minimal among all the possible 
polynomial bases for that subspace.

The above definition is often difficult to check in practice, so that the following char-
acterization will be useful.

Lemma 2.3. A matrix polynomial P (λ) =
∑d

i=0 Piλ
i is minimal if and only if

• its row rank is maximal for every λ ∈ C;
• the matrix whose rows are the highest degree coefficients of the polynomial rows of 

P (λ) has full row rank;

Remark 2.4. It is immediate to verify that the row vector πT
φ (λ) containing the elements 

of a polynomial basis φj(λ) is always minimal according to the above definition. In fact, 
its highest degree coefficient is eT1 , and so different from zero, and thus has rank 1. 
Moreover, if w is the column vector with the coordinates of 1 in the given basis then 
πT
φ (λ)w = 1 independently of λ, thus proving the rank 1 property for every λ.

The same can not be said of the pencils dual to πT
φ (λ). However, when the minimality 

property holds, we say that the pencil is minimal and dual to φj(λ). Here we state 
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a general result, adapted from the framework of [17], which eases the construction of 
linearizations for rational functions.

Theorem 2.5. Let pi(λ), qi(λ) for i = 1, 2 be polynomials of degree d with no common 
factors. Denote by pi, qi the vectors of their coefficients in two bases which are dual to 
Lφ(λ) and Lψ(λ), respectively. Then the matrix pencil

L(λ) :=
[
p1q

T
2 − p2q

T
1 LT

φ (λ)
Lψ(λ) 0

]
∈ C

(2d+1)×(2d+1)[λ]

is a linearization for the polynomial p1(λ)q2(λ) − p2(λ)q1(λ) so, in particular, has as 
finite eigenvalues the solutions of the rational equation

p1(λ)
q1(λ) = p2(λ)

q2(λ) .

Remark 2.6. When pi(λ) and qi(λ) share a common factor the above construction is still 
a linearization for p1(λ)q2(λ) − p2(λ)q1(λ). In this case, however, the common factors 
might appear as additional eigenvalues which are not roots of the rational equation.

The above result can be used to linearize sums of rational functions defined as quotient 
of polynomials expressed in different bases. We show that, when a certain structure is 
present in the matrices Lφ(λ) and Lψ(λ), one can apply a fast and stable functional 
iteration to approximate all the solutions.

The results that follow do not strictly depend on the rank 2 in the top-left block, and 
they are generalizable to rank k blocks with some k � d. One can check then that the 
obtained pencils are linearizations of polynomials of the form

p(λ) =
k∑

i=1
pi(λ)qi(λ).

Moreover, it is possible to formulate a block version of the above result which yields 
linearizations of the form

L(λ) :=
[
p1q

T
2 − p2q

T
1 LT

φ (λ) ⊗ Ik
Lψ(λ) ⊗ Ik 0

]
, pi, qi ∈ C

dk×k, (3)

whose eigenvalues coincides with the ones of the nonlinear matrix function

F (λ) := P1(λ)−1Q1(λ) + P2(λ)Q−1
2 (λ).

2.1. Newton linearizations

Let Σ = {σ1, . . . , σk} be a (ordered) set of interpolation nodes in the complex plane. 
Then the Newton basis related to Σ is defined as follows:
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nΣ,j(λ) =
∏
i�j

(λ− σi), j = 1, . . . , k.

Given a function f(λ) or, more generally, a set of points fj for j = 1, . . . , k, we can 
construct the interpolating polynomial p(λ) such that p(σj) = fj by computing the 
so-called divided differences. This is a classical topic in interpolation theory, for which 
we refer to [22].

The following result gives a concrete recipe to construct a dual basis for the Newton 
case. The proof can be found in [17].

Lemma 2.7 (Section 3.6 of [17]). The linear pencil LΣ,k(λ) of size k × (k + 1) for the 
nodes σ1, . . . , σk defined as follows

LΣ,k(λ) :=

⎡
⎣1 −(λ− σk)

. . .
. . .
1 −(λ− σ1)

⎤
⎦

is dual to the Newton basis associated with σ1, . . . , σk.

2.2. Lagrange linearizations

A construction for the Lagrange case can be given in a similar way. This case is also 
treated in [17], but we prefer to introduce a slight variation that makes the dual basis 
equal to the one used in [20] to linearize Lagrange polynomials.

Given a set of nodes σ1, . . . , σk we consider the set of (scaled) Lagrange polynomials 
defined as:

�j(λ) := θj

k∏
i=1
i�=j

λ− σi

σj − σi
, j = 1, . . . , k (4)

Lemma 2.8. Given a set of nodes σj , j = 1, . . . , k, the following matrix pencil is dual to 
the scaled Lagrange basis defined in (4) for any choice of non-zero θj:

Lk,φ(λ) =

⎡
⎢⎣

(λ− σk) −(λ− σk−1) θk
θk−1

. . .
. . .

(λ− σ1) −(λ− σ0) θ1θ0

⎤
⎥⎦ .

Proof. It is easy to check that Lk,φ(λ)πφ(λ) = 0. Moreover, the pencil Lk,φ(λ) is a row 
and column scaling of the one introduced in [17], and so it has the same property of 
maximal rank for any λ. �
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In order to keep the growth of the coefficients under control it is often convenient to 
choose the parameter θj as the barycentric weights of the nodes σj . We refer to [20] for 
the details concerning this choice.

3. The Ehrlich–Aberth iteration

The Ehrlich–Aberth method [1,11] is a functional iteration that simultaneously ap-
proximates all the roots of a scalar polynomial p(λ). It works by updating a set of d
approximations λ1, . . . , λd, where d is the degree of p(λ), by means of the following 
formula:

λ
(k+1)
i = λ

(k)
i − N(λi)

1 −
∑

j �=i
1

λ
(k)
i −λ

(k)
j

·N(λi)
, N(λ) = p(λ)

p′(λ) ,

where N(λ) is Newton’s correction of the polynomial at the point λ. This iteration can 
be seen as Newton’s correction computed on the rational functions

Ri(λ) = p(λ)∏
j �=i(λi − λj)

, i = 1, . . . d.

Whenever the approximations λ(k)
i are near the roots of the polynomial for i �= j, then 

Rj(λ) is almost linear in a neighborhood of λ(k)
j , and so Newton’s method converges 

fast. In fact, it is possible to prove that the Ehrlich–Aberth iteration is locally cubically 
convergent on simple roots, and linearly on multiple ones [1].

In this work we discuss the applicability of the Ehrlich–Aberth method to the com-
putation of the eigenvalues of a square n × n pencil A − λB. A similar idea has been 
previously considered by Bini, Gemignani, and Tisseur in [4] and by Bini and Noferini 
in [6]. We know that (if no infinite eigenvalues are present) the degree of det(A − λB) is 
equal to n, and its eigenvalues are the roots of this polynomial. We recall that computing 
the coefficients of the scalar polynomial p(λ) := det(A − λB) starting from the matrices 
A and B is an ill-conditioned operation in general [9]. For this reason, we rely on the 
following formula for the application of the EAI.

Theorem 3.1 (Jacobi’s formula). Let A(λ) be a C1 matrix function. Then

d

dλ
detA(λ) = tr

(
adjA(λ) · d

dλ
A(λ)

)
,

where adj(·) is the adjugate operator.

Theorem 3.1 can be exploited to compute Newton’s correction of p(λ) := detL(λ). 
We have, in fact,
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N(λ) =
(

tr
(
A(λ)−1 d

dλ
A(λ)

))−1

.

Applying the above formula to the pencil L(λ) := A − λB yields the relation

N(λ) = −
(
tr
(
(A− λB)−1B

))−1
. (5)

In Section 4 we will see how to exploit the structure to compute Newton’s correction in 
a fast way.

3.1. Choosing the starting points

A non-trivial task in the implementation of the Ehrlich–Aberth iteration is the choice 
of the starting points. As suggested by Aberth in [1], a strategy that works well in 
most cases is to put them on a circle whose radius is slightly larger than the maximum 
modulus of all the roots. In order to do this we need to estimate the spectral radius 
of the pencil A − λB. However, we have emphasized at the beginning that our pencil 
might have infinite eigenvalues, which we want to ignore. From now on, whenever we 
will mention the spectral radius of A − λB, we will mean the maximum modulus of the 
finite eigenvalues.

We present two different strategies to provide starting points. The first is based on an 
adaptation of the power method, while the other relies on contour integration.

3.1.1. Power method
Given a pencil A − λB one can estimate the spectral radius by running a certain 

number of iterations of an adapted power method. Recall that, in the standard eigenvalue 
problem setting, the power method associated with a matrix M is obtained by performing 
the iteration

x(k+1) = Mx(k).

Assuming there exists a unique and simple dominant eigenvalue λ1 so that |λj | < |λ1|
for any j > 1, the ratio between the entries of x(k+1) and x(k) converges to λ1 as k → ∞. 
Renormalization of x(k) might be needed after some steps in order to avoid overflow or 
underflow situations.

This method can be generalized easily to a pencil when B is invertible by running the 
iteration

x(k+1) = B−1Ax(k)

which is equivalent to the above when setting M = B−1A. Notice, however, the explicit 
computation of the matrix M is not needed and one can perform the iteration by solving 
a certain number of linear systems.
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In our case, however, B is singular,3 so we make use of Brauer’s theorem, which is a 
simple yet powerful tool that allows one to move a specified eigenvalue of a matrix [8]
and, more generally, of matrix functions expressed as Laurent series [5]. In our case we 
are interested in shifting an entire Jordan chain from the infinite eigenvalue to a zero one, 
such that it will not interfere with the power iteration and estimation of the dominant 
finite eigenvalue.

In order to achieve this result we prove a version of Brauer’s theorem for pencils. 
This is a generalization of the original one in [8], and a particular case of [5]. Our 
formulation allows to transparently deal with the shift of infinity eigenvalues to 0, which 
is not achievable directly with the formulations in [5,8]. To achieve this, we identify the 
eigenvalues of the pencil with the projective points in P1(C).

Theorem 3.2 (Brauer). Let μA − λB be a pencil with eigenvalues (λi, μi), and assume 
that v is a right eigenvector associated to a simple eigenvalue (λ∗, μ∗), i.e.,

(μ∗A− λ∗B)v = 0.

Let w be the only vector such that Av = λ∗w and Bv = μ∗w. Then, for any vectors uA

and uB, the matrix pencil

μÃ− λB̃, Ã := A + wuT
A, B̃ := B + wuT

B

has the same eigenstructure of the original pencil μA − λB with the only exception of 
the eigenvalue (λ∗, μ∗) which is moved to (λ∗ + uT

Av, μ∗ + uT
Bv).

Proof. We notice that the vector w is always well defined, since λ∗ and μ∗ cannot be zero 
at the same time. We then consider the Kronecker canonical form of the pencil given by 
the upper triangular pencil μTA − λTB defined as follows

(μA− λB)V = W (μTA − λTB), (6)

with V and W invertible matrices. Let v1 := V e1 and w1 := We1, and assume that we 
ordered the diagonal elements so that λ∗ and μ∗ are found in position (1, 1) of TA and 
TB . For any choice of uA and uB the pencil

μT̃A − λT̃B , T̃A := TA + e1u
T
AV, T̃B := TB + e1u

T
BV

has the same eigenvalues of μTA − λTB with the only exception of (λ∗, μ∗) which is 
moved to (λ∗ + uT

Av, μ∗ + uT
Bv). Right multiplying (6) by V −1 after having replaced TA

and TB with T̃A and T̃B, respectively, yields

3 In fact, the linearization of Theorem 2.5 has size 2d + 1, but linearizes a polynomial of degree 2d. 
This implies that the linear term of the pencil is singular. We refer to [17] for a details analysis of the 
eigenstructure of the pencil.
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μÃ− λB̃ := W (μT̃A − λT̃B)V −1

which has the required eigenvalues by construction and is such that

Ã = A + wuT
A, B̃ = B + wuT

B ,

as requested. This completes the proof. �
Specializing the above result to eigenvalues of the form (λ, 1) gives us the original 

Brauer’s theorem from [8]. In our case, if ∞ is an eigenvalue of a pencil A − λB then 
(λ, μ) = (1, 0) is an eigenvalue of μA − λB. Thus, we can choose

uA = − v

‖v‖2 , uB = v

‖v‖2

so that the modified pencil has (0, 1) as an eigenvalue. A simple generalization of the 
above result can be used to move an entire Jordan chain by perturbing it in the Kronecker 
canonical form. The proof is just more technical but uses the same ideas, so we omit it. 
The same result can be obtained by relying on the theorem in [5] twice, first moving the 
Jordan chain at infinity to some finite point and then moving it to zero.

Theorem 3.3. Let μA − λB be a pencil with a left and right deflating subspace spanned 
by the columns of W and V , that is, there exist invertible k × k matrices MA and MB

such that

AV = WMA, BV = WMB .

Then, for any UA, UB in Cn×k the modified pencil μÃ− λB̃ with

Ã := A + WUT
A , B̃ := B + WUT

B

has the same eigenstructure of μA − λB except the block corresponding to the deflating 
subspaces V and W , which is replaced by the eigenstructure of the (small) pencil μ(MA+
UT
AV ) − λ(MB + UT

BV ).

The simplest case of a deflating subspace is to consider an eigenvector and its image 
under the multiplication by A and B, and this gives back Theorem 3.2. However, one 
might consider also a subspace spanned by the vectors of a Jordan chain and in this case 
the above result allows to move it to a completely different eigenstructure.

In view of the previous results, we assume the pencil Ã−λB̃ has the infinite eigenvalue 
(and the Jordan chain associated, if it exists) shifted to 0. We can perform some iterations 
of the form

x(k+1) = B̃−1Ãx(k)
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in order to approximate the dominant finite eigenvalue. We can then use that approx-
imation to select the initial approximations to start the EAI, by putting them equally 
distributed on a circle of radius equal to the spectral radius of the pencil.

In [17] it is shown that the linearizations of sums of rational functions only have 1
simple infinite eigenvalue, while the ones for sums of polynomials have an entire Jordan 
chain linked to infinity. For this reason, Theorem 3.2 is sufficient for the former case, 
while Theorem 3.3 is required for the latter. In both cases the explicit characterization of 
the Kronecker structure of the infinite eigenvalue allows to avoid its explicit computation.

3.1.2. Counting the eigenvalues by means of contour integration
Here we study a more refined version of the starting point selection procedure, which 

is based on the so-called argument principle. We recall its formulation from [15], for 
which we refer for the definition of a Jordan curve.

Theorem 3.4 (Argument principle, Theorem 4.10a in [15]). Let f(λ) be a holomorphic 
function defined on a simply connected region R. Then, for any positively oriented Jordan 
curve Γ that borders in R and does not pass through any zero of f(λ) we have

1
2πi

∫
Γ

f ′(λ)
f(λ) dλ = N

where N is the number of zeros of f(λ) inside Γ, counted with multiplicities.

The above result applied to the holomorphic function f(λ) := det(A − λB) allows to 
count the eigenvalues of the pencil A − λB inside a contour Γ.

Remark 3.5. The integrand of Theorem 3.4 is also called the logarithmic derivative of 
f(λ). We notice that it is nothing else than the inverse of Newton’s correction f(λ)/f ′(λ)
evaluated at the point λ, according to (5). In the following we will show how to evaluate 
this function in O(n) flops.

We propose the following strategy to count the roots inside a circle of center x0 and 
radius r > 0. Let Ik(x0, r) be the approximation of the integral of Theorem 3.4 obtained 
by applying the trapezoidal rule with k points, and B(x0, r) the ball of center x0 and 
radius r. We have

I(x0, r) := lim
k→∞

Ik(x0, r) = 1
2πi

∫
∂B(x0,r)

f ′(λ)
f(λ) dλ.

Since we are integrating a holomorphic function along a circle, the trapezoidal rule 
converges exponentially fast to the integral thanks to the periodicity of the function [19]
restricted to ∂B(x0, r). We choose k by means of the following procedure:
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1. We evaluate the integrand at k points on the circle of center x0 and radius r. We 
then compute Ik(x0, r) by appropriately combining the results of this evaluation.

2. We estimate the error by assuming |Ik(x0, r) − I2k(x0, r)| ≈ |Ek(x0, r)|, where 
Ek(x0, r) := I(x0, r) − Ik(x0, r). If the absolute error is smaller than 1

2 then we 
round the result to the nearest integer and exit, otherwise we go back to the first 
point doubling k.

3. We continue until convergence.

Notice that doubling the value of k allows to reuse the previous evaluations, so the 
cost for the integration will be O(kn) where k is the minimum power of 2 such that the 
integration error can be bounded by 1

2 .
We can then use the above scheme to obtain an algorithm for the choice of the starting 

approximations. We first approximate the spectral radius by evaluating the number of 
eigenvalues in B(0, 2j) for various values of j. We find the smallest j such that all 
eigenvalues are contained inside B(0, 2j). Let it be j2, and let j1 the largest j such that 
B(0, 2j) does not contain any eigenvalue.

We then count the number of eigenvalues in each circle of radius 2j for j1 < j < j2, and 
select the starting approximations accordingly. In our implementation we have chosen 
to place the approximations in each annulus {z | 2j � |z| � 2j+1} on a circle of radius √

2 · 2j .
This strategy allows to match the moduli of the approximations to the ones of the 

eigenvalues. In order to complete this task one has to evaluate r := j2 − j1 + 1 integrals, 
plus the ones needed to find the spectral radius (that could be also computed with the 
scheme of the previous subsection).

We assume that the number of evaluations needed for each integral is bounded by n, in 
which case this will give a procedure that costs O(rn2). In particular, the two strategies 
for the choice of the starting points have a comparable cost.

In Fig. 1 an example of starting points obtained with this strategy and the one of 
the previous section, along with the correct eigenvalues of the pencil, are displayed. The 
strategy relying on Theorem 3.4 is capable of estimating all the eigenvalues, not only the 
largest ones, and we will see in Section 5 that this yields a lower number of iterations 
for the EAI.

3.2. A suitable stopping criterion

When dealing with iterative methods it is important to understand when to stop. 
In order to take this decision we rely on some results of Henrici [15], and Bini and 
Noferini [6].

3.2.1. Small Newton correction
The following result relates the modulus of Newton’s correction with the accuracy of 

an approximation.
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Fig. 1. On the left: starting points generated with the algorithm relying on Theorem 3.4. The empty circles 
are the eigenvalues, while the stars represent the starting points computed with the above method. The 
radii have been chosen in the middle of the annuli containing a certain amount of eigenvalues. On the right: 
starting points generated relying on the power method.

Theorem 3.6 (Corollary 6.4g of [15]). Let p(λ) be a polynomial of degree n. Then, for 
any λ such that p′(λ) �= 0, the circle of radius (n −1) · |p(λ)/p′(λ)| and center λ contains 
at least one root of p(λ).

We can state the following immediate consequence of the above result, based on which 
we will formulate our stopping criterion.

Theorem 3.7. Let p(λ) be a polynomial of degree n and λ a point in the complex plane 
such that |p(λ)/p′(λ)| � |λ|ε for some ε > 0. Then there exists a point ξ such that 
p(ξ) = 0 and |ξ − λ| � (n − 1)|λ|ε.

The above states that whenever Newton’s correction of detL(λ) is of the order of the 
machine precision, the point λ is nearby an eigenvalue of L(λ). Whenever this happens 
we can then stop our iteration, and this also automatically provides a bound on the 
forward error of the computed eigenvalue.

3.2.2. Checking the conditioning of the evaluated pencil
Another useful criterion to stop the iteration is checking the condition number of the 

matrix A − λB at a point λ. Since the pencil is singular whenever λ is an eigenvalue, 
we can expect the condition number κ(A) := ‖A‖‖A−1‖ to be high when λ is near an 
eigenvalue.

Intuitively, one could formulate a stopping condition by asking to stop the iterations 
when κ(A − λB) > t where t is some chosen threshold and κ(·) is the matrix condition 
number. Theorem 3.9 shows that in fact when we choose t to be approximately 1

u , with 
u being the unit round-off, the above condition is equivalent to asking that λ is an 
eigenvalue of a slightly modified pencil.
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Remark 3.8. We need to be careful with the definition of slightly modified in this context. 
In fact, what we would like to have is that a structured modification makes the pencil sin-
gular. Considering unstructured perturbations can cause the algorithm to stop too early 
since the unstructured condition number might be much higher than the structured one.

Here we state the following result, that gives a good stopping criterion for an un-
structured pencil. Then we will rephrase it to make it applicable in our context so that 
structured perturbations can be considered instead. We note that this can be seen as a 
slight variation of Lemma 3 in [18], where κ2(·) is used to denote the matrix condition 
number4 with respect to the 2-norm.

Theorem 3.9. Let A − λB be a pencil. If κ2(A − λB) � 1
ε then λ is an eigenvalue of a 

pencil whose coefficients have been perturbed relatively less than 2ε in norm.

Proof. We need to prove that there exist two perturbations δA and δB, of norm relatively 
smaller than 2ε (compared to A and B, respectively), such that λ is an eigenvalue of 
A + δA − λ(B + δB).

Recall that, in the 2-norm, κ2(A − λB) = σ1
σn

, where σ1 > . . . > σn are the singular 
values of A − λB. Let u1, . . . , un and v1, . . . , vn be the associated left and right singular 
vectors. We then have that the matrix A − λB − σnunv

∗
n is singular. Moreover, since 

‖A − λB‖2 = σ1, either ‖A‖2 � 1
2σ1 or ‖B‖2 � 1

2
σ1
|λ| . In the first case, we can define 

δA := −σnunv
∗
n, and then we can verify that A + δA −λB is singular. In the second one, 

we can define δB := σn

λ unv
∗
n, and then A − λ(B + δB) is singular.

In both cases, the coefficients of the pencil A − λB can be perturbed with a pertur-
bation relatively smaller than 2σn

σ1
, so smaller than 2ε, so that λ is an eigenvalue. This 

concludes the proof. �
Notice that measuring the above condition number could be difficult in practice. 

However, as already mentioned in the previous remark, we are more interested in a 
structured condition number which is also easier to measure in our context.

Theorem 3.10. Consider an invertible upper triangular matrix with the following struc-
ture:

M =

×
×
×

×
×

   
   
   
  γ
×
×
×

×
×

,

4 Here we refer to the standard condition number of the linear system associated to a certain matrix, that 
is, κ2(A) := ‖A‖2 · ‖A−1‖2.
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where the entries marked with  and γ form a block of rank k which can be written as UV T

for U, V ∈ C
n×k. Then there exists a perturbation of norm smaller than |γ|√

‖eTnU‖2+‖eT1 V ‖2
, 

at the first order, of U and V which makes the matrix singular.

Proof. Define the n × k matrices Ũ , Ṽ as follows:

Ũ := U + δU, Ṽ := V + δV

Since the only element on the diagonal modified by changing δU and δV is γ, the only 
way to obtain a singular matrix is to choose them so that

eTn (U + δU)(V + δV )T e1 = 0. (7)

The above shows that all the entries in δU and δV which are not on the last row and 
first row, respectively, have no effect on the singularity, thus we can set them to zero 
(since any other choice will increase the norm of the perturbations). Let u, δu, v and δv
be the last and first rows of these matrices. We can rephrase (7) as follows:

〈u + δu, v + δv〉 = 0.

Dropping second order terms one can verify that this is equivalent to finding the minimum 
norm solution to

[
u
v

]T [
δv
δu

]
= −γ

which is given by

[
δv
δu

]
= − γ

‖u‖2 + ‖v‖2

[
u
v

]
= −γ√

‖u‖2 + ‖v‖2

(
1√

‖u‖2 + ‖v‖2

[
u
v

])
,

where we have normalized the vector 
[ u
v

]
to make it of unit norm. The proof is then 

concluded since the size of the perturbation is exactly what we were aiming for. �
Using the above result we can say that if

|γ|√
‖u‖2 + ‖v‖2

� ε‖UV T ‖

then a structured perturbation which is relatively smaller than ε can make the evaluated 
pencil singular. We will see in Section 4.3 that the matrix can be taken in this upper 
triangular form by means of Givens rotations. This is used to compute Newton’s correc-
tion, so then we can easily check when we have reached convergence by testing whether 
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|γ| � Ku‖UV T ‖
√
‖eTnU‖2 + ‖eT1 V ‖2, where K is a small constant, depending also on 

the norm of U and V , and u the unit round-off. Since all these quantities are available 
during the computation of Newton’s correction, this condition can be checked almost for 
free, and provides an effective stopping criterion.

4. Efficient computation of Newton’s correction

In this section we show how the previous results can be turned into a practical al-
gorithm. The main issue is the efficient evaluation of Newton’s correction at a point, 
which corresponds to computing the trace of the matrix (A − λB)−1B. In this section 
we present a strategy that works both for the Newton and Lagrange linearizations, with 
some specific results that only cover the Newton case.

4.1. Transformation into Hessenberg structure

As we have seen in Section 2.1 and 2.2, the linearizations that we are interested in 
have the following form:

L(λ) =
[

R LT
1 (λ)

L2(λ) 0

]
(8)

with Lj(λ), j = 1, 2 being rectangular kj × (kj + 1) and upper bidiagonal and R being 
a rank 2 matrix. Without loss of generality, in the following we assume that L1(λ) and 
L2(λ) have the same size k × (k + 1) and R = UV T with U, V ∈ C

(k+1)×2.

Theorem 4.1. Let L(λ) be a pencil as in (8). Then there exists a block column permutation 
that takes it to upper Hessenberg form. More precisely, we have that

L(λ)Π =
[
LT

1 (λ) R
0 L2(λ)

]
=: Ã− λB̃, Π =

[
Ik+1

Ik

]

is an upper Hessenberg pencil. Moreover, its leading coefficient is lower bidiagonal with 
a zero element on the diagonal in position (k + 1, k + 1), and the constant coefficient is 
the sum of a bidiagonal matrix with an upper triangular rank 2 matrix.

Proof. Direct consequence of applying Π to the pencils defined in Sections 2.1 and 
2.2. �

Something more can be said in the Newton case, where the leading coefficient is 
diagonal. Using an additional permutation, the pencil L(λ) can be endowed with a
Hessenberg-Triangular structure. This is relevant if one wants to apply the QZ iteration, 
since the reduction to upper Hessenberg-Triangular form is the usual preliminary step in 
this case. While this is not directly relevant for the EA approach, it is still a reduction 
that is interesting so we state the following result.
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Lemma 4.2. Let L(λ) be the pencil obtained by linearizing the sum (or difference) of two 
polynomials expressed in the Newton basis. Then there exist two permutation matrices 
Π1 and Π2 such that

Π1L(λ)Π2 = A− λB,

with B diagonal and A upper Hessenberg.

Proof. We already know, thanks to Theorem 4.1, that we can choose Π2,1 so that the 
pencil L(λ)Π2,1 is upper Hessenberg. Let Jk, Π1,1 and Π1,2 be defined as follows:

Jk =

⎡
⎣ 1

. .
.

1

⎤
⎦ , Π1,1 = Jk1+1 ⊕ Ik2 , Π1,2 = Jk1 ⊕ Ik2+1.

Multiplying L(λ)Π2,1 on the left by Π1,1 acts on the first block row as the left multi-
plication by Jk1+1 and, analogously, the right multiplication by Π1,2 acts on the right 
as Jk1 . These transformations preserve the rank of the top-right block and leave L2(λ)
unchanged. Moreover, in the Newton case, L1(λ)T is given by

L1(λ)T = H − λ

[
0Tk1

Ik1

]

where H is lower bidiagonal. It can be checked easily that Jk1+1HJk1 is still lower 
bidiagonal and that

Jk1+1L1(λ)T Jk1 = Jk1+1HJk1 − λ

[
Ik1

0Tk1

]

has the prescribed Hessenberg triangular structure when embedded in the larger pencil. 
Setting Π1 := Π1,1 and Π2 := Π2,1Π1,2 completes the proof. �
4.2. A Sherman–Morrison based approach

In this section we focus on providing a method involving O(n) flops for computing the 
trace of (A −λB)−1B, i.e., for the evaluation of the Newton correction of the polynomial 
detL(λ). The method is based on the Sherman–Morrison formula [14].

Theorem 4.3 (Sherman–Morrison). Let M and M + UV T be two invertible matrices, 
where M ∈ C

n×n and U, V ∈ C
n×k. Then

(M + UV T )−1 = M−1 −M−1U(I + V TM−1U)−1V TM−1.

The above formula provides a cheap method to evaluate the inverse of a low rank 
correction of a matrix whose inverse is known (or easily computable). This is exactly our 
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case, since the pencil L(λ) can be written in the following form:

A− λB = M(λ) + UV T

where M(λ) is a lower bidiagonal pencil and U, V ∈ C
n×2. Unfortunately, the above 

decomposition does not satisfy the hypotheses of Theorem 4.3, since the bidiagonal 
matrix M(λ) has a zero diagonal entry (see Theorem 4.1) and is not invertible.

However, we can rephrase the decomposition by modifying M(λ) and putting a value 
α �= 0 in position (k+1, k+1) and accordingly modify the rank 2 correction to a rank 3
one so that

A− λB = M̃(λ) + UV T − αek+1e
T
k+1 = M̃(λ) + Ũ Ṽ T .

In the above formulation the matrix M̃(λ) is invertible and by the Sherman–Morrison 
formula we obtain:

(A− λB)−1 = M̃(λ)−1 − M̃(λ)−1Ũ(I + Ṽ T M̃(λ)−1Ũ)−1Ṽ T M̃(λ)−1, (9)

which in turn leads to the following result.

Lemma 4.4. Let A − λB be a pencil defined as in Theorem 4.1. Then, for any λ such 
that A − λB is invertible and for any α �= 0,

tr((A− λB)−1B) = tr(M̃(λ)−1B) − tr(V̂ T (λ)Û(λ))

where M̃(λ), Ũ(λ), Ṽ (λ) are defined as in (9) and

Û(λ) := M̃(λ)−1Ũ(I + Ṽ T M̃(λ)−1Ũ)−1, V̂ (λ) = BT M̃(λ)−T Ṽ .

Proof. We can use the decomposition of (9) to get:

(A− λB)−1B = M̃(λ)−1B − M̃(λ)−1Ũ(I + Ṽ T M̃(λ)−1Ũ)−1Ṽ T M̃(λ)−1B.

Since the trace is a linear operator, we can split the trace of this sum as the sum of the 
traces, and using the fact that the trace of a matrix product is invariant under cyclic 
permutation of the factors we get the thesis. �

The trace of a matrix product can be characterized as follows.

Lemma 4.5. Let M , N be two n × k matrices. Then

tr(MNT ) =
∑

0�i,j�n

(M ◦N)ij

where ◦ denotes the Hadamard product.
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Remark 4.6. We emphasize that Lemma 4.4 provides an O(n) algorithm for computing 
Newton’s correction. In fact, to evaluate the first term of the sum we can use the relation 
given by Lemma 4.5:

tr(M̃(λ)−1B) =
∑
i,j

(M̃(λ)−1 ◦BT )ij .

Since BT has only nonzero elements on the diagonal and on the superdiagonal, we have 
to compute the diagonal and superdiagonal of M̃(λ)−1, which can be done in O(n) flops 
given its bidiagonal structure.

Moreover, the second matrix of which we have to compute the trace is 3 × 3 and can 
be computed in O(n) flops. These two facts together provide an O(n) algorithm.

Whilst the above framework is theoretically satisfying, from a numerical perspective 
there are still some points that need to be handled carefully. A natural one is the choice 
of α. While any α �= 0 provides a mathematically correct formula, we are interested 
in choosing α in order to obtain the best possible numerical results. In practice we 
can choose α to be about the norm of the other diagonal elements, in order to avoid 
unbalancing in the matrix.

4.3. Using rotations

As we will see in Section 5 the algorithm of Section 4.2 can be unstable. For this 
reason, it is of interest to devise an alternative scheme based on unitary transformations 
that, as confirmed by numerical experiments in Section 5, is more robust in practice.

In view of Lemma 4.2 we know that, up to permutations, we can rewrite the pencil 
as A − λB where A and B have the following structure:

A =
[
BT

φ UV T

0 Bψ

]
, B =

[
−BT

φ,1
−Bψ,1

]
,

where Bφ and Bψ are (rectangular) bidiagonal matrices containing the interpolation 
nodes. The Newton case is particularly easy to deal with, since the matrix B is diagonal, 
with a zero entry in the middle. We have the following.

Lemma 4.7. Let A −λB be a linearization for a sum of two scalar polynomials expressed 
in two Newton bases as in (3). Then the trace of the matrix (A −λB)−1B can be expressed 
as follows:

tr
(
(A− λB)−1B

)
=

⎛
⎜⎝ n∑

i=1
i�=k+1

[A− λB]−1
ii

⎞
⎟⎠

−1

where k is the degree of the polynomials whose sum is linearized.
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Proof. It follows by recalling that tr(ABT ) =
∑

i,j(A ◦ B)ij , where ◦ is the Hadamard 
product of the matrices A and B, see Lemma 4.5. �

An analogous result (which we do not state explicitly) also holds for the Lagrange 
case, where the linear combination of the diagonal and superdiagonal elements has to be 
done using the barycentric weights as coefficients.

In both cases, to ease the computation, we will split the inverse of A −λB in two parts. 
The linearity of the trace operator allows to compute these two parts separately and then 
sum the results. More precisely, we look for a decomposition (A −λB)−1 = M1 +M2, so 
that we can compute tr((A − λB−1)B) = tr(M1B) + tr(M2B). We rely on the following 
elementary result.

Lemma 4.8. Let X be an upper bidiagonal matrix, defined as follows:

X =

⎡
⎢⎢⎢⎣
α1 β1

. . .
. . .
. . . βn−1

αn

⎤
⎥⎥⎥⎦ .

Then it admits a factorization as a sequence of n − 1 Gauss transformations given by 
X = Xn−1 . . . X1 where

X1 =
[
α1 β1

α2
In−2

]
and Xi =

⎡
⎢⎣
Ii−1

1 βi

αi+1
In−i−1

⎤
⎥⎦ for i > 1.

Assume λ fixed and set M := A − λB. We want to compute the elements of M−1. 
Under the hypotheses above we have:

M =
[
XT

φ UV T

0 Xψ

]
, Xφ ∈ C

k×(k+1), Xψ ∈ C
k×(k+1),

where Xφ and Xψ are the bidiagonal matrices relative to the nodes in the bases φ
and ψ, respectively. As reported by the following lemma, the above structure allows for 
a structured upper triangular factorization of M .

Lemma 4.9. Given a matrix M with the prescribed structure, it is possible to find two 
unitary matrices QU and QL such that

R := QUMQL =

⎡
⎣X̃φ Ũx1 Ũ Ṽ T

γ xT
2 Ṽ

T

˜

⎤
⎦ , X̃φ ∈ C

k×k, X̃ψ ∈ C
k×k, x1, x2 ∈ C

2,

Xψ
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and X̃φ and X̃ψ are upper bidiagonal matrices. Moreover, QU = QU,S ⊕ Ik and QL =
Ik ⊕QL,S and QU,S and QL,S can be decomposed as the product of k Givens rotations. 
The matrices Ũ and Ṽ are defined by Ũ = QU,SU and Ṽ = QL,SV .

Proof. The proof of the above result is constructive. We define 2k Givens rotations that 
reduce the top-left and bottom-right blocks to upper triangular form as reported in the 
following for the k = 3 case:

M = G1G2G3︸ ︷︷ ︸
Q∗

U

⎡
⎢⎢⎢⎢⎢⎢⎣

× ×    
× ×    

×    
   

× ×
× ×

×

⎤
⎥⎥⎥⎥⎥⎥⎦G4G5G6︸ ︷︷ ︸

Q∗
L

where the ×-es identify the entries of the bidiagonal blocks, the  are the entries of the 
low rank block, and Gi is a Givens rotation acting on the rows (i, i + 1). The rotations 
can be obtained computing a QR factorization of Xφ and an RQ factorization of Xψ. �

The advantage of the above representation is that it eases the parametrization of the 
inverse of R in order compute its trace (even after performing the rotations). In fact we 
have the following.

Lemma 4.10. The inverse of R is given by

R−1 =

⎡
⎢⎣X̃

−1
φ −γ−1X̃−1

φ Ũx1 ×
γ−1 −γ−1xT

2 Ṽ
T X̃−1

ψ

X̃−1
ψ

⎤
⎥⎦ .

Moreover, the trace of M−1 = QLR
−1QU does not depend on the entries that have been 

marked with the × symbol.

Proof. The structure of the inverse matrix can be obtained by performing a block-wise 
inversion of the upper triangular matrix R. The last claim can be obtained by decom-
posing R−1 as R−1 = R× + R×⊥ , where R× contains the elements marked with × and 
R×⊥ the others. The structure if QL and QU implies that QLR×QU has a zero diagonal, 
thus giving a null contribution to the trace. �

By exploiting the last statement of Lemma 4.10 and the linearity of the trace operator, 
we can rephrase the problem as follows for the Newton case.

Lemma 4.11. The trace of M−1B, where M and B have been built starting from a 
linearization in the Newton basis, can be written as
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tr(M−1B) = − tr(X̃−1
φ QU,S) − tr(QL,SX̃

−1
ψ )

+ 1
γ

tr(eTk+1QU,SX
−1
φ Ũx1) + 1

γ
tr(xT

2 Ṽ
T X̃−1

ψ QL,Se1)

All these summands can be computed in O(n) flops.

The above results allow to devise an O(n) method to evaluate the Newton correction 
of detL(λ) at any point in the complex plane.

Remark 4.12. The computation of the QL, QU and the inversion of the upper triangular 
matrix, can be all performed by means of backward stable operations. Moreover, given 
the structure of A − λB, all the errors are offloaded either on the nodes or on the low 
rank part which contains the coefficients of the polynomials. This suggests that the 
procedure for the computation of Newton’s correction is structurally backward stable, 
with respect to the bidiagonal plus low rank structure. In fact, the final result is the 
exact one obtained by slight perturbations on the nodes and on the coefficients. As we 
will see in the numerical experiments, this leads to a better accuracy with respect to 
non-structured backward stable methods, like the QZ algorithm.

5. Numerical experiments

In this section we report the numerical experiments that validate our approach. We 
have tested two different aspects of the algorithm: the accuracy and the asymptotic 
cost.

Regarding the former, we verified that in many common cases EAI delivers very 
accurate results. Moreover, we show that it easily overcomes the problems related to poor 
conditioning of the eigenvalues when considering the unstructured condition number of 
the eigenvalue problem.

5.1. Accuracy of the method

We consider the problem of finding the roots of a polynomial r(λ) described as r(λ) =
p1(λ) − p2(λ), with p1(λ) and p2(λ) expressed in the Newton basis. As nodes for these 
two interpolation polynomials we have chosen the Chebyshev points, in order to have a 
set of points where the interpolation is reasonably conditioned. We have computed 2k
nodes and we have used k of them to generate the basis for p1(λ) and k of them to build 
the basis for p2(λ), so they are expressed in a different basis. We have ordered the set 
of 2k nodes according to the canonical ordering on R and we have assigned the ones in 
the odd positions to the first interpolation basis, and the ones in the even position to 
the other, as depicted in Fig. 2. The same kind of splitting has been used for the roots 
of unity, which have been employed for the numerical experiments in the Lagrange case 
reported in Table 3 (in this case they have been ordered by their angle).
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Fig. 2. On the left, the splitting used to assign the 2k Chebyshev nodes to the first and second family of 
nodes, used for p1(λ) and p2(λ), respectively, is reported. On the right, the same splitting for the roots of 
unity is shown.

Table 1
Comparison of the accuracies of the two strategies for the computation of Newton’s correction. The columns 
marked with SM represent the data relative to the Sherman–Morrison based approach of Section 4.2, while 
the ones marked with Rot refer to the strategy based on Givens rotations of Section 4.3.

Degree Forward SM Forward Rot Backward SM Backward Rot

2 2.14 · 10−16 1.87 · 10−16 6.11 · 10−17 5.18 · 10−17

5 2.06 · 10−15 1.38 · 10−16 4.54 · 10−16 6.76 · 10−17

10 1.83 · 10−13 1.58 · 10−16 1.05 · 10−14 5.66 · 10−17

15 5.68 · 10−11 1.23 · 10−16 9.3 · 10−12 3.69 · 10−17

20 4.01 · 10−6 1.17 · 10−16 3.57 · 10−8 4.22 · 10−17

In Table 1 we have reported the absolute forward errors5 and the backward errors (on 
the matrix pencil) for the approximation of the roots using the Sherman–Morrison based 
strategy and the one based on Givens rotations. More precisely, we have computed the 
backward error err(A,B)(λ) for each eigenvalue defined as err(A,B)(λ) := σn(A − λB), 
where σn(·) is the smallest singular value. This can be proven to be the distance (in the 
Euclidean norm) to the closest pencil that has λ as an eigenvalue. We refer to the work 
of Tisseur [18] for a detailed error analysis.

It is clearly visible that the strategy based on rotations does not have stability is-
sues, while the accuracy of the one based on Sherman–Morrison soon degrades as the 
degree increases. For this reason, in the following we will always consider the strategy 
based on rotations. The numbers reported are the norms of the vectors containing the 
errors for each approximation. For the examples that we have chosen there is not much 
difference between absolute and relative errors since most of the roots have modulus 
about 1.

In Table 2 we have reported both absolute forward errors and backward errors (on 
the matrix pencil) for a wider range of degrees, and we have compared it with the QZ 
algorithm. However, the degradation in the quality of the approximations given by the 
QZ iteration is clearly visible. This is due to the fact that while giving backward stable 

5 Approximations for the roots with an arbitrary number of digits have been obtained using MPSolve 
[7], a multiprecision polynomial solver. The symbolic toolbox of MATLAB has been used to compute the 
coefficients of the linearized polynomial.
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Table 2
Numerical accuracy of the EAI compared to the QZ iteration. We have generated 50 examples of sums of 
polynomials whose coefficients in the Newton basis are drawn by Gaussian distribution coefficients. The 
nodes of the Newton bases are Chebyshev points. The infinite eigenvalues in the QZ methods have been 
deflated a posteriori — and have always been exactly identified by the QZ method. In this case a posteriori 
deflation is easy because of the special structure that the linearization has for degree-graded bases. This is 
not the case in general. The accuracies have been averaged over all the experiments. The backward error 
reported in the table is the one on the matrix pencil.

Degree Forward EAI Forward QZ Backward EAI Backward QZ

10 5.1 · 10−16 3.64 · 10−15 1.02 · 10−16 1.43 · 10−16

20 5.2 · 10−16 5.65 · 10−14 1.55 · 10−16 1.94 · 10−16

40 7.96 · 10−16 3.59 · 10−10 2.33 · 10−16 2.66 · 10−16

80 5.93 · 10−16 0.35 3.38 · 10−16 4.35 · 10−16

160 1.41 · 10−15 1.09 4.62 · 10−16 6.71 · 10−16

Table 3
Numerical accuracy of the EAI compared to the QZ iteration for sums of rational functions defined by ratios 
of Lagrange polynomials. The accuracies have been averaged over 10 runs, and the nodes have been chosen 
with interlacing properties as in the Newton example of Table 2 from the roots of unity of appropriate 
degree.

Degree Forward EAI Forward QZ Backward EAI Backward QZ

5 7.25 · 10−16 2.15 · 10−15 1.35 · 10−16 2.21 · 10−16

10 5.85 · 10−16 1.68 · 10−15 1.01 · 10−16 2.33 · 10−16

20 1.52 · 10−14 2.69 · 10−14 8.03 · 10−17 2.02 · 10−16

40 1.58 · 10−15 1.22 · 10−14 4.82 · 10−17 8.37 · 10−17

80 6.8 · 10−15 6.78 · 10−14 2.99 · 10−17 4.56 · 10−17

results, they are backward stable in an unstructured sense, and they are not guaranteed 
to correspond to small perturbations in the polynomials. Since the EAI iteration relies on 
a structured (and backward stable) solver to compute the Newton correction, evaluating 
a slightly perturbed polynomial, it leads to much better results in practice.

5.2. Asymptotic cost of the method

The speed of convergence of the EAI is strictly related to the quality of the starting 
approximations. In Section 3.1 we have discussed possible choices for the starting points, 
and here we study how these relate to the number of iterations before the stopping 
criterion presented in Section 3.2 is met on all the components.

In particular, we are interested in studying the average number of iterations per eigen-
value. Since an iteration costs O(n) flops, keeping this number bounded by a constant 
makes the asymptotic cost O(n2).

More generally, assuming an instance of EAI has an average number of iterations 
equal to t > 0, we have a total cost for the algorithm of O(tn2). Our aim is to choose the 
starting points that make t as small as possible. The results in Fig. 3 show that good 
starting points produce a very slow growth in the number of iteration, thus providing a 
practically quadratic method.

To estimate the value of t we have run the following procedure:



JID:LAA AID:14158 /FLA [m1L; v1.215; Prn:15/05/2017; 18:03] P.25 (1-28)
L. Robol, R. Vandebril / Linear Algebra and its Applications ••• (••••) •••–••• 25
Fig. 3. Average number of iterations for different choices of starting points. The tests refer to the computation 
of the roots of the sum of two polynomials expressed in the Newton basis with interlaced Chebyshev nodes 
as described in Fig. 2.

Table 4
Average number of iterations with different cri-
terion for the choice of the starting points.

Degree Integration Power method
5 6.42 7.62
10 7.02 10.45
20 7.5 16.86
40 9.16 29.59
60 9.82 41.32
80 11.79 56.67
100 12.28 62.72
120 13.29 76.01
140 15.6 100.51
160 16.38 103.02

1. We have randomly generated a sequence of rational functions, for various degrees 
from n = 10 up to n = 160 (here by degree we mean the degree of the numerator 
and the denominator). We have chosen the same kind of Newton basis for all of them 
and we have drawn random coefficients from a Gaussian distribution N(0, 1).

2. We have run the EAI on these problems. 50 problems with the same degree have 
been tested and we have computed the average number of iterations for each degree.

The results of these tests are reported in Table 4 and in Fig. 3. We have tested the 
two methods for the choice of the starting points that have been discussed in Section 3.1, 
that is, the adapted power method and the integral approach to counting the number of 
eigenvalues inside a closed curve. Both methods manage to deliver the starting points in 
(at most) O(n2) flops, so they do not significantly contribute to the total complexity of 
the method. More precisely, we have fixed the number of integration points or iterations 
of the power method to be bounded by n, so that we have a guaranteed O(n2) complexity 
for the computation of the starting points.
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Fig. 3 shows how, as we have already stressed, even if the contour integration method 
still exhibits some growth in the average number of iteration as n grows, this effect is 
very mitigated compared to taking points on a circle of large enough radius.

The degraded performance of putting all the initial approximations on a circle with 
radius equal to the spectral radius of the pencil (ignoring infinite eigenvalues) can be 
informally explained by the fact that the approximation has to travel a long distance to 
reach the roots with smaller modulus.

5.3. Eigenvalues of matrix polynomials

To complete the section we show an application to the computation of eigenvalues 
of matrix polynomials and rational functions. More precisely, we consider the nonlinear 
eigenvalue problem

R(λ)v = 0, R(λ) := P1(λ)−1Q1(λ) + P2(λ)Q2(λ)−1,

where as usual the matrix polynomials P1(λ) and Q1(λ) are expressed in a certain basis, 
and P2(λ) and Q2(λ) in another one. In this case we assume that they are both Newton 
bases, with different nodes.

The same approach of Section 4.3 can be used to evaluate the trace of the linearization 
of such a nonlinear eigenvalue problem at a certain point in the complex plane. Assuming 
the degree of all the matrix polynomials involved is d one can reduce the diagonal blocks 
to upper block bidiagonal form with O(d) block Givens rotations, and then compute the 
inverse of the resulting block upper triangular matrix.

The cost of each evaluation of Newton’s correction is cubic in the size of the coeffi-
cients, leading to a total computational cost of O((dn) ·dn3) = O(dn4), so this approach 
is convenient only if the degree is large enough. We have compared the results obtained 
using the EA iteration to the QZ on the pencil, and also in this case one notices that 
the (forward) accuracy of the EA is much better than the one of the QZ. However, both 
algorithms deliver backward stable approximations, as reported in Table 5.

The coefficients of the matrix polynomials in this example are random 6 × 6 matrices 
with integer entries between −1000 and 1000. This setup has been chosen to allow the 
computation of the eigenvalues symbolically in order to check the computed results. The 
backward error computed (which is relative to the norms of the pencil) is always below 
the machine precision, and the results of the QZ algorithm show that the (unstructured) 
eigenvalue condition number of the pencil is still quite high compared to the structured 
one (that is, the one of the original problem).

6. Conclusions

We have shown the effectiveness of the Ehrlich–Aberth iteration as an approximation 
engine for the eigenvalues of some rank structured pencils which are encountered when 



JID:LAA AID:14158 /FLA [m1L; v1.215; Prn:15/05/2017; 18:03] P.27 (1-28)
L. Robol, R. Vandebril / Linear Algebra and its Applications ••• (••••) •••–••• 27
Table 5
Numerical accuracy of the EAI compared to the QZ algorithm in the computation of the eigenvalues of a 
nonlinear eigenvalue problem expressed as a sum of two rational functions in the Newton basis. The nodes 
of the Newton bases are Chebyshev points.

Degree Forward EAI Forward QZ Backward EAI Backward QZ

2 1.63 · 10−15 1.04 · 10−13 1.02 · 10−18 2.4 · 10−18

4 6.94 · 10−15 1.37 · 10−13 1.11 · 10−18 1.93 · 10−18

6 2.21 · 10−15 2.05 · 10−13 7.77 · 10−19 1.61 · 10−18

8 1.62 · 10−15 3.26 · 10−13 5.77 · 10−19 1.2 · 10−18

10 9.39 · 10−16 2.57 · 10−13 7.1 · 10−19 1.05 · 10−18

12 5.2 · 10−16 3.43 · 10−13 4.98 · 10−19 7.79 · 10−19

14 1.06 · 10−15 3.29 · 10−13 5.16 · 10−19 8.17 · 10−19

16 3.79 · 10−15 5.07 · 10−13 5.45 · 10−19 9.03 · 10−19

18 8.42 · 10−15 7.12 · 10−13 7.09 · 10−19 2.19 · 10−18

20 1.77 · 10−15 8.62 · 10−13 4.51 · 10−19 8.61 · 10−19

22 8.02 · 10−16 1.88 · 10−12 4.34 · 10−19 6.06 · 10−19

24 3.28 · 10−15 7.23 · 10−12 4.96 · 10−19 6.76 · 10−19

linearizing sums of polynomials and rational functions expressed in Newton Lagrange 
bases. Our approach allows to treat a broad set of problems, such as (matrix) polynomials 
and rational functions expressed as sums in different bases.

This work has shown that the method is both fast, in the sense of having a lower 
asymptotic complexity than the QR and the QZ iterations, and more accurate when 
looking at the forward errors. The gain is obtained by applying a structured solver that 
only allows perturbations on the original input data. Moreover, we have shown that the 
deflation of infinite eigenvalue is not an issue in this context, simplifying the analysis. 
Thus, even when some of the eigenvalues are ill-conditioned in the pencil no loss of 
accuracy is encountered with the EAI.

We have derived suitable strategies and methods for the estimation of the starting 
points which have shown to be effective in practice, and we have devised a practical 
criterion for the stopping conditions.

We think this proves both the flexibility of the EAI, which has been adapted to this 
case with the development of proper tools, and the importance of considering structured 
iterations for the approximation of eigenvalues of linearizations. This is particularly 
interesting for applications where the data is naturally expressed in different bases (or 
the same bases with different nodes), such as the transfer functions for closed loop linear 
systems [16], or the clipping problems in computer aided graphics [12].
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