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Multi-dimensional spectroscopy represents a particularly insightful tool for investigating the in-
terplay of nuclear and electronic dynamics, which plays an important role in a number of photo-
physical processes and photochemical reactions. Here we present a coherent state representation of
the vibronic dynamics and of the resulting response functions for the widely used linearly displaced
harmonic oscillator model. Analytical expressions are initially derived for the case of third-order
response functions in an N -level system, with ground state initialization of the oscillator (zero-
temperature limit). The results are then generalized to the case of M -th order response functions,
with arbitrary M . The formal derivation is translated into a simple recipe, whereby the explicit
analytical expressions of the response functions can be derived directly from the Feynman diagrams.
We further generalize to the whole set of initial coherent states, which form an overcomplete basis.
This allows one in principle to derive the dependence of the response functions on arbitrary initial
states of the vibrational modes and is here applied to the case of thermal states. Finally, a non-
Hermitian Hamiltonian approach is used to include in the above expressions the effect of vibrational
relaxation.

I. INTRODUCTION

Ultrafast spectroscopy allows the investigation of dy-
namical processes occurring in the femtosecond regime
in atomic, molecular, and solid-state systems1. In multi-
dimensional coherent spectroscopy, the sample is excited
by a series of laser pulses and its nonlinear optical re-
sponse is resolved with respect to multiple frequencies2.
The spectrum thus provides correlations between excita-
tion and detection frequencies, and allows a dissection of
the dynamics underlying complex phenomena of physi-
cal, chemical, and biological interest3–8.

Multidimensional coherent spectroscopy also repre-
sents a powerful tool for investigating the dynamical
interplay between electronic and vibrational (nuclear)
degrees of freedom, which plays an important role in
a number of photophysical processes and photochemi-
cal reactions9–23. In broadband femtosecond transient-
absorption spectroscopy, impulsive transitions between
electronic states induced by the laser pulses launch vi-
brational wave packets on excited states potential energy
surfaces24. This triggers the wave packet motion, which
takes place between consecutive transitions and results in
an oscillating modulation of the (nonlinear) polarization
as a function of the waiting time(s).

In general, the vibrational dynamics can be affected
by a number of factors, such as anharmonic terms in
the potential energy surface25,26, coupling between dif-
ferent modes27,28, conical intersections29,30, differences
between the curvatures of the displaced oscillators31, vi-
bronic couplings16,32–40. However, the dominant contri-
bution in the electron-vibrational coupling is often repre-
sented in terms of the displaced-oscillator model, where

one or more harmonic oscillators undergo an electronic-
state specific displacement in the nuclear coordinates. In
fact, this model accounts for complex spectral features,
especially as the number of electronic levels and of excit-
ing laser pulses increase1,41–49.

Here we compute the vibrational component of the re-
sponse functions for a system with an arbitrary number
(N) of electronic levels and for an arbitrary order (M)
in the interaction with the field, under the assumption
that the optically-induced transitions satisfy the Franck-
Condon principle50. This is done by fully exploiting the
potentialities of the coherent state picture51,52, within
the linearly displaced harmonic oscillator model. Here,
a vibrational state initialized in the ground state (or in
any other coherent state) always preserves its coherent
state character. More specifically, its dynamics consists
in rotations around the minima of the potential energy
surfaces, alternated by vertical transitions between dif-
ferent surfaces, induced by the electric field. For each
pathway (i.e. sequence of optically-induced transitions
between electronic states), the vibrational state is thus
fully captured by a complex number that defines the co-
herent state, and by an additional real number, which
accounts for an overall phase factor. The analytic ex-
pressions of these numbers are here computed for arbi-
trary number of energy levels and of interactions with
the field. From these we derive the overlaps between
the vibrational states corresponding to different path-
ways. These, according to the Fanck-Condon principle,
account for the vibrational modulation of the electronic
response function, which is observed in multidimensional
electronic spectroscopy.

This procedure is followed in detailed for the case of
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two-dimensional spectra (M = 3, which represents the
lowest-order nonlinear contribution in noncentrosymmet-
ric systems) in systems with arbitrary number N of elec-
tronic levels. This allows us to extends the long known re-
sults for two-level systems, on the one hand by accounting
for the possibility of multiple pathways in similar contri-
butions (ground state bleaching and stimulated emission)
and, on the other hand, by including phenomena that
cannot occur for N = 2 (excited state absorption and
coherences between ground and doubly excited states53).
The approach is then applied in a more compact form
to directly derive the overlap between coherent states in
the M -dimensional case, with arbitrary M . We show
that the formal derivation of the response functions can
be translated in a simple recipe and thus directly derived
from the double-sided Feynman diagrams, which provide
an intuitive representation of the relevant pathways.

The above picture doesn’t change significantly if the
system is initialized in a generic coherent state, rather
than in the ground state. In fact, the effect of such an
initialization can be naturally incorporated in this ap-
proach, and is shown to consist in a phase factor, which
we explicitly express in terms of the Hamiltonian param-
eters and of the waiting times. Given that the coherent
states form an overcomplete basis, this expression in turn
allows one to describe the full dependence of the response
functions on the initial state of the vibrational mode,
passing through its coherent state representation51. Fol-
lowing such procedure in the case of thermal vibrational
states, we recover the results known for the case of third-
order response functions in two-level systems and show
how they generalize if M > 3 and/or N > 2.

Interactions with the environment can affect the dy-
namics of electronic degrees of freedom in different ways1.
However, decoherence also involves the dynamics of the
strongly coupled (underdamped) vibrational modes, and
this shows up in the response functions. Vibrational re-
laxation is easily incorporated in the present approach,
because phonon emission (annihilation) preserves the co-
herent character of the state. In the presence of relax-
ation, the trajectory of the wave packet describes se-
quences of spirals, rather than circles, around the poten-
tial minima, and the modulus of the coherent state tends
to decrease. These effects are formally included in the
equations for the general case, and are discussed in some
detail for the third-order response functions. Finally, the
generalization of the above results to multiple modes is
conceptually straightforward and is formally outlined in
the final part of the paper.

The paper is organized as follows. In Sec. II we in-
troduce the model and the connection between response
function and the dynamics of the coherent vibrational
states. Sections III and IV are devoted respectively to the
derivation of all the relevant contributions in the third-
order response function, and of their spectral compo-
nents. In Sec. V a more compact derivation is presented,
which allows one to derive nonlinear contributions of ar-
bitrary order. We additionally provide a recipe for infer-

ring the expressions of these response functions directly
from the Feynman diagrams. In Sec. VI we generalize
the above findings to the case of a generic state, and ap-
ply this result to the case of thermal states. Section VII
contains the expressions of the response functions in the
presence of vibrational relaxation. Finally, we draw our
conclusions in Sec. VIII. Further details on the relevant
vibrational states and on the formal demonstrations are
provided in the appendices.

II. DISPLACED OSCILLATOR MODEL
AND LINEAR POLARIZATION

FIG. 1. Schematic representation of the displaced harmonic
oscillator model. Each vibrational mode is modeled in terms
of an harmonic oscillator, whose origin in the position and
energy plane depends on the electronic eigenstates (here |j〉,
|k〉, and |l〉). The parameters zχ=j,k,l and εχ=j,k,l are the ones
entering the Hamiltonian in Eq. (1).

The results derived in the present paper are based on
the linearly displaced harmonic oscillator model1. This
doesn’t include nonadiabatic effects, i.e. coherent mix-
ing of electronic and vibrational degrees of freedom in
the eigenstates. More specifically, it assumes that the
dependence of the vibrational modes on the electronic
state can be reduced to that of their equilibrium posi-
tions. The corresponding Hamiltonian reads:

H =

N−1∑

j=0

|j〉〈j| ⊗ [εj + ~ωv(a† + zj)(a+ zj)]

≡
N−1∑

j=0

|j〉〈j| ⊗ (εj +Hv,j), (1)

where the |j〉 represent the N eigenstates, with eigenval-
ues εj (ε0 = 0), of the electronic Hamiltonian. For each
of these eigenstates, the harmonic oscillator that repre-
sents the vibrational mode undergoes a displacement by
−zj ∈ R along the X = 1

2 〈a†+a〉 (or q) axis with respect
to the ground state position (z0 = 0). The minimum
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of the oscillator’s potential is thus shifted to −zj (see
Fig. 1). The eigenstates of each Hv,j are given by the
displaced number states | − zj , n〉 = D(−zj) |n〉 (see Ap-
pendix A).

The polarization of a system that is optically excited
by a sequence of laser pulses can be derived from its re-
sponse function. Within the perturbative approach in
the light-matter interaction, the M -th order contribu-
tion to the induced polarization is related to an alter-
nate sequences of M instantaneous transitions between
electronic states, induced by the electric field, and to
time intervals (waiting times t1, . . . , tM ), during which
the system state undergoes a free evolution induced by
its Hamiltonian H. The time evolution of the vibrational
state is thus given by an Hamiltonian that is piecewise
constant, coinciding with a given Hv,j during each wait-
ing time, but possibly changing to any other Hv,k as a
consequence of a transition |j〉 −→ |k〉 between electronic
states1,2.

The observable of interest is the polarization P , which
is defined as the expectation value of the electric dipole
operator µ. This, in turn, can be expressed as an inte-
gral function of the response function R, and identified
with the product of R and the electric field in the semi-
impulsive limit. In any case, the different contributions in
the response function are modulated by the vibrational
dynamics. This can be clearly seen in the case of the
first-order contribution, which reads:

R(1)(t1) = (i/~)

N−1∑

j=1

|µj0|2 e−iεjt1/~ 〈0|φj〉 ≡
N−1∑

j=1

R
(1)
j (t1),

(2)

where µj0 = 〈j|µ|0〉 are the matrix elements between
the initial ground state and the excited electronic states.
These matrix elements also contain the dependence of
the overall response function on the polarization of the
laser pulses, which doesn’t directly affect the dynamics
of the vibrational degrees of freedom. Each excited-state
specific contribution can thus be written as the product
of an electronic and a vibrational factor

R
(1)
j (t1) = R

(1,e)
j (t1)R

(1,v)
j (t1), (3)

where the latter coincides with the overlap 〈0|φj〉 between
the vibrational state correlated with the excited state |j〉
and the one correlated with the electronic ground state
|0〉. These are both coherent vibrational states, resulting
from the application to the initial vacuum state of the
time evolution operators e−iHv,jt1 and e−iHv,0t1 , respec-
tively. While it is obvious that e−iHv,0t1 |0〉 = |0〉, the
expression |φj〉 can be derived by reducing the displaced-
oscillator Hamiltonians Hv,j to the undisplaced one,
Hv,0, through the displacement operators D(±zj) (the
definitions and basic properties of the coherent states and
of the displacement operators are reported in Appendix
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FIG. 2. Double-sided Feynman diagrams that are relevant
to the third-order response function. In particular, (a) and

(b) correspond respectively to R
(v,3)
2,jk and R

(v,3)
5,jk (ground-state

bleaching process); (c) and (d) represent R
(v,3)
1,jk and R

(v,3)
4,jk

(stimulated emission); (e) and (f) correspond to R
(v,3)
3,jkl and

R
(v,3)
6,jkl (excited-state absorption); (g) and (h) finally represent

R
(v,3)
7,jkl and R

(v,3)
8,jkl (double quantum coherence).

A). As a result, one has that

|φj〉 = D(−zj) e−iωva
†at1 D(zj)|0〉

= e−iz
2
j sin(ωvt1)|zj(e−iωvt1 − 1)〉. (4)

From this, and from the fact that 〈0|zj(e−iωvt1 − 1)〉 =

e−z
2
j [1−cos(ωvt1)], it follows that:

R
(v)
j (t1) ≡ 〈0|φj〉 = e−z

2
j exp(z2

j e
−iωvt1). (5)

This simple example illustrates the procedure that will
be followed to model the modulation induced by the vi-
brational degrees of freedom in the response functions
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of arbitrary order M , starting from the case M = 3:
we derive the coherent state of the quantum oscillator
as a function of the waiting times and for the relevant
pathways, and write the vibrational component of the re-
sponse function as an overlap between the coherent states
corresponding to the two sides of the Feynman diagrams.

III. THIRD-ORDER CONTRIBUTIONS
IN A MULTI-LEVEL SYSTEM

Within the perturbative approach, each contribution
in the response function can be associated to a double-
sided Feynman diagram, which specifies the action of the
field on the terms of the density operator that eventu-
ally contribute to the polarization. At each interaction
with the field, the electronic state in the ket or in the bra
(left and right sides of the Feynman diagram) undergoes
a transition. As in the case of the linear contribution,
the modulation of the polarization induced by the vibra-
tional degrees of freedom can be expressed in terms of an
overlap between the final oscillator states of the ket and
of the bra, eiaket |φ3,ket〉 and eiabra |φ3,bra〉. Such overlap
defines in fact the vibrational component of the response
function:

R(v,3)(t1, t2, t3) = 〈α3,bra|α3,ket〉ei(aket−abra) ≡ ereiϕ,
(6)

whose amplitude depends on the distance between the
two wave packets in the (X,P ) plane, being r =
− 1

2 |α3,ket − α3,bra|2. As is apparent in the above equa-
tion, the phase ϕ results both from the phase factors ac-
cumulated in the ket and in the bra, and from the overlap
between the two coherent states:

ϕ = aket − abra + Im(α3,ket α
∗
3,bra). (7)

In the present and in the following sections, the depen-
dence of the third-order response functions on the waiting
times is expressed in a compact form through the quan-
tities Λp1 p2 p3 ≡ (p1t1 + p2t2 + p3t3)ωv.

A. Ground state bleaching

The ground state bleaching is associated to those paths
where both the ket and the bra are in the ground state
during the second waiting time. It includes a rephasing
and a non-rephasing contribution1,2.

a. Rephasing contribution. The rephasing contribu-
tions correspond to all the sequences |0〉〈0| −→ |0〉〈j| −→
|0〉〈0| −→ |k〉〈0| [Fig. 2(a)], obtained for different combi-
nations of the excited states |j〉 and |k〉. The electronic
component of the response function, which oscillates with
a positive (negative) frequency as a function of the first
(third) waiting time, is given by:

R
(e,3)
2,jk = C2,jke

i(εjt1−εkt3)/~. (8)

FIG. 3. Geometric representation of the time evolution in the
(X,P ) plane of the vibrational wave packets corresponding to
the third-order response functions. In particular: (a,b), (c,d),
(e,f), (g,h) represent the rephasing and non-rephasing contri-
butions respectively of the ground state bleaching, stimulated
emission, excited state absorption, and double quantum co-
herence.

Here, εj/k are the electronic energies (ε0 = 0) and C2,jk =

(i/~)3|µ0jµ0k|22.
As far as the vibrational degrees of freedom are con-

cerned, the time evolution of the ket, leads, after the
three waiting times, to the coherent state:

|φket〉 = e−iHv,kt3/~e−iHv,0(t1+t2)/~|0〉
= e−z

2
k sin(ωvt3)|zk(e−iωvt3 − 1)〉. (9)

The final position of the wave packet in the (X,P ) plane
is thus obtained by applying a rotation by an angle ωvt3
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around the point (0,−zk), as shown in Fig. 3 (a). The
vibrational state on the right side of the Feynman dia-
gram (bra) undergoes a nontrivial evolution during all
three waiting times, which eventually leads to the coher-
ent state:

|φbra〉 = e−iHv,0(t2+t3)/~e−iHv,jt1/~|0〉
= e−z

2
j sin(ωvt1)|zj(e−iωvt1 − 1)e−iωv(t2+t3)〉. (10)

This can be geometrically represented as a rotation by
an angle ωvt1 around (0,−zj), followed by a rotation by
an angle ωv(t2 + t3) around the origin, as shown in Fig.
3 (a). Further details on the intermediate ket and bra
states, and on the expressions of r and ϕ, are provided
in Appendix B.

The expression of the response function resulting from
the above vibrational states reads:

R
(v,3)
2,jk = exp[−(z2

j + z2
k) + z2

j e
iΛ100 + z2

ke
−iΛ001

+ zjzk(−eiΛ010 + eiΛ011 + eiΛ110 − eiΛ111)], (11)

which represents the main result of the present para-
graph. Overall, the rephasing component of the response
function associated to the ground state bleaching is ob-
tained by combining the electronic and vibrational com-
ponents for each pair (j, k), and summing over all the
possible combinations of such excited states:

R
(3)
2 =

∑

j,k

R
(e,3)
2,jk R

(v,3)
2,jk . (12)

The response function for the two-level system1 is ob-
tained from the above expressions by setting j = k = 1.

b. Non-rephasing contribution. The non-rephasing
contributions correspond to the sequences |0〉〈0| −→
|j〉〈0| −→ |0〉〈0| −→ |k〉〈0| [Fig. 2(b)], obtained for all
the combinations of the excited states |j〉 and |k〉. The
electronic component of the response function oscillates
with a negative frequency as a function of both the first
and the third waiting times:

R
(e,3)
5,jk = C5,jke

−i(εjt1+εkt3)/~, (13)

where C5,jk = (i/~)3|µ0jµ0k|2.
Both these excited states enter the expression of the

final ket state, which is given by:

|φket〉=e−iHv,kt3e−iHv,0t2e−iHv,jt1 |0〉
=eiaket |zk(e−iωvt3−1)+zj(e

−iωvt1−1)e−iωv(t2+t3)〉.
(14)

The expression of aket, which coincides in this case with
that of ϕ, reads:

aket = −z2
j sin Λ100 − z2

k sin Λ001

+ zjzk(− sin Λ010 + sin Λ011 + sin Λ110 − sin Λ111).
(15)

The position of the wave packet in the (X,P ) plane is
obtained by applying a sequence of three rotations: the
first one by an angle ωvt1, around (0,−zj); the second
one by an angle ωvt2 around the origin; the third one
by an angle ωvt3 around (0, zk) [Fig. 3 (b)]. The bra,
instead, doesn’t undergo any time evolution, being the
initial state |0〉 an eigenstate with zero eigenvalue of Hv,0.
Further details on the intermediate ket states and on the
quantity r are provided in Appendix B.

The above vibrational states result in the following ex-
pression of the response function:

R
(v,3)
5,jk = exp[−(z2

j + z2
k) + z2

j e
−iΛ100 + z2

ke
−iΛ001

+ zjzk(e−iΛ010 − e−iΛ011 − e−iΛ110 + e−iΛ111)].
(16)

Overall, the non-rephasing component of the response
function associated to the ground state bleaching reads:

R
(3)
5 =

∑

j,k

R
(e,3)
5,jk R

(v,3)
5,jk . (17)

The response function for the two-level system1 is ob-
tained from the above expressions by setting j = k = 1.

B. Stimulated emission

The stimulated emission is associated to those paths
where both the ket and the bra are in an excited state
during the second waiting time, and the bra under-
goes a deexcitation process at the end of such waiting
time. It includes both a rephasing and a non-rephasing
contribution1,2.

a. Rephasing contribution. The rephasing contribu-
tions corresponds to the sequences |0〉〈0| −→ |0〉〈j| −→
|k〉〈j| −→ |k〉〈0| [Fig. 2(c)]. For j 6= k, the term during
the second waiting time is thus given by an electronic co-
herence between two different excited states, rather than
by a population, as in the case of ground state bleach-
ing. The electronic component of the response function
is given by:

R
(e,3)
1,jk = C1,jke

i[εj(t1+t2)−εk(t2+t3)], (18)

where εj/k are the energies of the electronic states |j/k〉
and C1,jk = (i/~)3|µ0jµ0k|22.

The ket undergoes a significant evolution during the
second and third waiting times, resulting in:

|φket〉 = e−iHv,k(t2+t3)/~e−iHv,0t1/~|0〉
= e−z

2
k sin[ωv(t2+t3)]|zk[e−iωv(t2+t3) − 1]〉. (19)

The final position of the wave packet is obtained by ap-
plying a rotation by an angle ωv(t2 +t3) around the point
(0,−zk), as shown in Fig. 3 (c). The final bra displays a
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dependence also on the first waiting time, being:

|φbra〉 = e−iHv,0t3/~e−iHv,j(t1+t2)/~|0〉
= e−z

2
j sin[ωv(t1+t2)]|zj [e−iωv(t1+t2) − 1]e−iωvt3〉.

(20)

This geometrically results from a sequence of two rota-
tions: one by an angle ωv(t1 + t2) around (0,−zj), and a
second one by an angle ωvt3 around the origin, as shown
in Fig. 3 (c). The expressions of the intermediate ket
and bra states, as well as those of r and ϕ, are reported
in Appendix B.

The response function corresponding to the above vi-
brational states is given by the following expression:

R
(v,3)
1,jk = exp[−(z2

j + z2
k) + z2

j e
iΛ110 + z2

ke
−iΛ011

+ zjzk(eiΛ001 − e−iΛ010 + eiΛ100 − eiΛ111)], (21)

which represents the main result of the present para-
graph. The complete rephasing component of the re-
sponse function associated to the stimulated emission
thus reads:

R
(3)
1 =

∑

j,k

R
(e,3)
1,jk R

(v,3)
1,jk . (22)

By setting j = k = 1 in the above expressions, one ob-
tains the response function for the two-level system1.

b. Non-rephasing contribution. The non-rephasing
contribution corresponds to the sequence: |0〉〈0| −→
|j〉〈0| −→ |j〉〈k| −→ |j〉〈0| [Fig. 2(d)]. As in the case of
the rephasing contribution, one can have, during the sec-
ond waiting time, a coherence between excited eletronic
states. The electronic component of the response func-
tion is thus given by

R
(e,3)
4,jk = C4,jke

i[εkt2−εj(t1+t2+t3)]/~, (23)

where C4,jk = (i/~)3|µ0jµ0k|22.
The time evolution of the ket after the three waiting

times is given by

|φket〉 = e−iHv,j(t1+t2+t3)/~|0〉
= e−z

2
j sin[ωv(t1+t2+t3)]|zj [e−iωv(t1+t2+t3) − 1]〉,

(24)

geometrically corresponding to a rotation by an angle
ωv(t1 + t2 + t3) around the point (0,−zj) [Fig. 3 (d)].
The vibrational state on the right side of the Feynman
diagram reads instead

|φbra〉 = e−iHv,0t3/~e−iHv,kt2/~e−iHv,0t1/~|0〉
= e−z

2
k sin(ωvt2)|zk(e−iωvt2 − 1)e−iωvt3〉. (25)

The position of the wave packet is obtained by perform-
ing a rotation by an angle ωvt2 around (0,−zk), followed
by a rotation by an angle ωvt3 around the origin [Fig. 3

(d)]. The intermediate ket and bra states are reported in
Appendix B, together with the expressions of r and ϕ.

The above dependence of the vibrational states on the
waiting times leads to the response function:

R
(v,3)
4,jk = exp[−(z2

j + z2
k) + z2

j e
−iΛ111 + z2

ke
iΛ010

+ zjzk(eiΛ001 + e−iΛ100 − eiΛ011 − e−iΛ110)]. (26)

The overall expression of the response function results
from the multiplication of the vibrational and the elec-
tronic contributions, summed over all the possible com-
binations of excited states (j, k):

R
(3)
4 =

∑

j,k

R
(e,3)
4,jk R

(v)
4,jk. (27)

By setting j = k = 1 in the above expressions, one ob-
tains the response function for the two-level system1.

C. Excited state absorption

The excited state absorption is associated to those
paths where both the ket and the bra are in an ex-
cited state during the second waiting time, and the
ket undergoes a further excitation process at the end
of such period. It includes two non-equivalent set of
contributions1,2. Both are absent in the response func-
tions of two-level systems.

a. Rephasing contribution. The first set of contribu-
tions corresponds to the sequences: |0〉〈0| −→ |0〉〈j| −→
|k〉〈j| −→ |l〉〈j|, where l is a doubly excitated state [Fig.
2(e)]. The electronic component of the response function,
which oscillates with positive (negative) frequency as a
function of the first (third) waiting time, is given by:

R
(e,3)
3,jkl = C3,jkle

i[εj(t1+t2+t3)−εkt2−εlt3)]/~, (28)

where C3,jk = −(i/~)3|µ0j |2µk0µlk
2.

The dependence of the ket on the three waiting times
is given by the following equation:

|φket〉 = e−iHv,lt3/~e−iHv,kt2/~e−iHv,0t1/~|0〉 = eiaket

|zl(e−iωvt3 − 1) + zk(e−iωvt2 − 1)e−iωvt3〉, (29)

where the phase factor is

aket = −zkzkl sin(ωvt2)− zlzk sin[ωv(t2 + t3)]

− zlzlk sin(ωvt3). (30)

Here and in the following, we make use of the terms
zlk ≡ zl − zk. The corresponding position of the wave
packet in the (X,P ) plane is obtained by applying to the
point (0, 0) a rotation by an angle ωvt2 around (0,−zk),
followed by a rotation by ωvt3 around (0,−zl) [Fig. 3
(e)]. The expression of the bra reads instead:

|φbra〉 = e−iHv,j(t1+t2+t3)/~|0〉 = e−z
2
j sin[ωv(t1+t2+t3)]

|zj [e−iωv(t1+t2+t3) − 1]〉, (31)
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corresponding to a rotation by an angle ωv(t1 + t2 + t3)
around (0,−zj) [Fig. 3 (e)]. The intermediate ket and
bra states, as well as the expressions of r and ϕ, are
reported in Appendix B.

From the above equations, it follows that the response
function reads:

R
(v,3)
3,jkl = exp{−[z2

j + z2
l + z2

k − zl(zj + zk)]

+ zlkzlje
−iΛ001 + zkzkle

−iΛ010 + zjzke
iΛ100

+ zkzlje
−iΛ011 − zjzkleiΛ110 − zjzljeiΛ111}, (32)

which is the main result of the present paragraph. Over-
all, the response function associated to the rephasing part
of the excited state absorption reads:

R
(3)
3 =

∑

j,k,l

R
(e,3)
3,jklR

(v,3)
3,jkl. (33)

b. Non-rephasing contribution. The second set of
contributions corresponds to the sequences: |0〉〈0| −→
|j〉〈0| −→ |j〉〈k| −→ |l〉〈k| [Fig. 2(f)]. The electronic
part of the response function reads:

R
(e,3)
6,jkl = C6,jkle

i[εk(t2+t3)−εj(t1+t2)−εlt3)]/~. (34)

This oscillates with a negative frequency as a function of
both t1 and t3, with C6,jk = −(i/~)3|µ0k|2µj0µlj2.

The time evolution of the ket is given by

|φket〉 = e−iHv,lt3/~e−iHv,j(t1+t2)/~|0〉 = eiaket

|zl(e−iωvt3 − 1) + zj [e
−iωv(t1+t2) − 1]e−iωvt3〉,

(35)

where the phase factor reads

aket = −z2
j sin[ωv(t1 + t2)]− z2

l sin(ωvt3) + zjzl{sin(ωvt3)

− sin[ωv(t1 + t2 + t3)] + sin[ωv(t1 + t2)]}. (36)

The final position of the wave packet in the (X,P ) plane
is obtained by applying a rotation by an angle ωv(t1 +t2)
around (0,−zj), followed by a rotation by ωvt3 around
(0,−zl) [Fig. 3 (f)]. The state of the bra reads

|φbra〉 = e−iHv,k(t2+t3)/~e−iHv,0t1/~|0〉
= e−z

2
k sin[ωv(t2+t3)]|zk[e−iωv(t2+t3) − 1]〉, (37)

geometrically resulting from a single rotation, by ωv(t2 +
t3), around (0,−zk) [Fig. 3 (f)]. The expressions of r, ϕ,
and of the intermediate vibrational states are reported in
Appendix B.

These vibrational states result in a response function
of the form:

R
(v,3)
6,jkl = exp{−[z2

j + z2
k + z2

l − zl(zj + zk)]

+ zlkzlje
−iΛ001 + zkzlje

iΛ010 + zjzke
−iΛ100

− zkzlkeiΛ011 + zjzjle
−iΛ110 + zjzlke

−iΛ111}, (38)

which represents the main result of the present para-
graph. Overall, the response function associated to the
non-rephasing part of the excited state absorption reads:

R
(3)
6 =

∑

j,k,l

R
(e,3)
6,jklR

(v,3)
6,jkl. (39)

D. Double quantum coherence

We finally consider the pathways that involve coher-
ences between the ground and a doubly excited state53.
These include two non-equivalent kind of contributions,
both of which are absent in the case of two-level systems.

a. First contribution. The first kind of contribu-
tions correspond to the sequence: |0〉〈0| −→ |j〉〈0| −→
|l〉〈0| −→ |l〉〈k| [Fig. 2(g)]. The electronic component
of the response function, which oscillates with a posi-
tive (negative) frequency as a function of the first (third)
waiting time, is given by

R
(e,3)
7,jkl = C7,jkle

−i[εjt1+εl(t2+t3)−εkt3]/~, (40)

where C7,jk = −(i/~)3|µ0k|2µj0µlj .
The ket state after the three waiting times is given by:

|φket〉 = e−iHv,l(t2+t3)/~e−iHv,jt1/~|0〉 = eiaket

|zl[e−iωv(t2+t3) − 1] + zj(e
−iωvt1 − 1)e−iωv(t2+t3)〉,

(41)

where the phase factor reads

aket = −z2
j sin(ωvt1)− zl(zl − zj) sin[ωv(t2 + t3)]

− zlzj sin[ωv(t1 + t2 + t3)] + zlzj sin(ωvt1). (42)

The final position of the wave packet is determined by
a sequence of two rotations, respectively by and angle
ωvt1 around (0,−zj) and by an angle ωv(t2 + t3) around
(0,−zl), as shown in Fig. 3 (g). The time evolution of
the bra is given by:

|φbra〉 = e−iHv,kt3/~e−iHv,0(t1+t2)/~|0〉
= e−z

2
k sin(ωvt3)|zk(e−iωvt3 − 1)〉,

which geometrically corresponds to a single rotation, by
angle ωvt3 around (0,−zk), as shown in Fig. 3 (g). The
quantities r and ϕ, and the intermediate ket and bra
states are given in Appendix B.

Therefore, the vibrational component of the response
function reads:

R
(v,3)
7,jkl = exp{−[z2

j + z2
l + z2

k − zl(zj + zk)]

+ zkzkle
iΛ001 + zkzlje

−iΛ010 − zjzlje−iΛ100

+ zljzlke
−iΛ011 + zjzke

−iΛ110 + zjzlke
−iΛ111}.

(43)

The overall response function is obtained by multiplying
the above expression by the electronic contribution, and
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summing over all the possible combinations of excited
states (j, k, l):

R
(3)
7 =

∑

j,k,l

R
(e,3)
7,jklR

(v,3)
7,jkl. (44)

b. Second contribution. The second kind of contri-
butions related to the double quantum coherence corre-
spond to sequences: |0〉〈0| −→ |j〉〈0| −→ |l〉〈0| −→ |k〉〈0|
[Fig. 2(h)]. The electronic component of the response
function is given by:

R
(e,3)
8,jkl = C8,jkle

−i(εjt1+εlt2+εkt3)/~. (45)

This oscillates with a negative frequency as a function
of both the first and third waiting times, where C8,jk =
(i/~)3µj0µljµlkµk0.

The time evolution of the ket is given by

|φket〉 = e−iHv,kt3/~e−iHv,lt2/~e−iHv,jt1/~|0〉
= eiaket | − zk + e−iωvt3(zk − zl)
+ e−iωv(t2+t3)(zl − zj) + zje

−iωv(t1+t2+t3)〉. (46)

The expression of aket, which here coincides with ϕ, is
given by:

aket = −zkzkl sin Λ001 − zlkzlj sin Λ010 − zjzjl sin Λ100

− zkzlj sin Λ011 − zjzlk sin Λ110 − zjzk sin Λ111.
(47)

This geometrically corresponds to a sequence of three
rotations: the first one by an angle ωvt1 around (0,−zj);
the second one by an angle ωvt2 around (0,−zl); the third
one by an angle ωvt3 around (0,−zk) [Fig. 3 (h)]. The
bra doesn’t undergo any time evolution: |φbra〉 = |0〉.

Combining together the above equations, one obtains
the expression of the vibrational component of the re-
sponse function, which reads:

R
(v,3)
8,jkl = exp{−[z2

j + z2
l + z2

k − zl(zj + zk)]

+ zkzkle
−iΛ001 + zlkzlje

−iΛ010 + zjzjle
−iΛ100

+ zkzlje
−iΛ011 + zjzlke

−iΛ110 + zjzke
−iΛ111}.

(48)

The overall response function is obtained by multiply-
ing the above function by the electronic component, and
summing over all the possible combination of excited
states:

R
(3)
8 =

∑

j,k,l

R
(e,3)
8,jklR

(v,3)
8,jkl. (49)

IV. SPECTRAL COMPONENTS IN THE
THIRD-ORDER RESPONSE FUNCTIONS

The response functions derived in the previous Section
give rise to an infinite number of spectral components,

each identified by the frequency of the oscillations as a
function of the three waiting times. In the present Sec-
tion, we outline a route for explicitly deriving the weight
of each individual spectral component.

The third-order response functions are exponen-
tial functions of Λχ, with χ = p1 p2 p3 =
001, 010, 100, 011, 110, 111. Expanding the exponential in
Taylor series, the generic response function R(v,3) can be
expressed as follows:

R(v,3) = e−h(z)
∏

χ

∞∑

nχ=0

(sχzχz
′
χe
s′χiΛχ)nχ

nχ!

= e−h(z)
+∞∑

p1,p2,p3=−∞
Cp1 p2 p3e

iΛp1 p2 p3 , (50)

where Λp1 p2 p3 ≡ (p1t1+p2t2+p3t3)ωv, the signs sχ, s
′
χ =

±1, the displacements zχ and z′χ, and the function h(z)
(which includes all the non-oscillating terms in the ex-
ponent f), all depend on the specific response function
under consideration. The weight of each spectral com-
ponent is determined by the corresponding coefficient
Cp1,p2,p3 , which is in turn is given by the sum of all the
terms in the first line of Eq. (50) that fulfil the condi-
tions:

p1 = s′100n100 + s′110n110 + s′111n111 (51)

p2 = s′010n010 + s′011n011 + s′110n110 + s′111n111 (52)

p3 = s′001n001 + s′011n011 + s′111n111. (53)

These equations can be used in order to express three
of the exponents, for example n100, n010, and n001, as
a function of the other three. If, in addition, one is
specifically interested in the terms of order 2q in the dis-
placements, the number of independent exponents nχ is
further reduced by the condition

q = n100 + n010 + n001 + n110 + n011 + n111, (54)

which can be used to reduce to two the number of inde-
pendent exponents in Eq. (50). (The exponential e−h(z)

is not expanded in Taylor series, for its exact value can be
easily derived from the knowledge of the displacements,
and the function doesn’t contribute to the values of the
frequencies considered in the spectral decomposition.)

In the semi-impulsive limit (i.e. for laser pulses of in-
finitesimally short duration) the response function can
be directly related to the observed spectra2. The ampli-
tude and phase of each peak, and other spectral features,
can thus be obtained from the above expressions. In par-
ticular, the amplitude of a peak centered in the point
(ω1,p1 , ω3,p3) of the (ω1, ω3) plane is given by the follow-
ing function of t2:

Ap1,p3(t2) = e−h(z)
+∞∑

p2=−∞
Cp1 p2 p3e

i p2 ωv t2 , (55)

where ω1,0 and ω1,p1 = ω1,0 − p1 ωv are the frequencies
of the zero-phonon line and of their replicas, respectively
(analogously for ω3,p3).
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In the following, we derive analytical expressions for
the coefficients Cp1 p2 p3 corresponding to each pathway
(i.e. set of involved electronic states |j〉, |k〉, and |l〉).
This allows one to determine their values for each par-
ticular physical system, given the corresponding set of
displacements zj , zk, and zl.

FIG. 4. Dependence on the waiting time t2 of three repre-
sentative peaks in the 2D map of a system characterized by
a three-level V scheme (a). The panels (c-e) report the (real
part of) the amplitudes for the peaks highlighted in panel
(b). Different colors of the solid lines correspond to different
contributions: ground state bleaching, rephasing (blue) and
non-rephasing (red); stimulated emission, rephasing (green)
and non-rephasing (orange). The values of the displacements
are: z1 = 0.4 and z2 = −0.7.

A. Ground state bleaching

We start by considering the response functions related
to ground state bleaching.

a. Rephasing contribution. From Eq. (11), it fol-
lows that s′001 = −1, while s′χ = +1 in all other cases.
The weight of the q-th order contribution is given by the

sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

z2n100
j

n100!

z2n001

k

n001!

(−zjzk)n010

n010!

(zjzk)n110

n110!

(zjzk)n011

n011!

(−zjzk)n111

n111!
, (56)

where n100 = p1 − n110 − n111, n001 = q − p1 − p2 +
n110 + n111, n010 = p1 + 2p2 − p3 − q− 2n110 − n111, and
n011 = n110 + q − p1 − p2 + p3. The terms that actually
contribute to the sum in Eq. (56) correspond to the
values of the independent exponents n110 and n111 such
that all the other ones, resulting from the above relations,
are non-negative. The exponent in the prefactor is given
by h(z) = z2

j + z2
k.

Example. We consider as an example the case of a
three-level V system, for j = 1 and k = 2, where the zero-
phonon peak corresponds to (ω1,0, ω3,0) = (−ε1/~, ε2/~)
(see Eq. 8). The phonon replicas are found at excita-
tion and detection frequencies ω1,p1 = −ε1/~− p1ωv and
ω3,p3 = ε2/~ − p3ωv, respectively. Their amplitude and
phase, as a function of t2, are given by:

Ap1,p3(t2) = e−(z21+z22)
∞∑

n011,n110,n111=0

(z1z2)n110+n011

n110!n011!

z2n001
2

n001!

z2n100
1

n100!

+∞∑

p2=−∞
ei p2 ωv t2

(−z1z2)n010+n111

n010!n111!
,

(57)

where n100 = p1 − n110 − n111, n001 = −p3 + n011 +
n111, n010 = p2 − n011 − n110 − n111. The amplitude of
the peak is thus identically zero for p1 < 0, because in
this case the first of the three equations above cannot
be fulfilled. The function Ap1,p3(t2) is plotted in Fig. 4
(blue lines), for specific values of the displacements. The
other possible pathways, j = k = 1 and j = k = 2, give
rise to contributions that are formally identical to the
ones that are obtained for a two-level system: they can
be obtained from Eq. (57) by replacing respectively z2

with z1 or vice versa.
b. Non-rephasing contribution. From Eq. (16) it fol-

lows that s′χ = −1 in all cases. The weight of the q-th
order contribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

z2n100
j

n100!

z2n001

k

n001!

(zjzk)n010

n010!

(−zjzk)n110

n110!

(−zjzk)n011

n011!

(zjzk)n111

n111!
, (58)

where n100 = −p1 − n110 − n111, n001 = q − p1 − p2 −
n110 − n111, n010 = −p1 − 2p2 + p3 + q − 2n110 − n111,
and n011 = n110 − q + p1 + p2 − p3. The sum in Eq.
(58) actually involves only the values of the independent
exponents n110 and n111 for which all the other ones,
resulting from the above relations, are non-negative. The
exponent in the prefactor is given by h(z) = z2

j + z2
k.
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Example. In the case of a three-level V system, for
j = 1 and k = 2, the zero-phonon peak corresponds
to (ω1,0, ω3,0) = (ε1/~, ε2/~) (see Eq. 13). The phonon
replicas are found at excitation and detection frequencies
ω1,p1 = ε1/~−p1ωv and ω3,p3 = ε2/~−p3ωv, respectively.
Their amplitude and phase, as a function of t2, are given
by:

Ap1,p3(t2) = e−(z21+z22)
∞∑

n011,n110,n111=0

(−z1z2)n110+n011

n110!n011!

z2n100
1

n100!

z2n001
2

n001!

+∞∑

p2=−∞
ei p2 ωv t2

(z1z2)n010+n111

n010!n111!
,

(59)

where n100 = −p1−n110−n111, n001 = −p3−n011−n111,
n010 = −p2 − n011 − n110 − n111. The amplitude of the
peak is thus identically zero for p1 > 0 or p3 > 0. The
function Ap1,p3(t2) is plotted in Fig. 4 (red lines), for
specific values of the displacements. The other possible
pathways, j = k = 1 and j = k = 2, give rise to contri-
butions that are formally identical to the ones that are
obtained for a two-level system. They can be obtained
from Eq. (59) by replacing respectively z2 with z1 or vice
versa.

B. Stimulated emission

The second set of response functions we consider are
the ones related to stimulated emission.

a. Rephasing contribution. As can be seen from Eq.
(21), s′010 = s′011 = −1 and s′χ = +1 in all other cases,

while h(z) = z2
j + z2

k. The weight of the q-th order con-
tribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

(zjzk)n100

n100!

(zjzk)n001

n001!

(−zjzk)n010

n010!

z2n110
j

n110!

z2n011

k

n011!

(−zjzk)n111

n111!
, (60)

where n100 = p1 − n110 − n111, n001 = −q + p1 + p2 −
n110 − n111, n010 = −p1 − 2p2 + p3 + q + 2n110 + n111,
and n011 = −n110 − q + p1 + p2 − p3. The terms that
actually contribute to the sum in Eq. (60) correspond to
the values of the independent exponents n110 and n111

such that all the other ones, resulting from the above
relations, are non-negative.

Example. In the case of a three-level V system, for
j = 1 and k = 2, the zero-phonon peak corresponds to
(ω1,0, ω3,0) = (−ε1/~, ε2/~) (see Eq. 18). This contribu-
tion involves a coherence between the two exited states,
|1〉 and |2〉, during the second waiting time. The phonon
replicas are found at excitation and detection frequencies
ω1,p1 = −ε1/~ − p1ωv and ω3,p3 = ε2/~ − p3ωv, respec-
tively. Their amplitude and phase, as a function of t2,

are given by:

Ap1,p3(t2) = e−(z21+z22)
∞∑

n011,n110,n111=0

(z1z2)n100+n001

n100!n001!

z2n110
1

n110!

z2n011
2

n011!

+∞∑

p2=−∞
ei p2 ωv t2

(−z1z2)n010+n111

n010!n111!
,

(61)

where n100 = p1 − n110 − n111, n001 = p3 + n011 − n111,
n010 = −p2 − n011 + n110 + n111. The amplitude of the
peak is thus identically zero for p1 < 0. The function
Ap1,p3(t2) is plotted in Fig. 4 (green lines), for specific
values of the displacements. The other possible path-
ways, j = k = 1 and j = k = 2, give rise to contributions
that are formally identical to the ones that are obtained
for a two-level system. They can be obtained from Eq.
(61) by replacing respectively z2 with z1 or vice versa.

b. Non-rephasing contribution. From Eq. (26) it fol-
lows that s′100 = s′110 = s′111 = −1, while the sign is posi-
tive in the other cases, while h(z) = z2

j + z2
k. The weight

of the q-th order contribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

(zjzk)n100

n100!

(zjzk)n001

n001!

z2n010

k

n010!

(−zjzk)n110

n110!

(−zjzk)n011

n011!

z2n111
j

n111!
, (62)

where n100 = −p1 − n110 − n111, n001 = −q + p1 + p2 +
n110 + n111, n010 = p1 + 2p2 − p3 − q + 2n110 + n111,
and n011 = −n110 + q − p1 − p2 + p3. The terms that
actually contribute to the sum in Eq. (62) correspond to
the values of the independent exponents n110 and n111

such that all the other ones, resulting from the above
relations, are non-negative.

Example. In the case of a three-level V system, for
j = 1 and k = 2, the zero-phonon peak corresponds to
(ω1,0, ω3,0) = (ε1/~, ε1/~) (see Eq. 23). This contribu-
tion involves a coherence between the two exited states,
|1〉 and |2〉, during the second waiting time. The phonon
replicas are found at excitation and detection frequencies
ω1,p1 = ε1/~−p1ωv and ω3,p3 = ε1/~−p3ωv, respectively.
Their amplitude and phase, as a function of t2, are given
by:

Ap1,p3(t2) = e−(z21+z22)
∞∑

n011,n110,n111=0

(z1z2)n100+n001

n100!n001!

z2n111
1

n111!

(−z1z2)n110+n011

n110!n011!

+∞∑

p2=−∞
ei p2 ωv t2

z2n010
2

n010!
,

(63)

where n100 = −p1−n110−n111, n001 = p3−n011 +n111,
n010 = p2−n011 +n110 +n111. The amplitude of the peak
is thus identically zero for p1 > 0. The functionAp1,p3(t2)
is plotted in Fig. 4 (orange lines), for specific values of the
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displacements. The other possible pathways, j = k = 1
and j = k = 2, give rise to contributions that are formally
identical to the ones that are obtained for a two-level
system. They can be obtained from Eq. (63) by replacing
respectively z2 with z1 or vice versa.

FIG. 5. Dependence on the waiting time t2 of three repre-
sentative peaks in the 2D map of a system characterized by
a three-level Ξ scheme (a). The panels (c-e) report the (real
part of) the amplitudes for the peaks highlighted in panel
(b). Different colors of the solid lines correspond to differ-
ent contributions: excited state absorption, rephasing (blue)
and non-rephasing (red); double quantum coherence, rephas-
ing (green) and non-rephasing (orange). The values of the
displacements are: z1 = 0.4 and z2 = −0.7.

C. Excited state absorption

The third response function is related to excited-state
absorption processes.

a. Rephasing contribution. As can be seen from Eq.
(32), s′010 = s′001 = s′011 = −1 and s′χ = +1 in all other

cases, while h(z) = z2
j + z2

k + z2
l − zl(zj + zk). The weight

of the q-th order contribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

(zjzk)n100

n100!

(zljzlk)n001

n001!

(zkzkl)
n010

n010!

(−zjzkl)n110

n110!

(zkzlj)
n011

n011!

(−zjzlj)n111

n111!
, (64)

where n100 = p1 − n110 − n111, n001 = q − p1 − p2 +
n110 +n111, n010 = −p1−2p2 +p3 +q+2n110 +n111, and
n011 = −n110−q+p1+p2−p3. The relevant contributions
in the sum in Eq. (64) correspond to the values of the
independent exponents n110 and n111 such that all the
other ones, resulting from the above relations, are non-
negative.

Example. We consider as an example the case of
a three-level Ξ system, for j = k = 1 and l = 2,
where the zero-phonon peak corresponds to (ω1,0, ω3,0) =
[−ε1/~, (ε2 − ε1)/~] (see Eq. 28). The phonon repli-
cas are found at excitation and detection frequencies
ω1,p1 = −ε1/~ − p1ωv and ω3,p3 = (ε2 − ε1)/~ − p3ωv,
respectively. Their amplitude and phase, as a function
of t2, are given by:

Ap1,p3(t2) = e−h(z)
∞∑

n011,n110,n111=0

(z1z21)n110+n011

n110!n011!

z2n100
1

n100!

z2n001
21

n001!

+∞∑

p2=−∞
ei p2 ωv t2

(−z1z21)n010+n111

n010!n111!
,

(65)

where n100 = p1−n110−n111, n001 = −p3−n011 +n111,
n010 = −p2 − n011 + n110 + n111, and h(z) = 2z1(z1 −
z2) + z2

2 . The amplitude of the peak is thus identically
zero for p1 < 0.

b. Non-rephasing contribution. As results from Eq.
(38), s′010 = s′011 = +1 and s′χ = −1 in all other cases,

while h(z) = z2
j + z2

k + z2
l − zl(zj + zk). The weight of the

q-th order contribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

(zjzk)n100

n100!

(zlkzlj)
n001

n001!

(zkzlj)
n010

n010!

(zjzjl)
n110

n110!

(−zkzlk)n011

n011!

(zjzlk)n111

n111!
, (66)

where n100 = −p1 − n110 − n111, n001 = q − p1 − p2 −
n110 − n111, n010 = p1 + 2p2 − p3 − q+ 2n110 + n111, and
n011 = −n110 + q − p1 − p2 + p3. The terms in Eq. (66)
that matter correspond to the values of the independent
exponents n110 and n111 such that all the other ones,
resulting from the above relations, are non-negative.

Example. In the case of a three-level Ξ system, for
j = k = 1 and l = 2, the zero-phonon peak corre-
sponds to (ω1,0, ω3,0) = [ε1/~, (ε2 − ε1)/~] (see Eq. 28).
The phonon replicas are found at excitation and de-
tection frequencies ω1,p1 = ε1/~ − p1ωv and ω3,p3 =
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(ε2 − ε1)/~ − p3ωv, respectively. Their amplitude and
phase, as a function of t2, are given by:

Ap1,p3(t2) = e−h(z)
∞∑

n011,n110,n111=0

(−z1z21)n110+n011

n110!n011!

z2n100
1

n100!

z2n001
21

n001!

+∞∑

p2=−∞
ei p2 ωv t2

(z1z21)n010+n111

n010!n111!
,

(67)

where n100 = −p1−n110−n111, n001 = −p3 +n011−n111,
n010 = p2−n011+n110+n111, and h(z) = 2z1(z1−z2)+z2

2 .
The amplitude of the peak is thus identically zero for
p1 > 0.

D. Double quantum coherence

Finally, we address the spectral contributions related
to double quantum coherences.

a. Rephasing contribution. As results from Eq.
(43), s′001 = +1 and s′χ = −1 in all other cases. The
weight of the q-th order contribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

(−zjzlj)n100

n100!

(zkzkl)
n001

n001!

(zkzlj)
n010

n010!

(zjzk)n110

n110!

(zljzlk)n011

n011!

(zjzlk)n111

n111!
, (68)

where n100 = −p1 − n110 − n111, n001 = −q + p1 + p2 +
n110 + n111, n010 = −p1 − 2p2 + p3 + q − 2n110 − n111,
and n011 = n110 − q + p1 + p2 − p3. The relevant terms
in Eq. (68) correspond to the values of the independent
exponents n110 and n111 such that all the other ones,
resulting from the above relations, are non-negative. The
exponent in the prefactor is given by h(z) = z2

j + z2
k +

z2
l − zl(zj + zk).

Example. In the case of a three-level Ξ system, for
j = k = 1 and l = 2, the zero-phonon peak corre-
sponds to (ω1,0, ω3,0) = [ε1/~, (ε2 − ε1)/~] (see Eq. 40).
The phonon replicas are found at excitation and de-
tection frequencies ω1,p1 = ε1/~ − p1ωv and ω3,p3 =
(ε2 − ε1)/~ − p3ωv, respectively. Their amplitude and
phase, as a function of t2, are given by:

Ap1,p3(t2) = e−h(z)
∞∑

n011,n110,n111=0

(−z1z21)n100+n001

n100!n001!

z2n110
1

n110!

z2n011
21

n011!

+∞∑

p2=−∞
ei p2 ωv t2

(z1z21)n010+n111

n010!n111!
,

(69)

where n100 = −p1−n110−n111, n001 = p3 +n011 +n111,
n010 = −p2 − n011 − n110 − n111, and h(z) = 2z1(z1 −
z2) + z2

2 . The amplitude of the peak is thus identically
zero for p1 > 0.

b. Non-rephasing contribution. As can be seen from
Eq. (48), s′χ = −1 for all the cases. The weight of the
q-th order contribution is given by the sum

C(q)
p1,p2,p3 =

q∑

n110,n111=0

(zjzjl)
n100

n100!

(zkzkl)
n001

n001!

(zlkzlj)
n010

n010!

(zjzlk)n110

n110!

(zkzlj)
n011

n011!

(zjzk)n111

n111!
, (70)

where n100 = −p1−n110−n111, n001 = q−p1−p2−n110−
n111, n010 = −p1−2p2 +p3 +q−2n110−n111, and n011 =
n110−q+p1+p2−p3. The actual contributions in the sum
in Eq. (70) correspond to the values of the independent
exponents n110 and n111 such that all the other ones,
resulting from the above relations, are non-negative. The
exponent in the prefactor is given by h(z) = z2

j + z2
k +

z2
l − zl(zj + zk).

Example. In the case of a three-level Ξ system, for
j = k = 1 and l = 2, the zero-phonon peak corresponds
to (ω1,0, ω3,0) = (ε1/~, ε1/~) (see Eq. 45). The phonon
replicas are found at excitation and detection frequencies
ω1,p1 = ε1/~−p1ωv and ω3,p3 = ε1/~−p3ωv, respectively.
Their amplitude and phase, as a function of t2, are given
by:

Ap1,p3(t2) = e−h(z)
∞∑

n011,n110,n111=0

(z1z21)n110+n011

n110!n011!

z2n111
1

n111!

(−z1z21)n100+n001

n100!n001!

+∞∑

p2=−∞
ei p2 ωv t2

z2n010
21

n010!
,

(71)

where n100 = −p1−n110−n111, n001 = −p3−n011−n111,
n010 = −p2 − n011 − n110 − n111, and h(z) = 2z1(z1 −
z2) + z2

2 . The amplitude of the peak is thus identically
zero for p1 > 0 or p3 > 0.

V. HIGHER-ORDER AND MULTI-MODE
GENERALIZATIONS

Hereafter, we derive the expressions of the response
functions corresponding to M -th order in the interaction
with the field, with arbitrary M . The generalization to
the case of multiple vibrational modes is also briefly dis-
cussed.

A. Higher-order nonlinear contributions

So far, third-order response functions have been de-
rived from the expressions of the time-dependent vibra-
tional states for the ket and the bra. This approach al-
lows one to develop a clear physical picture, where the
vibrational component of the response function corre-
sponds to the overlap between the coherent states that
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correspond to the left and right sides of the Feynman
diagrams. In order to derive higher-order response func-
tions, it is however convenient to follow a slightly dif-
ferent approach, which simplifies the calculations (Ap-
pendix D).

The final result, consisting in the expression of the vi-
brational component of the response function in terms of
the waiting times and of the displacements zk, reads:

R(v,M) = exp[f(t1, . . . , tM )] =

exp



M∑

k=1

M−k+1∑

l=1

zjl−1,jlzjl+k−1,jl+k


1−

l+k−1∏

p=l

vp




 .

(72)

Each the vp, as well as the above products of consecutive
vp functions, take the form exp(i s ωv

∑
j tj), where the

sum in the exponent is performed on variable numbers
of consecutive waiting times, each one corresponding to
a time interval between consecutive interactions with the
field on the left (s = −1) or on the right (s = +1) side of
the diagram. More specifically, the sums in the exponents
that define v1 (vM ) include all the waiting times between
the first and second interactions of the bra (ket) with the
field, those in v2 (vM−1) include the times between the
second and third interactions; and so on.

From the above equation it follows that the response
function R(v,M) corresponding to a given pathway can in
practice be directly derived from the Feynman diagram,
by adopting the following recipe for composing the expo-
nent f(t1, . . . , tM ). In particular, this includes:

• M(M + 1)/2 terms χmn ≡ 1 − e−i ωv
∑n
j=m tj or

χ∗mn, where the sum includes from 1 to M terms,
and runs over all combinations of consecutive wait-
ing times. The sign in the exponent is assigned as
follows: if the arrows at the beginning and at the
end of the considered time interval are both on the
right (left) side, then the sign is positive and the
function is χ∗mn (the sign is negative and the func-
tion is χmn); if the two arrows are on opposite sides,
then the sign is positive or negative, depending on
whether the earliest interaction is on the right or
on the left.

• Each of these oscillating terms is multiplied by
zjkzk′j′ , where j and k (j′ and k′) specify the elec-
tronic states before and after the first (second) de-
limiting arrow. Here we refer to an order that goes
from the bra at the bottom right corner to the ket
at the bottom left corner of the double-sided Feyn-
man diagrams, proceeding counterclockwise.

It can be readily verified that, by applying the above
recipe to the third-order response functions, one recov-
ers all the expressions derived in Section III. In order
to further illustrate the recipe, we apply it to two rep-
resentative examples of a fifth-order response function.
The identification of the oscillating terms in f with prod-
ucts of the vk operators will be included in order to clear

|0⟩⟨0|
|k⟩⟨0|
|0⟩⟨0|
|0⟩⟨j|
|0⟩⟨l|
|0⟩⟨j|
|0⟩⟨0|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

}
v1 = eiωt1

}
v2 = eiωt2

}
v3 = eiωt3

}
v4 = eiω(t4+t5)

v5 = e−iωt5
{

|0⟩⟨0|
|k⟩⟨0|
|0⟩⟨0|
|k⟩⟨0|
|k⟩⟨j|
|0⟩⟨j|
|0⟩⟨0|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

}
v1 = eiω(t1+t2)

}
v2 = eiω(t3+t4+t5)

v3 = e−iωt5
{

v4 = e−iωt4
{

v5 = e−iω(t2+t3)

{

(a)

(b)

FIG. 6. Two representative examples of a double-sided Feyn-
man diagram corresponding to a fifth-order (M = 5) response
function, to which we refer in the paragraphs entitled First
example (a) and Second Example (b).

the connection with the formal derivation of the response
functions, given in Appendix D, but is not necessary in
order to apply the recipe and can be disregarded by the
uninterested reader.

a. First example. The considered pathway is de-
fined by the Feynman diagram in Fig. 6(a). Following
step by step the above procedure, we derive the following
composition of the function f in the exponent [Eq. (72)]:

• The oscillating terms 1−χmn, which result from the
products of the vk functions, can be directly iden-
tified with: v1 = eiωvt1 , v2 = eiωvt2 , v3 = eiωvt3 ,
v4v5 = eiωvt4 , v5 = e−iωvt5 (one waiting time);
v1v2 = eiωvt12 , v2v3 = eiωvt23 , v3v4v5 = eiωvt34 ,
v4 = eiωvt45 (two waiting times); v1v2v3 = eiωvt13 ,
v2v3v4v5 = eiωvt24 , v3v4 = eiωvt35 (three wait-
ing times); v1v2v3v4v5 = eiωvt14 , v2v3v4 = eiωvt25

(four waiting times); v1v2v3v4 = eiωvt15 (five wait-
ing times). Here, we have adopted the convention:
tij ≡ ti + ti+1 + · · ·+ tj−1 + tj .

• The functions χmn are multiplied respectively by
the prefactors: z0jzjl, zjlzlj , zljzj0, zj0z0k, z0kzk0;
z0jzlj , zjlzj0, zljzk0, zj0z0k; z0jzj0, zjlzk0, zljz0k;
z0jzk0, zjlz0k; z0jz0k.

b. Second example. The pathway is here defined by
the Feynman diagram in Fig. 6(b). The function f in
the exponent [Eq. (72)] is composed as follows:

• The oscillating terms 1 − χmn, which result from
the products of the vk functions, can be directly
identified with: v1v2v3v4v5 = eiωvt1 , v2v3v4v5 =
e−iωvt2 , v2v3v4 = eiωvt3 , v4 = e−iωvt4 , v3 = e−iωvt5

(one waiting time); v1 = eiωvt12 , v5 = e−iωvt23 ,
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FIG. 7. Fifth-order response function R(v,5)(ω1, ω5) of a sys-
tem with a three-level Ξ scheme, corresponding to the Fourier
transform of the R(v,5)(t1, t5) reported in Eq. 73. The val-
ues of the displacements are: z1 = 0.4 and z2 = −0.7, the
lines are broadened by assuming for the electronic coherences
a dephasing rate γ/ωv = 0.15.

v2v3 = eiωvt34 , v3v4 = e−iωvt45 (two waiting times);
v1v2v3v4 = eiωvt13 , v4v5 = e−iωvt24 , v2 = eiωvt35

(three waiting times); v1v2v3 = eiωvt14 , v3v4v5 =
e−iωvt25 (four waiting times); v1v2 = eiωvt15 (five
waiting times).

• The functions χmn are multiplied respectively by
the prefactors: z0jzk0, zj0zk0, zj0z0k, zk0z0k,
z0kzk0; z0jzj0, z0kzk0, zj0zk0, z0kz0k; z0jz0k,
zk0zk0, zj0z0k; z0jzk0, z0kzk0; z0jz0k.

• Applying this result to the case of a three-level Ξ
system (which implies that j = k = 1), for t2 =
t3 = t4 = 0, one obtains for the response function

the expression

R(v,5) = z2
1 [2eiωvt1 + eiωvt5 − eiωv(t1+t5)

+ e−iωvt5 − 3]. (73)

Its Fourier transform with respect to t1 and t5 is
plotted in Fig. 7.

• Applying this result to the case of a three-level V
system, for j = 1, k = 2 and t2 = t3 = t4 = 0, one
obtains for the response function the expression

R(v,5) = z1(z1+z2)eiωvt1−(z2
1 +z2

2 +z1z2)

+z1z2[eiωvt5−eiωv(t1+t5)]+z2
2e
−iωvt5 . (74)

Its Fourier transform with respect to t1 and t5 is
plotted in Fig. 8.

B. Multimode case

The generalization of the above results to the case of B
vibrational modes is straightforward. The Hamiltonian
becomes

H =

N−1∑

j=0

|j〉〈j| ⊗


εj +

B∑

ξ=1

~ωv,ξ(a†ξ + zj,ξ)(aξ + zj,ξ)




≡
N−1∑

j=0

|j〉〈j| ⊗


εj +

B∑

ξ=1

Hv,ξ,j


 . (75)

The vibrational component of the response function has
to be replaced by a product of terms such as the ones
derived in the previous Sections, with mode-dependent
frequencies ωv,ξ and displacements zj,ξ. The overall re-
sponse functions, including electronic and vibrational de-
grees of freedom, are thus given by

R(M)
p =

∑

j1,...,jM

R
(e,M)
p,j1,...,jM

B∏

ξ=1

R
(v,M,ξ)
p,j1,...,jM

, (76)

where p specifies the kind of response function (in analogy
to the classification in ground state bleaching, stimulated
emission, excited state absorption, and double quantum
coherence that has been considered for the case M = 3)
and j1, . . . , jM are the involved electronic states, which
specify the pathway.

VI. FINITE TEMPERATURE CASE AND
APPLICATION TO THE SIMULATION

OF A PHONON BATH

So far, we have considered the zero-temperature limit,
corresponding to vibrational modes initialized in the
ground state of the undisplaced oscillator. In the present
Section, we show how the response functions generalize
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FIG. 8. Fifth-order response function R(v,5)(ω1, ω5) of a sys-
tem with a three-level V scheme, corresponding to the Fourier
transform of the R(v,5)(t1, t5) reported in Eq. 74. The val-
ues of the displacements are: z1 = 0.4 and z2 = −0.7, the
lines are broadened by assuming for the electronic coherences
a dephasing rate γ/ωv = 0.15.

to the case of an arbitrary initial state |α0〉. From the
resulting expressions, one can in principle derive the re-
sponse function for arbitrary initial states of the vibra-
tional modes, by expressing the state of interest as a com-
bination of coherent states, through the coherent state
representation51. This possibility will be exploited to de-
rive the case of a thermal state. Applying such result to
the case of a phonon bath, we derive the expression of
the line shape functions. The derivations of the following
results are provided in the Appendices C-E.

A. Initialization to coherent and thermal states

In order to derive the effect of such initialization, we
refer to the expression of a response function in terms of
an overlap between the vibrational states of the ket and
of the bra:

R(v,M) = 〈αM,bra|αM,ket〉 ei(aket−abra) ≡ ereiϕ. (77)

With respect to the α0 = 0 case, the final coherent states
are defined by complex numbers αM,ket and αM,bra that

include the same, additional term β ≡ α0e
−iωv(t1+···+tM ).

As a result, the modulus of the response function, given
by an exponential function of r = − 1

2 |αM,ket − αM,bra|2
is left unchanged. Therefore, the dependence of R(v,M)

on α0 only concerns phase ϕ. In particular, the relation
between the response functions in the zero-temperature
limit (α0 = 0) considered so far and those at arbitrary
α0 can be written in the compact form

R(v,M)
α0

= ei∆ϕR
(v,M)
α0=0

= exp{Re(f) + i[Im(f) + ∆ϕ]}, (78)

which reduces to R(v,M) = ef [Eq. (72)] for the standard
initialization α0 = 0. The initial-state dependent change
in the phase reads

∆ϕ = 2

M∑

j=1

(zbj − zkj )Im[α∗0(eiωvtj − 1) eiωv
∑j−1
k=1 tk ],

(79)

being |kj〉 and |bj〉 are the electronic ket and bra states
during the j-th waiting time.

Knowing the response function for any initial coherent
states allows in principle to derive their expression for
arbitrary initial vibrational states, passing through their
coherent state representation51. As a representative ex-
ample, one can consider the case of thermal states, corre-

sponding to P (α0, α
∗
0) = 1

π〈n〉e
−|α0|2/〈n〉. After averaging

R
(v,M)
α0 in the phase space with such function, one obtains

R
(v,M)
T =

∫
d2α

R
(v,M)
α0

π〈n〉 e
−|α0|2/〈n〉

= exp[coth(~ωv/2kBT )Re(f) + iIm(f)], (80)

which reduces to R(v,M) = ef [Eq. (72)] in the zero-
temperature limit. In other words, the finite temper-
ature response function is obtained from that at zero-
temperature, derived in the previous Section, simply by
multiplying by a factor coth(~ωv/2kBT ) the real part
in the exponent, while leaving the imaginary part unaf-
fected. This relation, already known for the third-order
response function of a two-level system1, thus has a wider
validity.
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B. Phonon bath and line shape function

A bath formed by a quasi-continuum of independent
harmonic oscillators represents the prototypical model of
environment, responsible for the decay of the oscillating
features in multidimensional coherent spectroscopy and
for the specific features of the observed line shapes1,54.
Here, the results obtained for thermal states [Eq. (80)]
and for the multimode case [Eq. (76)] are combined to-
gether, in order to derive the expression of the line shape
function for a generic multilevel system.

In line with the approach adopted so far, the B har-
monic oscillators that form the bath are assumed to
be linearly coupled to the system [Eq. (75)]. In the
limit where the discrete set (ξ) of modes is replaced
by a continuum, the effect of the bath on the system
can be fully characterized in terms of the density of the
displacements as a function of the mode frequency ω:
zjk,ξ zj′k′,ξ → sjk,j′k′(ω) dω, along the lines of what has
been done in the case of a two-level system55. The re-
sulting response function is obtained from that of the sin-
gle mode case by replacing each function zjk zj′k′χmn =
zjk zj′k′ [1 − exp(iωvtmn)] appearing in the exponent f
[Eq. 72] with

gjk,k′j′(tmn) ≡
∫

dω sjkk′j′(ω) {coth(~ω/2kBT )

[1− cos(ωtmn)] + i sin(ωtmn)}. (81)

Further details on the derivation are provided in Ap-
pendix E.

Hereafter, we apply the above result to the case of
the third-order response functions of multilevel systems
(arbitrary N). The exponents of such functions read:

fT ;1,jk = g∗0j,k0(t1) + gj0,k0(t2) + g∗0j,k0(t3)

+ g∗0j,j0(t12) + gk0,0k(t23) + g∗0j,0k(t13) (82)

fT ;2,jk = g∗0j,j0(t1) + g∗j0,k0(t2) + g0k,k0(t3)

+ g∗0j,k0(t12) + g∗j0,0k(t23) + g∗0j,0k(t13) (83)

fT ;3,jkl = g∗0j,k0(t1) + gk0,lk(t2) + glk,jl(t3)

+ g∗j0,kl(t12) + g0k,lj(t23) + g∗j0,lj(t13) (84)

fT ;4,jk = g0j,k0(t1) + g∗0k,k0(t2) + g∗0j,k0(t3)

+ gj0,k0(t12) + g∗j0,k0(t23) + g0j,j0(t13) (85)

fT ;5,jk = g0j,j0(t1) + g0j,k0(t2) + g0k,k0(t3)

+ gj0,k0(t12) + gj0,k0(t23) + g0j,k0(t13) (86)

fT ;6,jkl = g0j,k0(t1) + g∗0k,lj(t2) + glk,jl(t3)

+ gj0,lj(t12) + g∗k0,lk(t23) + g0j,lk(t13) (87)

fT ;7,jkl = gj0,lj(t1) + g0k,lj(t2) + g∗0k,kl(t3)

+ g0j,k0(t12) + gjl,lk(t23) + g0j,lk(t13) (88)

fT ;8,jkl = g0j,jl(t1) + gkl,lj(t2) + g0k,kl(t3)

+ g0j,lk(t12) + g0k,lj(t23) + g0j,k0(t13), (89)

where fT ;p,jk(l) = ln[Rv,3T ;p,jk(l)].

If the electronic degrees of freedom of the system
are not only weakly coupled to a bath, but also
strongly coupled to a number of high-frequency vibra-
tional modes14,37,55–60, then the overall response function
is given by a product of the ones reported Eqs. (82-89)
and of those derived in the previous Section III. The ex-
tension of this to higher-order functions follows directly
from Eq. (81) and from the more general expression of
the vibrational response function given in Eq. (72).

VII. EFFECT OF VIBRATIONAL RELAXATION

The results obtained in the previous Sections refer to
the case of a coherent vibrational dynamics. However,
the vibrational states can undergo relaxation, resulting
in incoherent transitions between vibrational eigenstates.
Formally the phonon emission process is represented as
a transition:

(a+ zk)|n,−zk〉 =
√
n|n− 1,−zk〉, (90)

where |n,−zk〉 = D(−zk)|n〉 is the displaced number
state, eigenstate of Hv,k, and the index k denotes the
electronic state.

The effect of relaxation on the time evolution of the
vibrational state can be simulated by including a non-
Hermitian term in the Hamiltonian52, and, more specifi-
cally, by performing the following replacements:

Hv,k −→ H̃v,k = Hv,k − i~
κ

2
(a† + zk)(a+ zk), (91)

where κ is the decay rate. As a result, a coherent state
evolves as

e−iH̃v,k/~|α〉 = fk(t) eig̃|(α+ zk)e−(κ/2+iωv)t− zk〉, (92)

where the phase g̃ is obtained by replacing ωv with ωv −
iκ/2 in the expression of g (see Appendix B), while the
amplitude is given by the prefactor

fk(t, α) = exp

[
−|α+ zk|2

2

(
1− e−κt

)]
. (93)

The effect of relaxation on the coherent state |α〉 evolu-
tion is thus twofold. On the one hand [Eq. 92], the wave
packet no longer describes a circle of radius |α + zk〉,
but rather a spiral, around the point −zk in the complex
plane. On the other hand, the modulus of the state vector
decreases as a function of time, asymptotically approach-
ing a value that decreases exponentially with the distance
between the initial state |α〉 and the displaced origin −zk
[Eq. 93]. In particular, one has that fk(t,−zk)=1.

The first effect can be accounted for by replacing the
positive real parameter ωv with the complex parameter
ω̃v ≡ ωv ± iκ/2 in the exponential functions e±iωvt. This
leads to modified expressions of the third-order response
functions, which can be written as functions of

Λ̃p1p2p3 ≡ (ωv + iκ/2)(p1t1 + p2t2 + p3t3), (94)
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being p1, p2, p3 ≥ 0. In the presence of a minus sign in the
exponent, the above Λ̃ has to be replaced by its complex
conjugate, in order for the real part of the exponent to
be negative. The generalization of Eq. (94) to the M -th
order case, with M > 3 is straightforward.

The second effect of the vibrational relaxation can
be accounted for by multiplying each response func-
tion by an F that is given by the product of functions
fk(ti, αket,i−1) (for the ket) and fk(ti, αbra,i−1) (for the
bra), each one corresponding to the relevant electronic
states k, waiting times ti and initial states |αi−1〉. For-
mally,

F =

M∏

i=1

fki(ti, αket,i−1) fbi(ti, αbra,i−1), (95)

where ki and bi are the electronic states in the ket and
bra, respectively, during the i-th waiting time, while
αket,i−1 and αbra,i−1 represent the vibrational states at
the beginning of the same waiting time. These factors F
tend to suppress the response functions and display a de-
pendence on the waiting times that is both explicit and
implicit, the latter one being included in the expression
of αket,i−1 and αbra,i−1.

A. Third-order response functions

In the following we derive such factor for each of the
four considered processes, omitting the expressions of
αket,i and αbra,i, which are reported in Appendix B.

a. Ground state bleaching. The response function
corresponding to the refocusing contribution is given by

R̃
(v)
2,jk = F2 exp[−(z2

j + z2
k) + z2

j e
iΛ̃100 + z2

ke
−iΛ̃∗001

+ zjzk(−eiΛ̃010 + eiΛ̃011 + eiΛ̃110 − eiΛ̃111)]. (96)

The prefactor that accounts for the time dependence of
the coherent state modulus is

F2 =fk(t3, αket,2) fj(t1, αbra,0) f0(t2 + t3, αbra,1). (97)

The response function corresponding to the non-
refocusing contribution reads

R̃
(v)
5,jk = F5 exp[−(z2

j + z2
k) + z2

j e
−iΛ̃∗100 + z2

ke
−iΛ̃∗001

+ zjzk(e−iΛ̃
∗
010 − e−iΛ̃∗011 − e−iΛ̃∗110 + e−iΛ111)].

(98)

The prefactor that accounts for the time dependence of
the coherent state modulus is

F5 =fj(t1, αket,0) f0(t2, αket,1) fk(t3, αket,2). (99)

b. Stimulated emission. We start by considering the
response function related to the refocusing contribution,
which reads:

R̃
(v)
1,jk = F1 exp[−(z2

j + z2
k) + z2

j e
iΛ̃110 + z2

ke
−iΛ̃∗011

+ zjzk(eiΛ̃001 − e−iΛ̃∗010 + eiΛ̃100 − eiΛ̃111)], (100)

The prefactor F1, which accounts for the time depen-
dence of the coherent state modulus is

F1 =fk(t2 + t3, αket,1) fj(t1 + t2, αbra,0) f0(t3, αket,2).
(101)

The response function corresponding to the non-
refocusing contribution to the stimulated emission is
given by

R̃
(v)
4,jk = F4 exp[−(z2

j + z2
k) + z2

j e
−iΛ̃∗111 + z2

ke
iΛ̃010

+ zjzk(eiΛ̃001 + e−iΛ̃
∗
100 − eiΛ̃011 − e−iΛ̃∗110)].

(102)

The prefactor F4 is given by the product of two nontrivial
contributions, namely

F4 =fj(t1 + t2 + t3, αket,0) fk(t2, αbra,1). (103)

c. Excited state absorption. The response function
corresponding to the refocusing component of the excited
state absorption is given by:

R̃
(v)
3,jkl = F3 exp{−[z2

j + z2
l + z2

k − zl(zj + zk)]

+ zlkzlje
−iΛ̃∗001 + zkzkle

−iΛ̃∗010 + zjzke
iΛ̃100

+ zkzlje
−iΛ̃∗011 − zjzkleiΛ̃110 − zjzljeiΛ̃111}, (104)

The prefactor F3, accounting for the decay in the co-
herent state modulus, is given by the product of three
nontrivial terms:

F3 =fk(t2, αket,1) fl(t3, αket,2) fj(t1 + t2 + t3, αbra,0).
(105)

The response function corresponding to the non-
refocusing component of the excited state absorption
reads:

R̃
(v)
6,jkl = F6 exp{−[z2

j + z2
k + z2

l − zl(zj + zk)]

+ zlkzlje
−iΛ̃∗001 + zkzlje

iΛ̃010 + zjzke
−iΛ̃∗100

− zkzlkeiΛ̃011 + zjzjle
−iΛ̃∗110 + zjzlke

−iΛ̃∗111}.
(106)

The prefactor F6 results from the product of three terms,
namely

F6 =fj(t1 + t2, αket,0) fl(t3, αket,2) fk(t2 + t3, αbra,1).
(107)

d. Double quantum coherence. The response func-
tion corresponding to the first component of the double
quantum coherence reads:

R̃
(v)
7,jkl = F7 exp{−[z2

j + z2
l + z2

k − zl(zj + zk)]

+ zkzkle
iΛ̃001 + zkzlje

−iΛ̃∗010−zjzlje−iΛ̃
∗
100

+ zljzlke
−iΛ̃∗011 + zjzke

−iΛ̃∗110 + zjzlke
−iΛ̃∗111}.

(108)
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The prefactor F7 is given by the following product of
nontrivial terms:

F7 =fj(t1, αket,0) fl(t2 + t2, αket,1) fk(t3, αbra,2). (109)

Finally, the response function corresponding to the sec-
ond component of the double quantum coherence is given
by:

R̃
(v)
8,jkl = F8 exp{−[z2

j + z2
l + z2

k − zl(zj + zk)]

+ zkzkle
−iΛ̃∗001 + zlkzlje

−iΛ̃∗010 + zjzjle
−iΛ̃∗100

+ zkzlje
−iΛ̃∗011 + zjzlke

−iΛ̃∗110 + zjzke
−iΛ̃∗111}.

(110)

The prefactor F8, accounting for the decay in the coher-
ent state modulus, reads:

F8 =fj(t1, αket,0) fl(t2, αket,1) fk(t3, αbra,2). (111)

VIII. CONCLUSIONS

In conclusion, we have developed a coherent state rep-
resentation of the vibrational dynamics and of its ef-
fect on the nonlinear response functions, within the lin-
early displaced harmonic oscillator model. The underly-
ing physical assumption is that nonadiabatic effects can
be neglected and that the dependence of the vibrational
modes on the electronic state can be reduced to that
of their equilibrium positions. Besides, the optically-
induced transitions are assumed to satisfy the Franck-
Condon principle.

Within such model, and with no further assumption or
approximation, a number of results have been derived.
Crucial to the derivations is the fact that, within each
pathway (i.e. any sequence of optically-induced transi-
tions between electronic states) the vibrational state can
always be described as a single coherent state. First,
starting from the expressions of the path-dependent vi-
brational states, analytical expressions for the third-order
response functions in N -level systems have been com-
puted in the zero-temperature limit, where the oscillator
is initialized in the ground state. Frome there, in order
to highlight connections with observable quantities, we
have derived within the semi-impulsive limit the ampli-
tude of the peaks appearing in the 2D spectroscopy, as a
function of the waiting time t2 of the amplitude.

The expressions of the third-order response functions
have been generalized to the case of M -th order case,
with arbitrary M . The formal derivation has been trans-
lated into a simple recipe, which allows one to derive
the vibrational component of the response functions di-
rectly from the Feynman diagrams, without performing
any calculation.

These results have been generalized to the case where
the vibrational mode is initialized in a generic coherent
state. This was shown to imply only a phase change

in the response functions, with respect to the zero-
temperature case. Besides, the expression of the response
functions for arbitrary initial coherent states allows one
in principle to derive the dependence on an arbitrary ini-
tial state of the vibrational mode. In fact, the coherent
states form an overcomplete basis, in terms of which one
can express any state of the mode, given its coherent
state representation. Such possibility has been exploited
in order to derive the response function for a thermal
state (finite temperature) initialization.

The above result, combined with the straightforward
extension to the multimode case, has been used to ad-
dress the case of a system coupled to a phonon bath and
to derive the effect of such coupling on the line width
function. Also in this case, our approach applies to an
arbitrary order M in the interaction with the field and
to an arbitrary number N of electronic levels required to
model the system of interest.

Finally, the effect of vibrational relaxation on the vi-
brational response functions has been accounted for by
means of a non-Hermitian Hamiltonian approach. This
allows one to address the case where a few vibrational
modes, strongly coupled to the electronic degrees of free-
dom, contribute to the coherent features in the multidi-
mensional spectra but are themselves subject to a relax-
ation process.
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Appendix A: Basics about coherent states
and displacement operators

We start by recalling some of the basic properties of
the coherent states and of the displacement operators51,52

that are used throughout the paper.
A coherent state of a quantum harmonic oscillator,

specified by the complex number α, is given by the fol-
lowing linear superposition of Fock (number) states |n〉:

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉. (A1)

From this it follows that the overlap between two coher-
ent states |α〉 and |β〉 is always finite, and is given by

〈β|α〉 = e−|α−β|
2/2eiIm(β∗α). (A2)

The ground state of the harmonic oscillator corre-
sponds to the number state n = 0 and also to the co-
herent state α = 0. Any coherent state can be obtained
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from any other by applying the displacement operator,
defined as

D(α) = eαa
†−α∗a = e−|α|

2/2eαa
†
a−α

∗a. (A3)

In fact, one can show that such application leads to:

D(α)|β〉 = eiIm(β∗α)|α+ β〉. (A4)

The displacement operator can also be characterized
by its action on the creation and annihilation operators,
which is given by

D(−α)a†D(α) = a† + α∗, D(−α)aD(α) = a+ α, (A5)

being D(−α) = D†(α) = D−1(α). From this it follows
that any function of a and a† can be mapped onto the
same function of a+α and a†+α∗, as is the case for the
time evolution operator of the free oscillator:

D(−α)e−iωva
†aD(α) = e−iωv(a†+α∗)(a+α). (A6)

We finally remind that the free evolution of a coherent
state can be represented as a rotation by an angle ωvt
around the origin of the (X,P ) ≡ 1

2 (〈a+ a†〉, 〈i(a†− a)〉)
plane, being

e−iωva
†at|α〉 = |e−iωvtα〉. (A7)

Analogously, the evolution induced by a displaced-
oscillator Hamiltonian geometrically corresponds, up to
a phase factor (see Appendix B), to a rotation around
the point [Re(α), Im(α)].

Appendix B: Time evolution of the vibrational
states entering the nonlinear response functions

The vibrational state in the ket and in the bra evolves,
during each waiting time, under the effect of an Hamilto-
nians Hv,k, where k denotes the electronic state. At each
interaction with the field, the electronic state changes,
either in the ket or in the bra. The overall evolution of
the states on the two sides of the Feynman diagrams is
thus induced by the alternate action of different time-
evolution operators e−iHv,kt/~. This can be reduced to
e−iHv,0t/~ by means of the displacement operators D(zk),
where zk is a real number (see Appendix A). As a result,
one has that:

e−iHv,kt/~ = D(−zk) e−iωva
†atD(zk). (B1)

When applied to a coherent state |α〉, the above oper-
ator displaces the coherent state and generates a phase
factor. The displacement results from a translation by
zk in the (X,P ) plane, followed by a rotation by an an-
gle ωvt around the origin and by a translation by −zk,

induced respectively by the operators D(zk), e−iωva
†at

and D(−zk) in the above equation. The phase factor is
given by the sum of two contributions, −zkIm(α) and

zkIm[(α+ zk)e−iωvt], induced respectively by D(zk) and
D(−zk). As a result, one has that

e−iHv,kt/~|α〉 = eig(α,zk,t)|(α+zk)e−iωvt−zk〉, (B2)

where g(t; zk, α) = zkIm[(α + zk)e−iωvt − α] represents
the overall phase.

Applying the above expression for the transformation
of the vibrational states on the two sides of the Feynman
diagrams, one obtains for the complex numbers that de-
fine the coherent states at the end of the j-th waiting
time, given by:

|φj,χ〉 = ei
∑j
k=1 ak,χ |αj,χ〉, (B3)

where χ = ket, bra, the complex numbers αj,χ specify the
coherent states, and the real numbers aj,χ represent the
phases accumulated by the state within the j-th waiting
time. The coherent states corresponding to consecutive
waiting times are related by the equations

αket,j = (αket,j−1 + zkj )e
−iωvtj − zkj (B4)

αbra,j = (αbra,j−1 + zbj )e
−iωvtj − zbj . (B5)

The real numbers that define the phases satisfy the rela-
tions

aket,j =zkj Im(αket,j − αket,j−1) (B6)

abra,j =zbj Im(αbra,j − αbra,j−1), (B7)

where kj and bj specify the electronic-state component
of the ket and of the bra, respectively. In the follow-
ing, we derive the explicit expressions for these quanti-
ties that are relevant for the different contributions to the
response functions, assuming αket,0 = αbra,0 = 0. The
case of a generic coherent state is considered in the final
paragraph.

a. Ground state bleaching, rephasing term. In this
case [Fig. 2(a)], the sequence of electronic state in the
ket is given by k1 = k2 = 0 and k3 = k. Therefore,
the sequence of coherent states at the end of the three
waiting times is specified by αket,1 = αket,2 = 0 and

αket,3 = zk(e−iωvt3 − 1). (B8)

The phases accumulated within each waiting times are
aket,1 = aket,2 = 0 and

aket,3 = −z2
k sin(ωvt3). (B9)

The sequence of electronic states in the bra is given
by b1 = j, b2 = b3 = 0. This results in the following
sequence of coherent states:

αbra,1 = zj(e
−iωvt1 − 1) (B10)

αbra,2 = zj(e
−iωvt1 − 1)e−iωvt2 (B11)

αbra,3 = zj(e
−iωvt1 − 1)e−iωv(t2+t3). (B12)
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The phases accumulated within each waiting time by the
vibrational state are:

abra,1 = −z2
j sin(ωvt1) (B13)

and abra,2 = abra,3 = 0.
The resulting expression of r = − 1

2 |αket−αbra|2, which
determines the amplitude of the response function, is
given by:

r = z2
j (cos Λ100 − 1) + z2

k(cos Λ001 − 1)

+ zjzk(− cos Λ010 + cos Λ011 + cos Λ110 − cos Λ111).
(B14)

Finally, the phase of the response function, ϕ, reads:

ϕ = z2
j sin Λ100 − z2

k sin Λ001

+ zjzk(− sin Λ010 + sin Λ011 + sin Λ110 − sin Λ111).
(B15)

b. Ground state bleaching, non-rephasing term. In
this case [Fig. 2(b)], the electronic part of the ket evolves
according to the sequence k1 = j, k2 = 0, and k3 = k.
The evolution of the vibrational part is thus given by:

αket,1 = zj(e
−iωvt1 − 1) (B16)

αket,2 = zj(e
−iωvt1 − 1)e−iωvt2 (B17)

αket,3 = zj(e
−iωvt1 − 1)e−iωv(t2+t3) + zk(e−iωvt3 − 1).

(B18)

The phases accumulated at the end of the three waiting
times are:

aket,1 = −z2
j sin(ωvt1) (B19)

aket,3 = −z2
k sin(ωvt3)− zjzk{sin[ωv(t1 + t2 + t3)]

− sin[ωv(t2 + t3)]− sin[ωv(t1 + t2)] + sin(ωvt2)},
(B20)

while aket,2 = 0.
The electronic state in the bra doesn’t undergo any

evolution (b1 = b2 = b3 = 0). Therefore, the vibrational
state is also frozen (αbra,1 = αbra,2 = αbra,3 = 0), and
no phase is accumulated during the three waiting times
(abra,1 = abra,2 = abra,3 = 0).

The above vibrational states correspond to the follow-
ing expression of r = −|αket|2/2:

r = z2
j (cos Λ100 − 1) + z2

k(cos Λ001 − 1)

+ zjzk(cos Λ010 − cos Λ011 − cos Λ110 + cos Λ111).
(B21)

c. Stimulated emission, rephasing term. In this case
[Fig. 2(c)], the sequence of electronic state in the ket
is given by k1 = 0 and k2 = k3 = k. Therefore, the
sequence of coherent states at the end of the three waiting
times is specified by αket,1 = 0 and

αket,2 = zk(e−iωvt2 − 1) (B22)

αket,3 = zk[e−iωv(t2+t3) − 1]. (B23)

The phases accumulated within the three waiting times
are a1 = 0 and

aket,2 = −z2
k sin(ωvt2) (B24)

aket,3 = −z2
k{sin[ωv(t2 + t3)]− sin(ωvt2)}, (B25)

The sequence of electronic states in the bra is given by
b1 = b2 = j and b3 = 0. This results in the following
sequence of coherent states:

αbra,2 = zj [e
−iωv(t1+t2) − 1] (B26)

αbra,3 = zj [e
−iωv(t1+t2) − 1]e−iωvt3 , (B27)

while the expression of αbra,1 coincides with that given in
Eq. (B10). The phases accumulated within each waiting
time by the vibrational state are given by:

abra,2 = −z2
j {sin[ωv(t1 + t2)]− sin(ωvt1)} (B28)

and abra,3 = 0, while abra,1 reads as in Eq. (B13).
From the above equations it follows that r = − 1

2 |αket−
αbra|2 is given by:

r = z2
j (cos Λ110 − 1) + z2

k(cos Λ011 − 1)

+ zjzk(cos Λ001 − cos Λ010 + cos Λ100 − cos Λ111).
(B29)

The phase ϕ, resulting from the difference between the
phase factors accumulated by the ket and the bra, and
from the inner product 〈αbra|αket〉, reads:

ϕ = z2
j sin Λ110 − z2

k sin Λ011

+ zjzk(sin Λ001 + sin Λ010 + sin Λ100 − sin Λ111).
(B30)

d. Stimulated emission, non-rephasing term. In this
case [Fig. 2(d)], the electronic part of the ket evolves ac-
cording to the sequence k1 = k2 = k3 = j. The evolution
of the vibrational part is thus given by:

αket,2 = zj [e
−iωv(t1+t2) − 1] (B31)

αket,3 = zj [e
−iωv(t1+t2+t3) − 1], (B32)

while the expression of αket,1 coincides with that reported
in Eq. (B16). The phases accumulated at the end of the
three waiting times are:

aket,2 = −z2
j {sin[ωv(t1 + t2)]− sin(ωvt1)} (B33)

aket,3 = −z2
j {sin[ωv(t1 + t2 + t3)]− sin[ωv(t1 + t2)]},

(B34)

with aket,1 given by Eq. (B19).
The electronic state in the bra undergoes the following

evolution: b2 = k, b1 = b3 = 0. This results in the
following sequence of coherent states αbra,1 = 0 and

αbra,2 = zk(e−iωvt2 − 1) (B35)

αbra,3 = zk(e−iωvt2 − 1)e−iωvt3 . (B36)
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The phases accumulated within each waiting time by the
vibrational state are given by abra,1 = abra,3 = 0 and

abra,2 = −z2
k sin(ωvt2). (B37)

The expression of r, which determines the amplitude

of R
(v,3)
4,jk reads:

r = z2
j (cos Λ111 − 1) + z2

j (cos Λ010 − 1)

+ zjzk(cos Λ001 + cos Λ100 − cos Λ011 − cos Λ110).
(B38)

The phase of R
(v,3)
4,jk is given by the following combination

of sinusoidal terms:

ϕ = −z2
j sin Λ111 + z2

k sin Λ010

+ zjzk(sin Λ001 − sin Λ100 − sin Λ011 + sin Λ110).
(B39)

e. Excited state absorption, rephasing term. In this
case [Fig. 2(e)], the sequence of electronic state in the
ket is given by k1 = 0, k2 = k and k3 = l. Therefore,
the sequence of coherent states at the end of the three
waiting times is specified by αket,1 = 0 and

αket,3 = zk(e−iωvt2 − 1)e−iωvt3 + zl(e
−iωvt3 − 1),

(B40)

while the expression of αket,2 coincides with that given
in Eq. (B22). The phases accumulated within the three
waiting times are aket,1 = 0 and

aket,3 = −z2
l sin(ωvt3)− zkzl{sin[ωv(t2 + t3)]

− sin(ωvt3)− sin(ωvt2)}, (B41)

with aket,2 that reads as in Eq. (B24).
The sequence of electronic states in the bra is given by

b1 = b2 = b3 = j. This results in the following sequence
of coherent states:

αbra,3 = zj [e
−iωv(t1+t2+t3) − 1], (B42)

while αbra,1 and αbra,2 are already given in Eqs.
(B10,B26). The phases accumulated within each wait-
ing time by the vibrational state are given by:

abra,3 = −z2
j {sin[ωv(t1 + t2 + t3)]− sin[ωv(t1 + t2)]},

(B43)

with abra,1 and abra,2 as in Eqs. (B13,B28).
As a result, r = − 1

2 |αket − αbra|2, which determines

the modulus of R
(v)
3,jkl, takes the form:

r = −[z2
j + z2

l + z2
k − zl(zj + zk)]

+ zlkzlj cos Λ001 + zkzkl cos Λ010 + zjzk cos Λ100

+ zkzlj cos Λ011 − zjzkl cos Λ110 − zjzlj cos Λ111.
(B44)

The phase of the response function, resulting from the
difference between the phase factors accumulated by the
ket and the bra, and from the inner product 〈αbra|αket〉,
reads:

ϕ = −zlkzlj sin Λ001 − zkzkl sin Λ010 + zjzk sin Λ100

− zkzlj sin Λ011 − zjzkl sin Λ110 − zjzlj sin Λ111.
(B45)

f. Excited state absorption, non-rephasing term. In
this case [Fig. 2(f)], the sequence of electronic state in
the ket is given by k1 = k2 = j and k3 = l. Therefore,
the sequence of coherent states at the end of the three
waiting times is specified by the same αket,1 and αket,1
as the ones reported in Eqs. (B16,B31) and by

αket,3 = zj [e
−iωv(t1+t2) − 1]e−iωvt3 + zl(e

−iωvt3 − 1).
(B46)

The phases accumulated within the three waiting times
are given in Eqs. (B19,B33) and by

aket,3 = −z2
l sin(ωvt3)− zjzl{sin[ωv(t1 + t2 + t3)]

− sin(ωvt3)− sin[ωv(t1 + t2)]}. (B47)

The sequence of electronic states in the bra is given by
b1 = 0 and b2 = b3 = k. This results in the following
sequence of coherent states:

αbra,2 = zk(e−iωvt2 − 1) (B48)

αbra,3 = zj [e
−iωv(t2+t3) − 1], (B49)

while αbra,1 = 0. The phases accumulated within each
waiting time by the vibrational state are given by:

abra,2 = −z2
k sin(ωvt2) (B50)

abra,3 = −z2
k{sin[ωv(t2 + t3)]− sin(ωvt2)} (B51)

with abra,1 = 0.
The distance between the wave packets in the ket and

bra states is quantified by r, which is given by:

r = −[z2
j + z2

k + z2
l − zl(zj + zk)]

+ zlkzlj cos Λ001 + zkzlj cos Λ010 + zjzk cos Λ100

− zkzlk cos Λ011 + zjzjl cos Λ110 + zjzkl cos Λ111.
(B52)

Finally, the phase of the response function is given by
the following combination of sinusoidal functions:

ϕ = −zlkzlj sin Λ001 + zkzlj sin Λ010 − zjzk sin Λ100

− zkzlk sin Λ011 − zjzjl sin Λ110 − zjzkl sin Λ111.
(B53)

g. Double quantum coherence, first term. In this
case [Fig. 2(g)], the electronic part of the ket evolves
according to the sequence k1 = j, and k2 = k3 = l. The
evolution of the vibrational part is thus given by:

αket,2 = zj(e
−iωvt1 − 1)e−iωvt2 + zl(e

−iωvt2 − 1) (B54)

αket,3 = zj(e
−iωvt1 − 1)e−iωv(t2+t3) + zl[e

−iωv(t2+t3) − 1],
(B55)
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while αket,1 is given by Eq. (B16).
The phases accumulated at the end of the three waiting

times are:

aket,2 = −z2
l sin(ωvt2)− zjzl{sin[ωv(t1 + t2)]

− sin(ωvt2)− sin(ωvt1)} (B56)

aket,3 = −z2
l {sin[ωv(t2 + t3)]− sin(ωvt2)}

− zjzl{sin[ωv(t1 + t2 + t3)]− sin[ωv(t1 + t2)]

− sin[ωv(t2 + t3)] + sin(ωvt2)}, (B57)

with aket,1 expressed in Eq. (B19).
The electronic state in the bra undergoes the following

evolution: b1 = b2 = 0, b3 = k. This results in the
following sequence of coherent states αbra,1 = αbra,2 = 0
and

αbra,3 = zk(e−iωvt3 − 1). (B58)

The phases accumulated within each waiting time by the
vibrational state are given by abra,1 = abra,2 = 0 and

abra,3 = −z2
k sin(ωvt3). (B59)

The resulting amplitude of the response function, de-
pending on the distance between the two above wave
packets, is an exponential function of:

r = −[z2
j + z2

l + z2
k − zl(zj + zk)]

+ zkzkl cos Λ001 + zkzlj cos Λ010 − zjzlj cos Λ100

+ zljzlk cos Λ011 + zjzk cos Λ110 + zjzlk cos Λ111.
(B60)

The phase, resulting from the difference between the
phase factors accumulated by the ket and bra and from
the overlap 〈αbra|αket〉, is given by the expression:

ϕ = zkzkl sin Λ001 − zkzlj sin Λ010 + zjzlj sin Λ100

− zljzlk sin Λ011 − zjzk sin Λ110 − zjzlk sin Λ111.
(B61)

h. Double quantum coherence, second term. In this
case [Fig. 2(h)], the electronic part of the ket evolves
according to the sequence k1 = j, k2 = l, and k3 = k.
The evolution of the vibrational part is thus given by:

αket,2 = zj(e
−iωvt1 − 1)e−iωvt2 + zl(e

−iωvt2 − 1) (B62)

αket,3 = [zj(e
−iωvt1 − 1)e−iωvt2 + zl(e

−iωvt2 − 1)]e−iωvt3

+ zk(e−iωvt3 − 1), (B63)

with αket,1 given by Eq. (B16).
The phases accumulated at the end of the three waiting

times are:

aket,2 = −z2
l sin(ωvt2)− zjzl{sin[ωv(t1 + t2)]

− sin(ωvt2)− sin(ωvt1)} (B64)

aket,3 = −z2
k sin(ωvt3)− zjzk{sin[ωv(t1 + t2 + t3)]

− sin[ωv(t1 + t2)]− sin[ωv(t2 + t3)] + sin(ωvt2)}
− zlzk{sin[ωv(t2 + t3)]− sinωv(t2)− sin(ωvt3)},

(B65)

while aket,1 is given in Eq. (B19).
The electronic state in the bra doesn’t undergo any

evolution (b1 = b2 = b3 = 0). Therefore, the vibrational
state is also frozen (αbra,1 = αbra,2 = αbra,3 = 0), and
no phase is accumulated during the three waiting times
(abra,1 = abra,2 = abra,3 = 0).

The resulting amplitude of R
(v,3)
8,jkl is an exponential

function of:

r = −[z2
j + z2

l + z2
k − zl(zj + zk)]

+ zkzkl cos Λ001 + zlkzlj cos Λ010 + zjzjl cos Λ100

+ zkzlj cos Λ011 + zjzlk cos Λ110 + zjzk cos Λ111.
(B66)

Appendix C: Initialization in a generic
coherent state

If the initial vibrational state of corresponds to a
generic coherent state |α0〉, the above equations have to
be generalized by adding further terms. This can be done
simply by means of the following replacements:

αχ,j −→ α′χ,j = αχ,j + β ≡ αχ,j + α0 exp

(
j∑

k=1

tk

)
,

(C1)

where χ = ket, bra. The change in the vibrational state
resulting from the initialization in a generic coherent
state is thus independent on the pathway. In addition,
the phase factors undergo a change, which is instead
pathway dependent. In fact, one has that

a′ket,j = aket,j + zkj Im
[
α0(e−iωvtj − 1)e−iωv

∑j−1
k=1 tk

]

(C2)

a′bra,j = abra,j + zbj Im
[
α0(e−iωvtj − 1)e−iωv

∑j−1
k=1 tk

]
.

(C3)

The additional phase in the overlap 〈φbra|φket〉 result-
ing from the fact that α0 6= 0 can be derived by consid-
ering the two contributions [see Eq. (7), whose general-
ization to the case M > 3 is straightforward]. The first
one, resulting from the overlap 〈α′bra|α′ket〉, is given by

(∆ϕ)1 = Im(βα∗bra + β∗αket) = Im[β∗(αket − αbra)].
(C4)

The second contribution comes from the difference in the
phases accumulated with the application of the displace-
ment operators, aket − abra, and reads

(∆ϕ)2 = −
M∑

j=1

(zkj − zbj )Im[α∗0(eiωvtj − 1) eiωv
∑j−1
k=1 tk ],

(C5)

where |kj〉 and |bj〉 are the electronic ket and bra states
during the j-th waiting time. Replacing in the two
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above equations the expressions of aket, abra, αket, and
αbra given in the present Appendix, one can verify that
(∆ϕ)1 = (∆ϕ)2, and thus

(∆ϕ) = 2(∆ϕ)1 = 2Im[α∗0(αket − αbra)eiωv
∑M
k=1 tk ].

(C6)

As a final step, we proceed to the derivation of the
response function corresponding to the thermal state.
In view of the above equation, the initialization to a
coherent state that differs from the ground state re-
sults in a prefactor ei∆ϕ, where ∆ϕ ≡ 2 Im(α∗0Q) with
|Q|2 = |αket − αbra|2 = −2r. The thermal state can be
expressed in the coherent state representation as51

ρTh =

∫
d2α0

e−|α0|2/〈n〉

π〈n〉 |α0〉〈α0|, (C7)

where 〈n〉 = (e~ωv/kBT−1)−1 is the average phonon num-
ber. As a result, the finite temperature response function
is given by the zero-temperature one, times a factor

∫
d2α0

e−|α0|2/〈n〉

π〈n〉 eα
∗
0Q−α0Q

∗
= e−〈n〉|Q|

2

. (C8)

Being the zero-temperature response functions RT=0 =
e−r/2eiϕ, their finite-temperature counterparts are ob-
tained by multiplying the real part in the exponent by a
factor (1 + 2〈n〉) = coth(~ωv/2kBT ).

Appendix D: General expression
of the response function

As a starting point, the M -th order response function
can be written as a propagator of the vibrational state,
and in particular as:

R(v,M) = 〈0|(D0j1 V1Dj10) . . . (D0jM VM DjM0)|0〉,
(D1)

where Djk ≡ D(zjk), zjk ≡ zj − zk (therefore,
zj0 = −z0j = zj) and Vk are given by the operators
exp(i s ωv a

†a
∑
j tj). The sum in the exponent is per-

formed on variable numbers of consecutive waiting times,
each one corresponding to a time interval between con-
secutive interactions with the field on the left (s = −1)
or on the right (s = +1) side of the diagram. This fol-
lows directly from the possibility of rewriting the time
evolution operator e−itHv,k in terms of the undisplaced-

oscillator operator e−itωva
†a and of the displacement op-

erators D(±zk) (see Appendix A). The sums in the expo-
nents that define V1 (VM ) include all the waiting times
between the first and second interactions of the bra (ket)
with the field, those in V2 (VM−1) include the times be-
tween the second and third interactions; and so on.

Hereafter, we demonstrate the equivalence between the
expressions of the response function given in Eq. (D1)

and Eq. (72). The former one can in fact be rewritten as

R(v) = 〈0|(V0Dj0j1) (V1Dj1j2) . . . (VM DjM jM+1
)|0〉,

(D2)

where V0 = I and jM+1 = j0 = 0. This simply results
from the fact that Djk0D0jk+1

= Djkjk+1
.

The vibrational state that is obtained after applying
to the vacuum state |0〉 the first q operators on the right-
hand side,

|αq〉 = (VM−q+1DjM−q+1jM−q+2
) . . . (VM DjM jM+1

)|0〉,
(D3)

is a coherent state identified by the complex number

αq =

q∑

k=1

zjM+k−q,jM+k−q+1

k∏

l=1

ul+M−q. (D4)

This equation is obtained by noting that αq = (αq−1 +
zjM−q+1jM−q+1

) vM+1−q. The response function can be
expressed as the overlap between the vacuum state of
the bra and the coherent state defined by the complex
number

αM+1 =

M+1∑

k=1

zjk−1,jk

k∏

l=1

vl−1. (D5)

The modulus of such overlap is given by e−η/2, where

η ≡ |αM+1|2 =

M+1∑

k=1

z2
jk−1,jk

+ 2

M+1∑

k=1

k−1∑

k′=1

zjk−1,jk

× zjk′−1,jk′Re

(
k∏

l=k′+1

vl−1

)
. (D6)

The application of a displacement operator to a coherent
state also implies the appearence of a phase factor (see
Appendix A). Being −z Im(α) the phase change induced
by applying D(z) to |α〉, the overall phase factor accu-
mulated after the application of the M + 1 displacement
operators in Eq. (D2) is −Im(ξ), where

ξ ≡
M∑

q=1

αqzjM−q,jM−q+1

=

M+1∑

k=1

k−1∑

k′=1

zjk−1,jkzjk′−1,jk′

k∏

l=k′+1

vl−1. (D7)

Combining together the two equations above, one obtains
the expression of the exponent that defines the response
function:

ln[R(v,M)] = −1

2
η − Imξ = −1

2

M+1∑

k=1

z2
jk−1,jk

−
M+1∑

k=1

k−1∑

k′=1

zjk−1,jkzjk′−1,jk′

(
k∏

l=k′+1

vl−1

)
.

(D8)
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One can finally establish a one to one correspondence
between the M(M + 1)/2 products of consecutive func-

tions fkl ≡
∏l
j=k vj (with l > k) that appear in the

above equation, and the M(M + 1)/2 functions hmn ≡
1 − χmn = e−iωv

∑n
j=m tj or h∗mn (with n > m). We

start by introducing the notation that will be used in the
demonstration. The numbers Mb and Mk = M −Mb + 1
are the numbers of interactions of the field that affect
respectively the bra and the ket (arrows on the right
and on the left of the Feynman diagram). Therefore,

vl = eiωv(til+···+tfl ) for l ≤ Mb and vl = e−iωv(til+···+tfl )

for l > Mb (each function vl thus involves fl − il + 1
waiting times). Besides, if l < Mb, then vl and vl+1 cor-
respond to consecutive time intervals, with il+1 = fl + 1;
if l > Mb, then again vl and vl+1 correspond to consec-
utive time intervals, but with il+1 = fl − 1; finally, if
l = Mb, then fl = il+1 = M . (Let’s refer to the pathway
in Fig. 6(b) to clear the notation with an example. Here
there are Mb = 2 arrows on the right of the diagram and
Mk = 4 on the left. The values of the indices il and fl
are: i1 = 1 and f1 = 2, i2 = 3 and f2 = 5, i3 = f3 = 5,
i4 = f4 = 4, i5 = 3 and f5 = 2.)

We next show that each function fkl corresponds to
a function hmn. In fact, if l ≤ Mb, then fkl =
eiωv(tik+···+tfl ) (i.e. the exponent includes all the consec-
utive waiting times from tik to tfl), and thus coincides

with h∗ikfl . If instead k > Mb, then fkl = e−iωv(til+···+tfk )

(i.e. the exponent includes all the consecutive waiting
times from til to tfk), and thus coincides with hilfk . In
all the other cases, namely for k ≤ Mb and l > Mb, one
has that fkl = eiωv[(tik+···+tM )−(til+···+tM ): this coincides
with h∗ik il−1 if ik < il and with hil ik−1 if ik > il (whereas
one cannot have that ik = il, because this would imply an
arrow at the same time on the two sides of the diagram).

We conclude by showing that each function hmn cor-
responds to a function fkl. Each of the waiting times is
delimited between two consecutive interactions with the
field. If the interaction before tm and after tn are both

on the right (left) side of the diagram, then there must
exist a pair of functions vk and vl such that m = ik and
n = fl > m (m = il and n = fk > m), so that fkl co-
incides with hmn. If the arrow before tm is on the right
(left) and that after tn on the left (right), then there must
be a pair of functions vk and vl such that m = ik and
n = il − 1 > m (m = il and n = ik − 1 > m), so that fkl
coincides with hmn.

Examples of the correspondence between the functions
hmn and fkl are given in Section V for the two Feynman
diagrams reported in Fig. 6.

Appendix E: Coupling to a bath
of vibrational modes

In the multimode case, the overall response func-
tion is given by the product of the ones correspond-
ing to each mode [Eq. (76)]. If each mode ξ is
in a thermal state, the single-mode response function
is given by Eq. (80). Writing the overall and the

single-mode response functions as R
(v,M)
T = exp(fT ) and

R
(v,M,ξ)
T = exp(fξT ), one has that fT =

∑B
ξ=1 f

ξ
T =∑B

ξ=1[coth(~ωv/2kBT ) Re(fξ) + i Im(fξ)]. The func-

tions fξ represent the zero-temperature limits of the fξT ,
and are given by the sum of terms zjk,ξ zj′k′,ξχmn =
zjk,ξ zj′k′,ξ[1 − exp(iωξtmn)], being ωξ the frequency of
the vibrational mode ξ. Therefore, the exponent fT
of the response function is given by the sum (over the
modes and over the functions χmn, multiplied by the
corresponding displacements) of terms

zjk,ξ zj′k′,ξ{i sin(ωξtmn)

+ coth(~ωv/2kBT )[1− cos(ωξtmn)]}. (E1)

Passing from a discrete set of vibrational modes to a con-
tinuum, one can eventually write the exponent fT as a
sum of the functions given in Eq. (81).
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