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Abstract. In this paper we investigate the design of a coarse-grained
parallel implementation of Cga-LK, a hybrid heuristic for the Traveling
Salesman Problem (TSP). Cga-LK exploits a compact genetic algorithm
in order to generate high-quality tours which are then refined by
means of an efficient implementation of the Lin-Kernighan local search
heuristic. The results of several experiments conducted on a cluster
of workstations with different TSP instances show the efficacy of the
parallelism exploitation.
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1 Introduction

The Traveling Salesman Problem (TSP) is the problem of finding the shortest
closed tour through a given set of cities visiting each city exactly once. Thus,
given a set of cities C = {c1, c2, ..., ck}, for each pair (ci, cj), i 6= j, let d(ci, cj)
be the distance between city ci and cj . Solving the TSP entails finding a permu-
tation π′ of the cities (cπ′(1), ..., cπ′(k)), such that

k∑
i=1

d(cπ′(i), cπ′(i+1)) ≤
k∑

i=1

d(cπ(i), cπ(i+1)) ∀π 6= π′, (k + 1) ≡ 1 (1)

In the symmetric TSP d(ci, cj) = d(cj , ci),∀i, j, while in the asymmetric TSP
this condition is not satisfied. In this work we consider the symmetric TSP.

Since the TSP is probably the most well-known NP-hard combinatorial op-
timization problem, researchers have proposed many heuristics for searching the
space of all permutations π. Problem-independent heuristics such as simulated
annealing (SA) [1] and genetic algorithms (GA) [2,3] perform quite poorly with
this particular problem. They require high execution times for solutions whose
quality is not comparable with those achieved in much less time by their domain-
specific local search counterparts. Domain-specific heuristics such as 2-Opt [4],
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3-Opt [5], and Lin-Kernighan (LK) [6] are effective. In particular LK is consid-
ered to be the heuristic that leads to the best solutions. Efficient implementations
have been devised for LK which take just a few seconds to compute a high-quality
solution for problems with hundreds of cities [7,8].

Several published results demonstrate that combining a problem-independent
heuristic with a local search method is a viable and effective approach for finding
high-quality solutions of large TSPs. The problem-independent part of the hy-
brid algorithm drives the exploration of the search space focusing on the global
optimization task, while the local search algorithm allows to search in depth the
subregions of the solution space.

In [9] the Chained local optimization algorithm is proposed. It exploits a
special type of 4-opt moves under the control of a SA mechanism to escape from
the local optima found with LK. In [10] genetic operators to search the space of
the local optima determined with LK are proposed.

Martina Georges-Schleuter experimented with the exploitation of simple k-
Opt moves within her Asparagos96 parallel genetic algorithm [11]. She concluded
that, for large problem instances, the strategy of producing many fast solutions
might be almost as effective as using powerful local search methods with fewer
solutions.

In this paper we propose a coarse-grained parallel implementation of Cga-
LK, a previously proposed hybrid heuristic for the TSP which exploits a compact
genetic algorithm (Cga) in order to generate high-quality tours which are then
refined by means of the Lin-Kernighan local search heuristic. The parallel im-
plementation allowed us to enhance the encouraging results obtained with the
sequential version of Cga-LK [12,13].

The rest of the paper is organized as follows: Section 2 gives a brief introduc-
tion to the Cga. Section 3 describes the parallel implementation of Cga-LK, and
discusses the experimental results. Finally, Section 4 outlines some conclusions.

2 The Compact Genetic Algorithm

The Cga does not manage a population of solutions but only mimics its exis-
tence [14]. The Cga represents the population by means of a vector of values
pi ∈ [0, 1],∀i = 1, . . . , l, where l is the number of alleles needed to represent
the solutions. Each value pi indicates the proportion of individuals in the sim-
ulated population which has a 0 or 1 in the ith locus of their representation.
By treating these values as probabilities, new individuals can be generated and,
based on their fitness, the probability vector can be updated in order to favor
the generation of better individuals.

The values for probabilities pi are initially set to 0.5 to represent a randomly
generated population in which the value for each allele has equal probability.
At each iteration the Cga generates two individuals on the basis of the current
probability vector and compares their fitness. Let W be the representation of
the individual with a better fitness and L the individual whose fitness is worse.
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The two representations are used to update the probability vector at step k + 1
in the following way:

pk+1
i =




pk
i + 1/n if wi = 1 ∧ li = 0

pk
i − 1/n if wi = 0 ∧ li = 1

pk
i if wi = li

(2)

where n is the dimension of the population simulated, and wi (li) is the value of
the ith allele of W (L). The Cga ends when the values of the probability vector
are all equal to 0 or 1. At this point vector p represents the solution obtained.

In order to represent a population of n individuals, the Cga updates the
probability vector by a constant value equal to 1/n. Only log2 n bits are thus
needed to store the finite set of values for each pi. The Cga therefore requires l ·
log2 n bits with respect to the n·l bits needed by a classic GA. Larger populations
can be thus exploited without significantly increasing memory requirements, but
only slowing Cga convergence. This peculiarity makes the use of Cga attractive to
address problems for which the huge memory requirements of GAs is a constraint.

On order-one problems the Cga and the simple GA with uniform crossover
are approximately equivalent in terms of solution quality and in the number of
function evaluations needed. To solve higher than order-one problems GAs with
both higher selection rates and larger population sizes have to be used [15]. The
Cga selection rate can be increased by adopting the following mechanism: (I)
generate at each iteration s individuals from the probability vector; (II) choose
among the s individuals the one with best fitness; (III) compare the individual
with best fitness with the other s − 1 individuals and update the probability
vector according to (2). Such an increase on the selection rate helps the Cga to
converge to better solutions since it increases the survival probability of higher-
order building blocks.

3 A Parallel Hybrid Heuristic for the TSP

Cga-LK combines a Cga with Chained LK 1, an efficient implementation of LK
proposed by Applegate Bixby, Chvatal, and Cook [8]. In Cga-LK the Cga is
used to explore the more promising part of the TSP solution space in order to
generate “good” initial solutions which are refined with Chained LK. The refined
solutions are also exploited to improve the quality of the simulated population as
the execution progresses. A detailed description of the sequential implementation
of Cga-LK can be found in [12]. Here we will concentrate the attention on the
parallelism exploitation.

The coarse-grained parallelization model [16,17] was used to design the par-
allel version of Cga-LK. According to this model the whole population is divided
into a few demes, which evolve in parallel. Each deme is assigned to a different
1 This routine is available in the CONCORDE library at

url http://www.keck.caam.rice.edu/concorde.



196 R. Baraglia, J.I. Hidalgo, and R. Perego

processor and the evolution process takes place only among individuals belong-
ing to the same deme. This feature means that a greater genetic diversity can
be maintained with respect to the exploitation of a panmitic population, thus
improving the solution space exploration. Since the size of the demes is smaller
than the population used by the correspondent serial GA, in general, a parallel
GA converges faster. Moreover, it is also true that the quality of the solution
might be poorer than that of the sequential case. Therefore, in order to improve
the deme genotypes, a migration operator that periodically exchanges the best
solutions among different demes is used. Depending on the migration opera-
tor chosen we can distinguish between the island model and the stepping stone
model. In the island model migration occurs among every deme, while in step-
ping stone model the migration occurs only between neighboring demes. Studies
have shown that there are two critical factors [18]: the number of solutions mi-
grated each time and the interval time between two consecutive migrations. A
large number of migrants leads to the behavior of the island model similar to
the behavior of a panmitic model. A few migrants prevent the GA from mixing
the genotypes, and thus reduce the possibility to bypass the local optima inside
the islands. Implementations of coarse grained parallel GAs can be found in [18,
19,20,21,22,23].

To implement Cga-LK the island model was adopted. Moreover, Cga-LK
exploits the MPI message-passing library [24], and the SPMD programming
model [25]. According to this programming model all the processing nodes run
the same code which simulates a different population. We can consider each sim-
ulated population elaborated in parallel an island of the same larger population.
To improve the sub-population genotypes, a migration operator that periodically
exchanges the best solution among different islands was adopted.

To extend the Cga to the TSP, we considered the frequencies of the edges
occurring in the simulated population. A k×k triangular matrix of probabilities
P was used to store these frequencies. Each element pi,j , i > j, of P represents the
proportion of individuals whose tour contains edge (ci, cj). If n is the population
dimension, our Cga thus requires (k2/2) · log2 n bits to represent the population,
compared with the k · n log2 k bits required by a classical GA. Figure 1 shows
the pseudo-code of our parallel Cga-LK. Its main functions are discussed in the
following.

After setting the MPI environment, the matrix P is initialized. To this end,
first we randomly generate a tour to which the Chained LK routine is applied
to carry out a local optimum. Then the probability values associated to all the
edges belonging to the local optimum are increased by 1/n. This procedure is
iteratively applied n times to represent in P the whole simulated population.

To differentiate its behavior each parallel process uses a different seed (loc-
al seed) for the pseudo-random generation. It is obtained by adding to the same
seed (global seed) the process identifier.

At each generation k of Cga-LK, a single individual L (current tour) is
generated from the probability matrix. To this end a greedy algorithm is used. A
starting city ca is randomly selected and inserted in the tour V. Then, another
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Program Par-Cga-LK
begin

/* Setting of the MPI environment, me is the process identifier */
MPI_Init(...);
MPI_Comm_rank(MPI_COMM_WORLD,&me);
/* Initialization of the probability matrix P */
local_seed := global_seed + me;
Initialize(P, local_seed);
best_tour_length = MAX_INT;
generations := 0;
repeat

generations := generations + 1;
current_tour := Generate(P);
/* Apply Chained LK algorithm */
optimized_tour := Chained_LK(current_tour);
optimized_tour_length := Tour_length(optimized_tour);
Update(P,optimized_tour,current_tour);

/* Store the best tour found so far */
if (optimized_tour_length < best_tour_length) then

count := 0;
best_tour_length := optimized_tour_length;
best_tour := optimized_tour;

end if
count := count + 1;

if (mod(generations, F_mig) = 0) then
/* Perform migration */
MPI_Allreduce(best_tour,best_global_tour,.......)
if (best_global_tour = termination_signal) then

Output_Results();
exit;

else
Update(P,best_global_tour, best_tour);

end if
end if

until (Local_Termination());

MPI_Allreduce(termination_signal,.....);
Output_Results();

end

Fig. 1. Pseudo-code of the parallel Cga-LK.
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city cb 6∈ V is randomly chosen. City cb is inserted in V as successor of ca with
probability pa,b (i.e. the probability associated to edge (ca, cb)). Otherwise cb is
discarded and the process is repeated by choosing another city not belonging
to V. Clearly, this process may fail to find the successor of some city ca. This
takes place when all the cities not already inserted in the current tour have been
analyzed, but the probabilistic selection criterion failed to choose one of them. In
this case the city cb successor of ca is selected according to the following formula:

b = argmax{pa,j : cj ∈ {c1, c2, . . . , ck} \ V } (3)

When (3) is satisfied by several cities, i.e. edges (ca, cj) have the same probability
for different cities cj 6∈ V, the city which minimizes the distance d(ca, cj) is
selected. The generation process ends when all the cities have been inserted in
V, and a feasible tour has been thus generated.

The current tour is then used as the starting solution for the Chained LK
routine which produces an individual W (optimized tour). Then the probabil-
ity matrix is updated comparing current tour with optimized tour as follows:

pk+1
i,j =




pk
i,j + 1

n if (ci, cj) ∨ (cj , ci) ∈ W and (ci, cj) ∨ (cj , ci) 6∈ L

pk
i,j − 1

n if (ci, cj) ∨ (cj , ci) ∈ L and (ci, cj) ∨ (cj , ci) 6∈ W

pk
i,j otherwise

(4)

Every F mig generations a migration of individuals among different islands
takes place to improve sub-population genotypes. The function MPI Allreduce
provides an efficient way to perform migration. It implements an all-to-all re-
duction operation where the tour achieving minimal length (best global tour)
is broadcast to all the processes. The global optimum found so far is then used
to update the probability matrix local to all the processes. The migration mech-
anism is used also to manage distributed termination. To this purpose, when a
process reaches the termination condition, it broadcasts a termination signal
which is intercepted by the other processes that accordingly terminate their exe-
cution. Local termination is decided when a threshold is reached on the number
of generations performed without an improvement of the best solution achieved,
or on the elapsed execution time.

3.1 Experimental Results

The parallel Cga-LK algorithm was tested on some TSP instances defined in
TSPLIB [26]. We used instances: att532, gr666, rat783, pr1002 which have
optimal solutions equal to 27686, 294358, 8806, 259045, respectively. The exper-
iments were conducted on a cluster of three Linux Pentium II 200 MHz PCs
with 128 Mbytes of memory, and each test was repeated ten times to obtain
an average behavior. Each Cga-LK process simulates a population of 128 in-
dividuals. In all the tests performed the parallel Cga-LK algorithm carried out
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solutions with optimal length, independently from the parallelism degree and the
migration frequency exploited. To make the algorithm performance evaluation
independent from the computer architecture used, the comparison of the results
obtained on each test was based on the number of generations performed. Fig-
ure 2 shows the average number of generations required to get the optimal tour
as a function of the number of parallel processes used, for different values of the
migration parameter. As it can be seen from the plots, the average number of
generations required by the parallel algorithm to get the optimal tour is always
lower than in the sequential case. Moreover, such number, in general decreases
when the number of processes increases. With regard to the migration parame-
ter, on smaller TSP instances a low value seems to work better than a large one,
while on larger instances it affects slightly the results achieved. For the same
tests, Figure 3 shows the minimal number of generations needed to achieve opti-
mal solutions. Also in this case the benefits of parallelism exploitation are clear.
The parallel algorithm always needs a lower number of iterations to obtain the
optimal solution than those needed by the sequential version of the algorithm.
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Fig. 2. Average number of generations required to carry out the optimal tour of various
TSP instances as a function of the migration parameter and the number of parallel
processes used.
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Fig. 3. Minimum number of generations required to carry out the optimal tour of
various TSP instances as a function of the migration parameter and the number of
parallel processes used.

4 Conclusions

In this paper we proposed a coarse-grained parallel hybrid heuristic to solve
TSP. It combines a compact genetic algorithm to generate high-quality tours
which are then refined by means of the Lin-Kernighan local search heuristic.
The refined solutions are also exploited to improve the quality of the simulated
population as the execution progresses. The parallel algorithm was implemented
according to the SPMD programming paradigm by using the MPI message-
passing library. Our parallel algorithm was evaluated on medium TSP instances.
The results achieved were satisfactory if compared to those obtained by the
sequential version of the algorithm on the same instances. The average number of
generations required by the parallel algorithm to get the optimal tour was always
lower than in the sequential case. As future work we plan to investigate either
the behavior of the parallel algorithm on large TSP instances and extensions of
the hybrid approach to solve other optimization problems.

Acknowledgments. This work was supported by the Italian National Research
Council and the Spanish Government, Grant TYC 1999-0474.



A Parallel Hybrid Heuristic for the TSP 201

References

1. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

2. J. Grefenstette, R. Gopal, B. Rosimaita, and D. van Gucht. Genetic algorithms
for the traveling salesman problem. In Proceedings of the International Conference
on Genetics Algorithms and their Applications, pages 160–168, 1985.

3. H. C. Braun. On solving traveling salesman problems by genetic algorithm. In
H. P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature,
volume 496 of Lecture Notes in Computer Science, pages 129–133, Berlin, 1991.
Springer-Verlag.

4. G. A. Croes. A method for solving traveling salesman problems. Operations Re-
search, 6:791–812, 1958.

5. S. Lin. Computer solution of the traveling salesman problem. Bell System Technical
Journal, 44:2245–2269, 1965.

6. S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21:498–516, 1973.

7. D. S. Johnson and L. A. McGeoch. Local Search in Combinatorial Optimization,
chapter The Traveling Salesman Problem: A Case Study in Local Optimization.
John Wiley and Sons, New York, 1996.
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