
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

DevOpRET: Continuous Reliability Testing in DevOps
Antonia Bertolino1 | GuglielmoDeAngelis2 | Antonio Guerriero3 | Breno
Miranda1,4 | Roberto Pietrantuono*3 | Stefano Russo3

1ISTI, CNR, Pisa, Italy
2IASI, CNR, Rome, Italy
3DIETI, Università degli Studi di Napoli
Federico II, Napoli, Italy
4 Federal University of Pernambuco, Recife,
Brazil
Correspondence
*Roberto Pietrantuono, Email:
roberto.pietrantuono@unina.it
Present Address
DIETI, Università degli Studi di Napoli Federico
II, Via Claudio 21, 80125Napoli, Italy.

Abstract
Toenter theproduction stage, inDevOpspractices candidate software releases have topass qual-
ity gates, where they are assessed tomeet established target values for key indicators of interest.
We believe software reliability should be an important such indicator, as it greatly contributes to
the end-user satisfaction.We proposeDevOpRET, an approach for reliability testing as part of the
acceptance testing stage inDevOps.DevOpRET relies on operational-profile based testing, a com-
mon reliability assessment technique. DevOpRET leverages usage and failure data monitored in
operations to continuously refine its estimate.We evaluate accuracy and efficiency ofDevOpRET
through controlled experiments with a real-world open source platform and with a microser-
vice architectures benchmark. The results show that DevOpRET provides accurate and efficient
estimates of the true reliability over subsequent DevOps cycles.
KEYWORDS:
Acceptance Test; DevOps; Operational Profile; Quality Gate; Software Reliability Testing

1 INTRODUCTION
A relatively recent trend in software production is that of blurring the boundaries between development in laboratory and operations in produc-
tion 1. This is the philosophy behind practices namedDevOps 2, which in its own name signifies the seamless connection between development and
operations. Despite its spread, there is no commonly agreed definition for DevOps 3,4. Some authors describe it as a cultural shift that IT organiza-
tions should undergo to remove technical or managerial barriers between the development and operations teams, and let them collaborate under
shared responsibilities 5. Other authors focus on necessary capabilities and on cultural and technological enablers for DevOps 4. Bass et al. define
DevOps as “a set of practices intended to reduce the time between committing a change to a system and the change being placed into normal production,
while ensuring high quality” 2. As quality controls at the boundary between development and operations are central in such practices, we describe
DevOps as the intersection among the scopes of softwareDevelopment (Dev), Operation (Ops) andQuality Assurance (QA), as depicted in Figure 1.
QA can leverage feedback fromoperations to drive quality controls before releasing newproduct versions, in a virtuousDevOps cycling. Indeed,

continuous testing andmonitoring are two key DevOps practices. Continuous testing foresees short and automated testing rounds that can provide
quick quality feedback to continuous integration (CI); an acceptance test stage can check whether the current software candidate can be released
–Humble and Farley state that “without running acceptance tests in a production-like environment, we know nothing about whether the application meets
the customer’s specification” 6 (p. 124).Monitoring consists in collecting data from the system in production, which can be used for measurement and
optimization in the next testing stage. Monitoring and measurement are crucial in DevOps success 7, as DevOps adoption is ultimately motivated
and driven by business objectives, which are quantified intomeasurable Key Performance Indicators (KPIs).
In a release cycle, acceptance testing must include the assessment of KPIs of interest and evaluate if the candidate release meets defined target

values. These KPI targets constitute a quality gate before release. Typically, KPIs considered in DevOps include performance 8,9 and security 10,11.
We believe that software reliability too should be considered an important KPI in DevOps, as it is related to customer satisfaction and to the
organization success in service delivery; it should be part of acceptance testing of a new product release at the quality gate in a DevOps cycle.

This is the postprint (accepted after peer-review) version of:
Bertolino, A, De Angelis, G, Guerriero, A, Miranda, B, Pietrantuono, R, Russo, S.
DevOpRET: Continuous reliability testing in DevOps. J Softw Evol Proc. 2020;e2298.
https://doi.org/10.1002/smr.2298

2 A. Bertolino ET AL

FIGURE 1DevOps scope

Software Reliability Engineering (SRE) is a discipline pioneered thirty years ago byMusa, who defined it as the “technology for the 1990s” 12. With
Everett, he introduced SRE as the “applied science of predicting, measuring and managing the reliability of software-based systems to maximize customer
satisfaction. Surprisingly, in the scientific literature on DevOps, the assessment of reliability of a new version before release seems to have received
insufficient attention (as discussed in Section 2), yet in the grey literature reliability is advocated as a key user-related quality factor.
The DevOps Research and Assessment (DORA) company publishes since 2014 a periodic survey over more than 30 thousands DevOps profes-

sionals, which provides a comprehensive and up-to-date analysis of observed trends, to be used as a reference by companies. KPIs early listed by
DORA included: Deployment frequency, Lead time for changes, Time to restore service, and Change failure rate. In the 2018 edition 13, for the first
time the report has also included a fifth KPI, namely Availability, meant as “ensuring timely and reliable access to and use of information”.
In about the same years Google introduced “Site Reliability Engineering” 14 (a term earlier coined by Google Vice President of Engineering B.

Sloss, notably with the same acronym as Musa’s discipline). Google SRE is conceived as an implementation of the broader DevOps principles, and
practiced as a concrete set of tasks pertaining to the operations team.We find an interesting overlap between the two SREs: both state the need of
establishing customer-related metrics for reliability assessment, and both identify testing as the main assessment technique. In Google’s SRE “one
key responsibility of site reliability engineers is to quantify confidence in the systems they maintain”; this task is performed “by adapting classical software
testing techniques to systems at scale. Confidence can be measured both by past reliability and future reliability. The former is captured by analyzing data
provided by monitoring historic system behavior, while the latter is quantified by making predictions from data about past system behavior” 14 (Ch. 17).
A central tool in software reliability testing is the operational profile, which is a quantitative characterization of how customerswill use the system

in production 12. In fact, to satisfy user requirements it is important to be able to profile actual usage, so that the system can then be tested by
reproducing and predicting users’ experience. It is well known that deriving an operational profile before product release is hard, and the overhead
costs often discourage SRE adoption in industry 15. However, in DevOps cycles monitoring software behavior in operation is a common practice,
and this provides the opportunity to learn from history of recent executions to improve predictions about the fulfillment of quality targets by next release.
This is what we allow DevOps testers to do by DevOpRET, a black-box testing approach supporting continuous software reliability testing.

DevOpRET is inspired (as suggestedby its name) by the traditional SoftwareReliability EngineeredTesting (SRET) best practice 16, andabasic version
of it was early presented in prior work 17. The original contributions of this paper include:
• a refined version of DevOpRET: the basic version 17 uses operational testing (OT), building on a statistical sampling algorithm to generate
test cases leveraging usage data from operations. The novel version, denoted as WOT, builds on a sampling algorithm based on a weighted
version of the operational profile, leveraging also failure data from the Ops phase. This entails the usage of a different estimation technique
to preserve unbiasedness and improve the confidence in the estimation.

• an extensive evaluation of DevOpRET over two case studies, namely a real-world social platform (Discourse), and a benchmark for microser-
vice architectures (TrainTicket). The results with the first case study show the ability of the approach to provide accurate estimates of
reliability as more operational data are observed. The WOT and OT variants exhibit statistically equivalent accuracy, but WOT shows a
greater confidence and a greater ability in exposing failures thanOT (at the cost of collecting also failure data in theOps phase). The second
case study shows the adaptivity of the reliability estimate provided by DevOpRET (for OT andWOT, as well) when the true reliability of the
subject under test changes.While confirming that both variants get close to the true reliability over cycles as in the first case study, we could
observe that OT performs better in the short term in presence of sudden changes of failure probability.

The rest of the paper is structured as follows. After a comprehensive overview of related work in the next section, Section 3 introduces the pro-
posedDevOpRET approach. Section 4 presents the empirical evaluation with the two case studies, including the research questions, the evaluation
metrics, and the experimental artifacts andprocedure. Section5 reports anddiscusses the results and the threats to validity. Finally, Section6draws
conclusions and outlines future work.

A. Bertolino ET AL 3

2 RELATEDWORK
The factors driving testing in DevOps are identified by several authors, who analyzed the state-of-the-art in continuous software engineer-
ing 18,19,20,21,22. Our research contributes to some of the key activities identified by Fitzgerald and Stol 23, namely Continuous Testing and Continuous
Improvement. By using the actual operational profile as ameans for data-driven planning of the future reliability testing activities,DevOpRET guides
theQA team to solve issues that are closer to the user-significant scenarios, fostering their continuous engagement.
We believe that for a reliability testing technique to be used for quality assurance in a DevOps context, the following requirements have to

be met: i) the technique has to consider usage-related metrics for acceptance testing; ii) it has to leverage data about actual failures observed in
operation (possibly, automatically gathered); iii) it has to take into account constraints on testing time or number of test cases, for it to be used
between (possibly short) release cycles. Clearly,QA teamsmightwell leverage existing techniques, even though not explicitly conceived forDevOps
processes. Although a systematic literature review within software engineering research, strictly following guidelines like those by Kitchenham et
al. 24, is out of the scope of this paper, nevertheless we performed a comprehensive systematic search of related work, which shows that testing in
the context of DevOps still appears to be under-considered in the scientific literature, thus confirming previous similar studies 21.
The search has been performed through an automated query over the main popular digital libraries (ACMDigital Library, IEEE eXplore, Scopus,

Springer Link, Wiley Online Library). The search string, shown in Listing 1, relates to the three different domains covered in our work: reliability
testing, continuous development practices and quality assurance. The query has been applied as a full text searchwithin the body of themanuscripts
in the above five libraries.

Listing 1: Literature search string over themain digital libraries
(" reliability testing" OR "reliability estimation" OR "software reliability" OR "acceptance

testing" OR "software testing" OR "operational testing ")
AND (" DevOps" OR "dev -ops" OR "continuous integration" OR "CI")
AND (" acceptance quality" OR "acceptance quality gate" OR "product quality" OR "software

quality" OR "quality gate" OR "operational profile ")

The items returned by the query have been processed to remove duplicates and surveys. The remaining hundreds papers have been manually
filtered to remove items out of scope, first by inspecting title and abstract, thenwhere appropriate by examining their whole content. Paperswhich,
basedon theabove three requirements, donotdealwith techniques that canbeused for reliability assessment atDevOpsquality gateswerefiltered
out. Among the remaining papers, we discuss here those proposing testing techniques, which we envisage aremore related to our work.
Marijan 25 proposes a multi-criteria test prioritization approach for regression testing under time constraints.While not specifically thought for

DevOps, the approach is conceived for continuous integration environments where teams work in short development cycles. DevOpRET shares
several principles with it. Both are black-box approaches considering failure occurrence and failure impact, defined by Marijan as “a user-driven
measure of the severity of defects of a test case”. However, Marijan’s approach is for regression testing: it assumes test suites exist, and the problem
is their prioritization to maximize the number of test cases detecting severe faults to be executed in a limited test time; failure data concern the
frequency of failures of regression test cases in past cycles; and the failure impact “is calculated based on historical user feedback reports collected from
previous versions”. InDevOpRET, test cases are generated based on failure occurrences actually observed in previousOps phases; failure severity and
failure exposing ability are addressed by ourWeighted Operational Testing algorithm, and severity may be automatically inferred from responses
to user demands; finally, time constraints are taken into account through the efficiency of the input space sampling algorithm.
An approach similar to Marijan’s one 25 is proposed by Ali et al. 26, who present test case prioritization and selection techniques for continuous

integration strategies. Like Marijan, they aim at increasing the fault detection rate by relying on the most frequently changed and failed test cases.
Najaf et al. 27 present an experience report of using several similar test selection and prioritization approaches based on test execution history; this
is performed through simulations on industrial data, where test failure results need to bemanually labeled by the testers by the end of each day. In
these works, test cases are engineered by developers independently of the actual demands of users and of failures in operation. DevOpRET takes
into account usage and failures actually experienced by users in the production phase.
Révész and Pataki 28 propose a technique based on field data to drive decisions about the next release of a system. Field data sampled bymeans

of anA/B testing campaign, duringwhichusers are requested to select between twoversions of the considered system.Basedon theusers’ feedback,
developers decidewhich version tomaintain. Themajor differencewith our approach is that decisions about the testing campaign concern usability
orQuality-of-Experienceaspects,while inDevOpRETacceptance testing aimsat exposing failures and it relies on failure-relatedoperationalmetrics.
Mijumbi et al. 29proposed amethod for predicting software defectswithin the context of projects running continuous integration, and continuous

delivery practices. Even though their objective is similar to the goal of our work, the two proposals differ mainly in thatMijumbi et al. do not use the
actual operational profile in order to plan the testing activities for the next release; their model for early defect prediction is based on user stories
together with defect data from a previous release. In our opinion, the main advantage ofDevOpRET is that the QA team involved in the acceptance
testing can tailor the decision based on actual usage of the system (i.e., by considering both correct replies and failures), and not only on the basis of
a combination of revealed defects and user’s intentions (i.e., stories).

4 A. Bertolino ET AL

Janes and Russo 30 propose the PPTAM+ tool for automating: i) the collection of field data about application performance degradations, ii) the
building of the operational profile, and iii) regression performance tests on each build in a DevOps process. The tool is conceived for the problem
of migrating amonolithic software to amicroservice architecture, targeting performance testing. In this sense, it is complementary to prior related
ownwork onmicroservice architectures reliability testing 31,32; we are currently investigating the integration of the two approaches.

3 DevOpRET

3.1 Overview
Weaim at an approach that guides the acceptance testing conducted by theQA teambefore each release cycle in aDevOps context. In the previous
section we anticipated three main requirements we identified for such a testing technique, i.e.: it should leverage both usage-related metrics and
data about actual failures in operation, and should be efficient enough for being used between the short DevOps release cycles. Our review of liter-
ature revealed that no such an approach exists, and in this sectionwe introduceDevOpRET, the approachwe propose to address such requirements.
Ultimately, we aim at allowing the QA team to obtain an accurate and efficient estimate of reliability, and accordingly we present an assessment of
DevOpRET in the next section.
DevOpRET relies on the following assumptions:
• the input space S of user demands can be decomposed into n partitions S1, . . . , Sn;
• a continuousmonitoring facility is available to trace the user demands in operation and to record responses;
• a test oracle is available and it is possible to determine whether the response to a user demand succeeds or fails.

Partition Si is characterized by the probability pi of being selected by a user demand – the set of pi being the operational profile P - and by the
(unknown) probability fi of that demand with inputs selected from Si to fail – we call the set of fi the failure profile F. Monitoring data are used to
create a characterization of usage and failures which, ultimately, reduces the pre-release uncertainty about the exact knowledge of behavior in
operation. Let us denote with P̂ = (p̂1, ..., p̂n) the estimated operational profile, and with F̂ = (̂f1, ..., f̂n) the estimated failure profile.
Figure 2 depicts the scenario we envisage for the adoption ofDevOpRETwithin the DevOps release cycles. It foresees the following steps:
1. In a DevOps cycle, the version ready to be released is black-box tested for reliability assessment by the QA team. Since the true operational
and failure profiles are unknown, testing is basedon their estimates. Two testing algorithms are presented.Operational testing (OT) generates
a number of test cases for partition S according to the expected usage in operation, given by P̂.Weighted operational testing (WOT) generates
test cases for S according to the expected usage profile P̂ and to the expected failure profile F̂. A maximum number of tests to be executed
(testing budget) is assumed to be defined by theQA team, as a ceiling to cost or duration of step 1.

2. Test results are used to estimate the probability that the softwarewill fail on a user demandby a frequentist approach – i.e., by the probability
of failure on demand (PFD), which is ametric for the operational reliability. Reliability is computed asR = 1 -PFD. If the value ofR satisfies the
quality gate (e.g., a minimum threshold), the software version is released, otherwise it is sent back to the development team.

3. Once released, the end users’ demands aremonitored in theOps phase: data about usage and failures (request/responses) are collected.
4. Based on the gathered information, the estimated profiles P̂ and F̂ are updated.

Opera&on)

Monitor)Requests/Responses)

Probabili(es++
update+

(Weighted)++
Opera(onal+Tes(ng+

Reliability+
es(mate+

Gate+not++
passed+ Dev$

phase$

Development)

Gate+passed:++
OP$phase$

Quality)Gate)

DevOpRET)
DevOps''
cycle'

1)

2)

3)

)4)

New+
release+

Usage+and+
failure+data+

FIGURE 2Continuous reliability testing in DevOps cycles withDevOpRET

A. Bertolino ET AL 5
On the next release, reliability testing will be carried out based on the updated profile. The estimate of R is likely to be different from the previ-
ous cycle if the estimated operational profile in the last cycle differs from the previous one, and/or if new bugs are triggered, because of different
partitions being stimulated in a different way. By updating the profile at each cycle based on observations, the estimated reliability is expected to
progressively converge towards the actual operational reliability.
Note how this refinement of the operational profile based on the feedback from the actual use is particularly facilitated within DevOps practice,

and is the central concept ofDevOpRET. In fact, the short circuit between users demands and acceptance testing makes it possible to automatically
update the operational test generation at each new cycle, so as to continuously improve the reliability estimation. In contrast, in a traditional life
cycle, a costly andmore static estimation of the operational profile would be used. The next subsections provide details about theDevOpRET steps.

3.2 Step 1: Test generation and execution
The first step ofDevOpRET consists in generating and executing test cases. Test generation for reliability assessment is based on operational testing,
which is awell-knownapproachusing probabilistic sampling. Theprocedure is to first select partitions, and then generate a test case fromwithin the
selected partition. The input partitioning can be performed in many ways, e.g., based on the specification or on source code. In specification-based
partitioning (themost common one), the inputs to each functionality are grouped in sets of equivalence classes. Ideally, each class is meant to contain
inputs with the same failing behavior (i.e., either all the inputs fail or none of them); in practice, an approximation of this ideal case is obtained. We
adopt specification-based partitioning based on the type of the input data.
The profiles P̂ and F̂ are used to derive the testing profileΠ = (π1, ..., πn), namely the probability distribution over the set of partitions S, driving

the test generation process. For test generation we consider two sampling algorithms:
• Operational testing (OT): the selection of partitions is done according to the estimated profile P̂ (i.e., higher p̂i values havemore chances to be
selected), namely according to the expected usage in operation. Formally, the testing profileΠ is such that πi = p̂i, meaning the probability πi

of selecting partition Si for a test is the same as the expected probability of Si being selected in a real demand in operation.
• Weighted operational testing (WOT): the selection of partitions is done proportionally to the product of p̂i and f̂i values, namely preferring the
partitions with a higher change of being selected and of failing in operation. Hence, the testing profileΠ in this case is such that πi = p̂i · f̂i.

In both cases, the test generation within the selected partition is done by uniform random testing, i.e., by taking an input from each class of the
partition according to a uniform distribution (each input having the same chance of being selected).

3.3 Step 2: Reliability estimation
Based on the testing result, reliability is estimated. As anticipated in Section 3.1, the metric we consider for the true reliability R is the reliability on a
single demand, given by:

R = 1− PFD, (1)
where PFD is the probability of failure on demand. This is the reliability of a run, a discrete reliability metric typical of testing research 33,34. Let us
denote with ˆPFD the PFD estimated byDevOpRET. TheOT andWOT algorithms entail two different estimators.
OT calls for the conventional Nelsonmodel 35, in which:

R̂ = 1− ˆPFD = 1− NF
N

(2)
namely the PFD is estimated as the proportion of the number of failing demandsNF over theN executed demands. This is an unbiased estimate as
long as the algorithm used to select test cases mimics the way the user selects inputs, i.e., the real operational usage. Its disadvantages are that: i)
it does not target inputs with low probability of occurrence (which often lead to failures), and ii) it may require many test cases to yield confident
estimates (i.e., it may have low efficiency).
WOT aims at spotting those failure regions that contribute more to (un)reliability, namely those with a higher value for the product πi = p̂i · f̂i.

This estimator accounts for the disproportional selection of partitions (with respect to the operational profile), computing the ˆPFD as:
R̂ = 1− ˆPFD = 1− 1

T

∑
tc

p̂i·zi,tc

πi
(3)

where:
-T is the number of test cases (testing budget);
- zi,tc is a binary value indicating if test case tc taken from partition Si failed (zi,tc=1) or not (zi,tc=0),
- πi = p̂i · f̂i (the πi values are normalized to sum up to 1).
Dividing by πi allows preserving unbiasedness with respect to the truePFD. This corresponds to the Hansen-Hurwitz estimator 36.

6 A. Bertolino ET AL

Depending on the severity of the failures observed, we compute two values for reliability. The first one considers all the failures occurred (all-
failures reliability, denoted asRA). Besides this, a reliability estimate considering only the high-severity failures is computed (we call it critical-failure
reliability, denoted as RC) – a detailed explanation will be provided in Section 4.6.5. This distinction gives more figures of interest for the QA team,
whichmay prioritizemajor issues over others, thanks to a quantitative characterization ofwhat type of problems the end user could experience and
with what probability.

3.4 Steps 3 and 4:Monitoring and update
When software is in operation, field data are gathered, and used to update the auxiliary information about partitions, which are then leveraged for
reliability testing in the next release cycle. Specifically, the estimates p̂i and f̂i of invocation and failure probabilities for partition Si (i=1, ..., n) are
updated by looking at requests/responses data gathered in theOps phase. The update rules at the end of the k-th DevOps cycle is:

p̂k
i = λ(p̂k−1

i) + (1− λ)Nk
i

Nk

f̂k
i = λ(̂fk−1

i) + (1− λ)Qk
i

Nk
i

(4)

where:
-Nk is the total number of requests in cycle k;
-Nk

i is the number of requests to partition Si in cycle k;
-Qk

i is the number of failed requests to partition Si in cycle k;
- λ is a learning factor λ ∈ [0, 1], regulating howmuch we account for the execution history in the previous cycle with respect to observations made
in cycle k (it is λ = 0.5 in our experimental settings).

4 EXPERIMENTAL EVALUATION
4.1 Research questions
The experimental evaluation is driven by the overall goal of achieving in DevOps acceptance testing an accurate and efficient estimate of reliability.
We consider two case studies, whose details are provided in the next subsection. The former is an open source project. The aim of experimentswith
this case study is to assess performance of DevOpRET in both configurations (OT andWOT) in terms of estimate’s accuracy and confidence, as well
as in terms of ability to expose failures1. The second case study is a benchmark for microservice architectures. The aim of experiments with this
case study is to investigate if and how the reliability estimate provided by DevOpRET (with both OT andWOT) changes when the true reliability of
the subject under test changes, a circumstance not observed in the first case study.
In the experiments, DevOpRET is first used in its baseline implementation, the one adopting OT. Then, we investigate if and to what extent the

adoption ofweighted operational testing improves results over OT.
The first case study is used to investigate the following research questions:
• RQ1:What is the accuracy and efficiency of the reliability estimate, andwhat is the ability at exposing failures ofDevOpRETwithOperational
Testing? How do they vary over successive DevOps cycles?

• RQ2:DoesDevOpRETwithWeighted Operational Testing perform better thanwithOperational Testing?
The second case study targets the following research question:
• RQ3: How does the accuracy of the reliability estimate changewhen the true reliability across releases changes?

4.2 Experimental subjects
The first subject is Discourse, a discussion platform featuring services for managing mailing lists, forums and long-form chat rooms.2 It is an open-
source platform adopted worldwide by over 1,500 customers, and counting on a community of almost 670 committers. The average number of
lines of code (LoC) of the five versions selected to emulate DevOps cycles is 684 KLoC. From a technical viewpoint, the front-end of Discourse

1A better reliability estimate does not necessarily imply findingmore faults, although the two things are related.
2Available at: https://www.discourse.org/.

https://www.discourse.org/.

A. Bertolino ET AL 7
is a JavaScript application running in any web browser; the server side is developed mainly in Ruby on Rails. Discourse exposes an Application
Programming Interface (API) allowing to consume the contents as JSON records. The API offers 85methods. Their invocations are HTTP requests
acting on resources via conventional GET, PUT, POST and DELETE operations according to the REST paradigm. In this work the acceptance tests
are executed on the API interface; themain resources accessed are: categories, posts, topics, private messages, tags, users, and groups.
The second experimental subject is TrainTicket3, a microservice system developed as a benchmark for microservice applications by Zhou et

al. 37 It contains 41 microservices, based on several programming languages and frameworks, including Java (Spring Boot, Spring Cloud), Node.js
(Express), Python (Django), and Go (Webgo), MySQL. The specification of the TrainTicket interfaces is in the open API documentation format Swag-
ger4. The application is characterized by threemain releases with 258 commits. The average number of lines of code of the 16 commits selected for
experiments is 518 KLoC.

4.3 Experiment design
To answer RQ1 and RQ2 we conduct three experiments with the Discourse subject, each with a number NR=20 of repetitions for every emulated
cycle. The first experiment computes the reliability estimates with OT in both the all-failures and the critical-failures scenarios. Unlike for OT, with
WOT the failure severity influences the test generation algorithm (through the f̂i values), hence, two experiments are needed for the two scenarios.
To answer RQ3, a fourth experiment is conducted with the TrainTicket subject, performing a single run for each of the 16 cycles, and considering

only the critical-failures scenario.

4.4 Evaluationmetrics
As metrics for DevOpRET accuracy and efficiency we compute, respectively, the mean offset ∆ and the sample variance V over multiple runs with
respect to the true reliabilityR. The smaller the offset, themore accurate the estimate; the smaller the variance, the stronger the confidence, and the
more efficient the estimator.
The true reliability R is computed from the true operational profileP={pi} and the true failure profile F={fi}. It is given by:

R = 1− PFD = 1−
∑n

i=1 pi · fi. (5)
The computation of P and F in the experiments is described in Section 4.6.2. The true reliability is re-computed at every cycle, as the fi values can
change across the subject versions.
TheDevOpRET estimate R̂ = 1 - ˆPFD is computedby theOTandWOTalgorithmswithEquations 2 and3, respectively. For statistical significance,

DevOpRET is runNR times per cycle, yieldingNR estimates per cycle. Themeanoffset∆ and sample varianceV of the reliability estimate R̂ at a given
cycle over theNR repetitions (indexed by j) are computed as:

∆j = |R− R̂j|,

∆ = Mean(∆j),

Mean(R̂) = 1
NR

∑NR
j=1 R̂j,

V = 1
NR−1

∑NR
j=1[R̂j −Mean(R̂)]2.

(6)

Finally, as metric for the ability at exposing failures we count the number of failing tests.

4.5 Experimental artifacts
The experimental testbed includes four artifacts: a Test Generator, aWorkload Generator, aMonitor, and an Estimator.
The Test Generator encapsulates the test cases generation algorithm and executes tests (step 1). It extracts from monitored data the list of par-

titions with the associated probabilities (p̂i for OT, p̂i and f̂i for WOT), generates and executes the test cases according to the testing profile Π

(depending on the algorithm, OT orWOT), and stores the test results. These are used by the Estimator to compute reliability (step 2).
TheWorkload Generator emulates the real usage of the software in the Ops phase, by issuing requests according to the true operational profileP

(while test cases generation uses the estimated profile P̂).

3Available at: https://github.com/FudanSELab/train-ticket/.
4https://swagger.io

https://github.com/FudanSELab/train-ticket/.
https://swagger.io

8 A. Bertolino ET AL

The Monitor observes requests and responses and records them in a (textual) log file (step 3). These observations are then used by the Test
Generator in the next cycle to update the testing profile (step 4).
For repeatability and reproducibility, we provide the code of the artifacts for running the experiments.5

4.6 Experimental procedure
4.6.1 DevOps cycles emulation
To emulate DevOps cycles, for theDiscourse case study we consider five consecutive stable (i.e., non-beta) releases.6 For the TrainTicket case study,
16 DevOps cycles are emulated by selecting 16 commits, according to the following criteria: a) the first selected commit corresponds to the first
release (0.0.1); b) only “verified" commits are selected7; c) only one commit per day is selected; d) consecutive commits with only documentation
update are removed.
Each emulated cycle includes an operational testing session (step 1) to decide whether or not the software may be released. We set the testing

budget available per cycle to T = 1,000; this is the number of tests generated and executed to then compute the estimate of reliability R̂ (step 2). If
the reliability requirement at the quality gate is met, the software is released and the operational phase starts: the software is subject to a number
of requests by the Workload Generator, set to N = 5,000, during which data are gathered (step 3) and used to update the probabilities (step 4).
Afterwards, a new release is assumed to be ready, and next cycle starts.
We explicitly point out that, while test cases at step 1 are generated using the testing profileΠ (Section 3.2), requests of theWorkload Generator

are issued according to the true profileP, computed as described in the next subsection.

4.6.2 True profiles
For the purpose of the evaluation, an operational profile P assumed to be the true one is created by varying the initially estimated profile P̂ by a
variation factor v. In fact, whatmatters to assess theDevOpRET performance is the difference between the expected and the real usage, P̂ andP, and
how DevOpRET adapts and improves its reliability estimate R̂ as P̂ gets closer to P. Specifically, given an estimated profile P̂ and a variation factor
v ∈ [0, 1], at the beginning of each experiment we generate the true operational profilePwith the following procedure:

1. Split the set S of n partitions in two subsets in any arbitrary way, S′ with n1 partitions and S′′ with n2 partitions (n1+n2 =n).
2. For S′, generate n1 random numbers (r′1, ..., r′n1

) between 0 and 1 such that their sum is v/2.
3. For S′′, generate n2 random numbers (r′′1 , ..., r′′n2

) between -1 and 0 such that their sum is -v/2.
4. Concatenate the two vectors of random values into a single vector r of n elements, and shuffle it.
5. Sum the elements ri to p̂i values, obtaining a new vectorw such that:wi ← p̂i + ri.
6. If there is at least onewi < 0, sum 1 to all values:wi ← wi + 1.
7. Normalize the obtained values: pi ← wi/

∑
j wj, so that the sum is 1. The set of pi values is the generated true profileP.

The true failure profile F is computed by exercising every partition to checkwhether it leads to failure or not.We performmultiple runs (namely,
5) to each of the thousands partitions for both subjects (with inputs picked up randomly from that partition under test); then we compute the esti-
mate f̂i as the ratio of failed requests over the number of runs. Since the partitions are relatively “small”, results over runs turned out to be consistent
in almost all the cases: repeated requests to a partition either always failed (hence f̂i = 1) or not (̂fi = 0). Few partitions fail occasionally, depend-
ing on the input values. For Discourse this happens for 67 partitions (average over the 5 cycles) for the all-failures scenario, and for 21 partitions
(average) for the critical-failures scenario, corresponding, respectively, to the 0.76% and 0.24% of the total of n=8,802 partitions. For TrainTicket, it
happens for just 2 out of the n=3,757 partitions for the critical-failures scenario (average over the 16 cycles).

4.6.3 Profiles initialization
DevOpRET step 1 uses the testing profile Π built with the information associated with partitions. In the k-th cycle, the OT algorithm uses the val-
ues p̂k

i ; the WOT algorithm used both p̂k
i and f̂k

i . Initial values for p̂0
i and f̂0

i are needed. They can be assigned by the tester in several ways. If the
tester has some prior knowledge about the system (or about similar services/systems), s/he can initialize the values of p̂0

i considering the expected

5Artifacts are available at: https://github.com/dessertlab/DevOpsTesting.
6TheDiscourse consecutive versions considered are: 2.1.6, 2.1.7, 2.1.8, 2.2.0, 2.2.1 (available at https://github.com/discourse/discourse/releases).
7These commits are signedwith signatures verified by GitHub, to let people know the commits come from trusted sources.

https://github.com/dessertlab/DevOpsTesting
https://github.com/discourse/discourse/releases

A. Bertolino ET AL 9

TABLE 1 Input classes forDiscourse partitions
Input type Input class Class description Input type Input class Class description
String StrValid Valid string, as per documentation Date DateValid Value is a date (format

StrEmpty Empty string as per documentation)
StrNull String with null value DateInvalid Value is not a date
StrVeryLong String length> 216 DateEmpty Empty value
StrInvalid String with non-printable characters

Numeric NumValidNormal Value within interval [−231; 231] Color ColValid Value represents a color (6-digits
(Java integer limits) hexadecimal number)

NumValidBig Value out of interval [−231; 231] ColInvalid Value is not a color
NumInvalid Not a number ColEmpty Empty value
NumEmpty Empty value
NumAbsMinusOne Value is equal to -1
NumAbsZero Value is equal to 0

Boolean BooleanValid Valid boolean value List ListValid List with valid values
BooleanInvalid Value not in {True,False} ListEmpty Empty list
BooleanEmpty Empty value ListNull List with null value

Enum EnumValid Value is one of the enumeration Email EmailValid Value is an email address
EnumInvalid Invalid enumerative value (format ’aaa@bbb[.ccc].zzz’)
EnumEmpty Empty value EmailInvalid Value is not an email address

EmailEmpty Empty value

usage in operation. In the sameway the failure probability of each partition can be initialized considering the previous knowledge about the failure-
proneness of partitions (for instance, the outcome of pre-release tests such as unit tests, or the tester’s belief used for input space partitioning - e.g.,
the partitions with invalid input type are deemed to be more prone to fail). Alternatively, in case of complete ignorance, the operational profile is
initialized uniformly, and the failure probability of all partitions is initialized by a same default value ε ≥ 0.
Whatever the initial profile and failure probability are, DevOpRET foresees their continuous update as monitoring data are gathered in the Ops

phase, getting closer to the true usage and failure profile, and thus yielding a reliability estimate converging to the true one.We highlight that such
capability to refine the operational profile leveraging users’ demands naturally descends from theDevOps practice andmakes reliability estimation
easier. Clearly, the better the initial estimates the sooner the approachwill converge.
As for the initialization of the values p̂0

i , assuming complete ignorance of the expected real usage, they are initialized by randomly assigning a
probability according to a uniform distribution in (0,1) to each partition: p̂0

i = rand(0, 1), then normalized so as:∑i p̂0
i = 1.

As for the initialization of the values f̂0
i , for the first case study we make it proportional to the number of invalid equivalence classes of the

partition: f̂i =
|invalidClasses|
|allClasses| , assuming invalid classes are more failure-prone. For the second case study, where we perform a run for each partition,

we set f̂0
i to 1 if the run fails, 0 otherwise.

At subsequent cycles, the probabilities are updated according to the Equations 4.

4.6.4 Test cases generation
Test cases are generated by the OT and WOT algorithms described in Section 3.2. For both subjects, the input space is partitioned according to a
specification-based criterion, on the basis of the API documentation. A fine-grain partitioning is applied; the input arguments of API methods are
grouped in sets of equivalence classes based on their type. For each input type, common corner cases are considered too (e.g., empty string) as well
as values clearly invalid for that type (e.g., numbers with alphabetical characters), as is usually done in black-box robustness testing 38.
Table 1 lists the equivalence classes we defined for the Discourse API inputs. It is worth to note that although they were derived manually, par-

titioning can be automated by parsing documentation, as long as a complete API documentation is available (e.g., in the Swagger format). Table 2
shows an excerpt of the API methods with their input classes and partitions. Every partition is a specific combination of input classes, one for each
argument of amethod. Similar classes and partitions are produced for the interfaces of TrainTicketmicroservices. The total number of partitions n is
8,802 forDiscourse and 3,757 for TrainTicket.

4.6.5 Tests execution
For both subjects a test case is a RESTHTTP request to themethodwhich the selected partition refers to.We have verified if any preconditions on
the used resources (e.g., categories, posts, users, topics) hold before issuing a request: when needed, we have added the code to meet the precon-
dition before the test (e.g., for a GET request to retrieve a resource, the precondition is that at least one instance of the resource is available; if not,
our code performs a PUT before the GET). Dependencies between API methods aremanaged in the sameway.

10 A. Bertolino ET AL

TABLE 2An excerpt of the signature, input classes and partitions forDiscourseAPImethods
Resource Type Endpoint Arg 1 type #Classes Arg 2 type #Classes Arg 3 type #Classes Partitions
Categories POST /categories.json String 5 Color 3 Color 3 45
Post POST /posts.json Numeric 6 String 5 Date 3 90
Users PUT /users/username Numeric 6 Enum 3 String 5 90

/preferences/avatar/pick

The application responses to requests are characterized by theHTTP status code andmessage.We distinguish two types of output (test oracle):
1. Correct reply: the status code is consistent with the input submitted, e.g.: a) a 2xx status code (indicating success) for a request with inputs
belonging to the StrValid class, or b) a 4xx status code (indicating a client error) for an incorrect request (e.g., a numeric input containing
alphabetical characters). These responses are correct replies to incorrect requests, which the API client is required tomanage.

2. Failure: a) the application raises an unmanaged exception, sent to the client, which is reported with a 5xx status code (server error), or b) the
returned status code and message are inconsistent with the input submitted. We consider the former a high-severity failure, the latter a
low-severity failure.

The results of tests’ execution are used to estimate the overall reliabilityRby theOTandWOTalgorithms (through theNelson andHansen-Hurwitz
estimators of Equations 2 and 3, respectively). Depending on the severity of failureswe observe, we compute bothRA and ofRC, indicating, respec-
tively, the case in which we consider all the failures indistinguishably (all-failures scenario) and the case in which we consider only the high-severity
(“critical”) failures (critical-failures scenario). In the remainder,R, F and f are used in turn to refer to both scenarios.

5 RESULTS
5.1 RQ1: Accuracy, efficiency, failing tests
The first research question addresses: a) accuracy and efficiency of the reliability estimate; b) number of failing tests, and c) how they vary over
successive DevOps cycles, for DevOpRET with the OT algorithm. The experimental subject is Discourse. Table 3 reports the average true reliability
values for the five cycles in the all-failures (RA) and in the critical-failures (RC) scenarios.DevOpRET tries to estimate them as accurately as possible.
Figure 3 shows the absolute value of the offset between the true and the estimated reliabilities over cycles for the two scenarios. Expectedly, the

offset decreases over releases, as the estimate of the true operational profile becomesmore andmore accurate. In the all-failures case, the offset is
equal to or below 0.10 in the first cycle, and then suddenly drops to around 0.05 in the second cycle. The extent of the improvement is tied to the
update rule used for monitoring (through what we called the learning factor λ, set to 0.5). In this experiment, a larger learning factor could further
reduce the offset after the first cycle, as the true profile P does not change. In the critical-failures case, a larger offset is observed for the first cycle,
likely due to the smaller number of detected failures, which penalizes the estimator.
Table 4 shows the sample variance and semi-interquartile range (IQR) of theRA andRC reliability estimateswith theOT algorithm. In both cases,

the values change by a small amount over releases: while the better knowledge gained about the operational profile improves the accuracy, by
reducing the offset, it is scarcely influent in terms of efficiency of the estimator. Sample variance values are in the order of magnitude of 1.0E-4
in both all-failures and critical-failures cases, which denotes a quite stable performance (coefficient of variation is in the same order of magnitude,
between 1.0E-4 and 2.0E-4, the average reliability being around 0.5 and 0.8 in the two scenarios). Considering only critical failures has a negligible
influence on the sample variance. The same considerations stand for the interquartile range, as there is no outlier significantly affecting the result.
Figure 4 shows the box plots of the number of failing tests observed using theOT version ofDevOpRET, for both the all-failures and critical-failures

scenarios. It can be seen that the number increases over releases regardless the type of failure considered.

TABLE 3 True reliability values (subject:Discourse)
Subject Emulated all-failures critical-failures
release DevOps cycle RA RC

2.1.6 1 0.5297 0.7978
2.1.7 2 0.5308 0.7982
2.1.8 3 0.5305 0.7978
2.2.0 4 0.5290 0.7983
2.2.1 5 0.5279 0.7971

A. Bertolino ET AL 11

●

●
●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs

et

(a) all-failures

●
●

●
●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs

et

(b) critical-failures
FIGURE 3Accuracy: offset between true and estimated reliability over cycles (subject:Discourse, algorithm: OT)

TABLE 4 Efficiency: variance and IQR of the estimated reliability (subject:Discourse, algorithm: OT)
(a) all-failures

Cycle σ2 IQR
1 3.33e-4 2.10e-3
2 3.44e-4 3.10e-3
3 2.43e-4 1.70e-3
4 1.59e-4 1.20e-3
5 1.31e-4 2.00e-3

(b) critical-failures
Cycle σ2 IQR
1 4.51e-5 6.00e-3
2 1.94e-4 1.70e-3
3 2.45e-4 2.10e-3
4 1.41e-4 2.00e-3
5 1.25e-4 1.40e-3

●

●

●

0

100

200

300

400

500

1 2 3 4 5
DevOps_cycle

Fa
ili

ng
_t

es
ts

(a) all-failures

●●

●

●

0

100

200

300

400

500

1 2 3 4 5
DevOps_cycle

Fa
ili

ng
_t

es
ts

(b) critical-failures
FIGURE 4Number of failing tests over cycles (subject:Discourse, algorithm: OT)

From all these results we see thatDevOpRET’s estimates converge to the true reliability over emulated cycles.
We now present a sensitivity analysis for the OT algorithmwith respect to the number of tests performed at quality gate (the testing budgetT),

and the initial error on the estimate of the operational profile. In addition, we discuss two different ways to get the initial testing profile, to simulate
the case of a complete ignorance and the case of the availability of an initial tester’s belief based on valid/invalid classes. In the former case, the
testing profile Π is generated by uniform random sampling, as explained in Section 4.6.3. In the latter case, Π is generated by giving smaller usage
probability to partitions with corner cases and invalid input classes, namely by assigning: p̂i =

|validClasses|
|allClasses| , normalized to sum up to 1.We call them

uniform and proportional profile, respectively.
Figure 5 reports the offset varying the number of test cases for the uniformandproportional profiles, assuming the estimated profile differs from

the true one by 30% (v = 0.3). Expectedly, increasing the number of tests improves considerably the estimate accuracy, with an offset under 0.5%

12 A. Bertolino ET AL

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

O
ffs

et

DevOps cycle

T=100
T=200
T=500

T=1000

(a) Initial estimated profile: uniform

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

O
ffs

et

DevOps cycle

T=100
T=200
T=500

T=1000

(b) Initial estimated profile: proportional
FIGURE 5Accuracy: sensitivity to the testing budgetT under a 30% error on the initial profile estimate (subject:Discourse, algorithm: OT)

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

O
ffs

et

DevOps Cycle

Uniform Profile. True Rel: 0.9136

Proportional Profile. True Rel: 0.9278

(a) 30% error onOP (same as for T=100 in Fig. 5a and 5b)

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5
O

ffs
et

DevOps Cycle

Uniform Profile. True Rel: 0.9078

Proportional Profile. True Rel: 0.8974

(b) 70% error onOP
FIGURE 6Accuracy: sensitivity to different errors in the initial operational profile estimate (subject:Discourse, algorithm: OT; T=100)

in the best case of 1,000 test cases. Considering that the input space we derived has 8,802 partitions (an indirect indicator of the maximum testing
cost), a testing budget amounting to about 1/8 of the number of partitions has been spent to achieve an accuracy of the reliability estimate of 99.5%.
Let us consider the lowest testing budget, namelyT=100 test cases. Figure 6b refers to the situation when the estimated profile differs from the

true one by 70% (v=0.7), meaning that in the estimate of the usage profile the QA team has missed the true profile by a much larger extent than in
Figure 6a, where v=0.3. We can see that the offset for v=0.7 is generally higher than for v=0.3, especially for the proportional profile. In fact, with
a profile proportional to valid classes but under a larger initial error (v=0.7), the derived true profile is more likely to exercise the invalid classes
compared to the case of a smaller error (v=0.3). We also see how DevOpRET’s use of data gathered in operation helps in both cases to correct the
initial estimate – at cycle 4, the offset for both scenarios goes below 0.01.
To sum up, our conclusions about RQ1 are the following.

DevOpRET accurately estimates the reliability of the experimental subjects.
The estimations becomemore precise over subsequent DevOps cycles.

While the knowledge of the operational profile improves the estimator accuracy, its influence in the estimator’s efficiency is scarce.
The type of failures (all or critical) has a negligible influence onDevOpRET efficiency.

5.2 RQ2:WOT vs.OT
The second research question concerns whether or notWeighted Operational Testing performs better thanOperational Testing.
Figure 7 shows box plots of the absolute value of the offset between the true and the estimated reliability with theWOT algorithm, for both the

all-failures and critical-failures scenarios. Figure 8 shows the number of failing tests with WOT. The previous results with OT from Figures 3 and 4
are shown too, for visual comparison. Table 5 reports the p-values of theWilcoxon signed ranked test for paired samples applied in both scenarios
to the 5 subject releases; values in bold highlight a significant difference between OT andWOT (with a significance level α=0.05). Finally, Figure 9
compares the sample variance ofDevOpRET usingWOT to the one using OT;WOT yields estimates with lower variance inmost of the cases.
The results show that OT andWOT yield statistically equivalent results in terms of offset, namely they provide estimates with a similar level of

accuracy. When they learn from histories with the same length, the results are equivalent (the comparison for all cycles does not reject the null
hypothesis of no difference between the two algorithms). However, OT andWOTdiffer – to a significant extent - in terms of failing tests: all p-values

A. Bertolino ET AL 13

●

●

●
●

●

●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs

et

OT
WOT

(a) all-failures

●
●

●

●

●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs

et

OT
WOT

(b) critical-failures
FIGURE 7WOT vsOT - Accuracy: offset between true and estimated reliabilities over DevOps cycles (subject:Discourse)

●

●

●

●

●

●

●

0

250

500

750

1 2 3 4 5
DevOps_cycle

Fa
ili

ng
_t

es
ts

OT
WOT

(a) all-failures

●●

●

●

●

0

250

500

750

1 2 3 4 5
DevOps_cycle

Fa
ili

ng
_t

es
ts

OT
WOT

(b) critical-failures
FIGURE 8WOT vsOT - Number of failing tests over DevOps cycles (subject:Discourse)

TABLE 5WOT vsOT - Statistical comparison: p-values of theWilcoxon test (subject: Discourse)
(a)Offset

Cycle all-failures critical-failures
1 0.4091 0.2162
2 0.3884 0.5459
3 0.0696 0.2611
4 0.7285 0.8695
5 0.4091 0.8124

(b)Number of failing tests
Cycle all-failures critical-failures
1 9.556e-05 5.138e-04
2 1.907e-06 9.556e-05
3 9.475e-05 9.489e-05
4 1.601e-03 9.556e-05
5 9.529e-05 9.556e-05

in Table 5 are much smaller than 0.05. As we can see from Figure 8, the number of failing tests for the all-failures scenario for OT ranges from an
average of 369.10 (cycle 1) to 462.15 (cycle 5), while for theWOT it ranges from 320.90 to 843.10, with a drastic improvement over versions.
An even more pronounced trend occurs for the critical-failures scenario: OT ranges from 54.4 (cycle 1) to 196.75 (cycle 5); WOT ranges from 66.90
to 656.55 (Figure 8b). This means that, while for the first cycle both algorithms show the same number of failing tests,WOT exploits the knowledge
progressively gained about failures of partitions to direct testing toward more failing-prone partitions. The higher number of failing tests of WOT
has a strong impact on the variance of the estimates, which are always smaller compared toOT, especially in the critical-failures scenario. Thismay be
attributed to the adopted testing strategy. Testing is done at the API level in a black box fashion based on input types: because of the several invalid
equivalence classes used to generate the tests, we exposedmany failures due to the incorrectmanagement of invalid requests. TheWOT algorithm
favors cases whose probability of failure is expected to be high, in order to expedite the reliability assessment (see the initialization of the failure
profile in Section 4.6.3). It should be noted also that more than one failure of an API methodmay be related to a same fault.
In principle, the better ability of WOT at exposing failures could also impact the accuracy (offset) of its estimates. Indeed, prior own work on

reliability testing has shown that techniques likeWOT (based on a sampling scheme that exploits auxiliary information) are able to provide better

14 A. Bertolino ET AL

0.0E+00
5.0E-05
1.0E-04
1.5E-04
2.0E-04
2.5E-04
3.0E-04
3.5E-04

1 2 3 4 5

Va
ria

nc
e

DevOps cycle

OT
WOT

(a) all-failures

0.0E+00
5.0E-05
1.0E-04
1.5E-04
2.0E-04
2.5E-04
3.0E-04
3.5E-04

1 2 3 4 5

Va
ria

nc
e

DevOps cycle

OT
WOT

(b) critical-failures
FIGURE 9WOT vsOT - Sample variance over DevOps cycles (subject:Discourse)

offset, besides detectingmuchmore faults andwith higher efficiency (i.e., smaller variance), especially under a scarce testing budget 39,40. However,
in this case studywe do not observe this phenomenon. This is duemainly to two reasons: i) since the number of partitions is large (8,802), the failure
probability of each partition (i.e., the fi value) is small (and is also multiplied by pi): therefore, a more accurate knowledge of such fi values, which
are those exploited byWOT with respect to OT, has a negligible impact on the final estimate; ii) the number of tests is enough for both techniques
to provide a close estimate (they, in a sense, are both saturated). We also explicitly point out that WOT entails an additional cost with respect to
OT, namely the need formonitoring failures, besides the usage profile. Overall, we advise to useWOTwhenever the cost of gathering failure data is
acceptable and the testing budget is significantly limited.
To sum up, our conclusions about RQ2 are the following.

TheOT andWOT versions of DevOpRET yield statistically equivalent results in terms of accuracy of estimates.
WOT is generally able to provide estimates with higher confidence (lower variance).

WOT results in more failing tests compared toOT (consistently with its ability to direct testing towardsmore failing-prone partitions).
WOT requires failure data; it should be preferred toOTwhen the testing budget is low and the failure data gathering cost is acceptable.

5.3 RQ3: Adaptivity
The third research question investigates the adaptivity of the DevOpRET reliability estimate to changes of the true reliability over DevOps cycles.
The goal is to assess if and how promptly DevOpRET reacts to changes of the actual failure probability across product releases. This experiment is
conductedwith the TrainTicket case study. The true operational profile, generatedwith a variation factor v = 0.8, is kept constant in the experiment.
Figure 10 plots the true reliability over emulated cycles. Figure 11 plots the absolute value of the offset between the estimated and the true

reliability. The results show that the estimate tends to follow the true value using both OT and WOT. The two techniques show however some
differences. We see that WOT exhibits performance worse than OT in cycles number 2 and 8. These two commits correspond to two significant
changes in the reliability of the case study which can be seen in Figure 10. OT is less impacted by the changes of failure probability. However,WOT
performs better than OT 12 times out of 16; in particular, WOT provides better estimates of the true reliability (the offset is lower) starting from a
couple of cycles after the sudden changes (from 4 to 7 and from 10 on).
We draw the following conclusion about RQ3.

OT is less affected thanWOT by perturbations of the true reliability due to sudden changes of the failure probability on user demands.

5.4 Threats to validity
The results of experimentsmust be considered in light of potential threats to validity. Following the guidelines by Runeson andHöst 41, we consider
four aspects: construct validity, internal validity, external validity, and reliability.
Construct validity (Is the experimentwedesigned appropriate to answer our researchquestions?) Themetricsweused for answering the research

questions (probability of failure on demand, true and estimated reliability, sample variance, number of failing tests) are standard in the software

A. Bertolino ET AL 15

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Re

lia
bi

lit
y

DevOps Cycle

FIGURE 10 True reliability under constant operational profile over cycles (subject: TrainTicket)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O
ffs

et

DevOps Cycle

OT
WOT

FIGURE 11Offset between estimated and true and reliability over cycles (subject: TrainTicket)

reliability literature. The choice of true reliabilitymight bias the result.Whilewe could assumea true operational profile (pi values) for our purposes,
to control this threat we have computed the true failure probability (fi values) by exercising each partition 5 times, for each of the 5 releases of
Discourse and for each of the 16 commits of Train Ticket. This allowed us to spot failing partitions with a satisfactory confidence: on average over the
releases, just 0.76%and0.24%ofDiscoursepartitions and0.05%ofTrain Ticket ones gave inconsistent results, whereas the vastmajoritywere either
always failing or not. Two further factors in the construction of experiments which might have influenced the results are the number of test cases
and the initial profile. To control this threatwe have performed a sensitivity analysis, which shows thatDevOpRET estimates are anyway close to the
true reliability, although they influence the speed of the convergence. Another factor in the construction of experiments which might influence the
results is the partitioning of the input space into equivalence classes, which could be performed differently by different experts. This, however, is
not really a threat to validity: it only implies that the proposed approach has to be evaluated by further researchers applying different partitionings.
Internal validity (Are there factors different from the treatment that could affect the observed behavior?) A common internal threat is the accu-

racy ofmeasures,which canbe affectedby random factors. Tomitigate it, all the codedevelopedwas carefully inspected, and all experiments related
toRQ1andRQ2 (concerning the performance ofDevOpRET and the comparison between itsOT andWOT strategies)were repeatedmultiple times.
Another common threat is the selection of experimental subjects. To favor repeatability of experiments under different possibly influencing factors,
we chose an open-source and a publicly available benchmark as subjects, and all code and artifacts are made available for further inspection. The
results might change depending on the value N of user requests we emulate with theWorkload Generator. To control this threat, we did a conserva-
tive choice for N with respect to the number of tests T, since in a real deployment the ratio N/T would be much greater. Greater values of N with
respect to T allow for larger data as feedback fromOps, and amore accurate learning of the usage and failure probabilities.
External validity (Is it possible to generalize the results beyond the experimental subject?) Although we stated the DevOpRET assumptions, our

results might be influenced by specific characteristics of the chosen subjects. From current observations we cannot draw fully general conclusions,
claiming results hold for any application; to this aim, more case studies are needed.
Reliability (Whether and to what extent can the observations be reproduced by other researchers?) To support reproducibility by other

researchers, and possible experimentation with different subjects, wemake available the code of the components of theDevOpRET testbed.

16 A. Bertolino ET AL

6 CONCLUSIONSANDFUTUREWORK
In “traditional” software development, reliability testing practices can be hindered by the cost and difficulty of specifying the operational profile. In
DevOps, thanks to the short-circuit between development and production, we claim that reliability testing is facilitated because the development
andQA team can i) leverage usage data coming fromOps throughmonitoring as a feedback to adjust estimates of the operational profile, and ii) rely
on it for the next acceptance testing cycle to refine reliability assessment.
In this view, we propose the DevOpRET approach that supports continuous testing based on the operational profile within DevOps cycles. The

idea behind the approach – earlier introduced in preliminary own work 17 - is to leverage usage information monitored in operation for refining
the estimate of the operational profile, which is then used during the next acceptance testing cycle. The approach has been here enhanced to also
leverage actual failure information, bywhich aweighted version of the operational profile is obtained.We have empirically evaluated both versions
ofDevOpRET in two case studies, a real-world open source platform and a microservice architectures benchmark. The controlled experiments rely
on synthetically generatedworkload. The results showhow fromone release to the next the operational profile estimate improves steadily for both
versions, but the weighted version is more effective as for the number of failing tests.
Our survey of literature showed thatDevOpRET is the first framework supporting reliability-assessment in DevOps using actual data monitored

in operation. As such, it contributes to include reliability as a key performance indicator at quality gates in DevOps practices 13,42.
We envisage several future research directions for improving the approach:
• We intend to work on automatic partition extraction (from documentation) and update (frommonitoring data);
• To further expedite the convergence of the estimated profile to the true one, we aim at investigating the adoption of machine learning to
characterize the profile;

• We intend to experiment more sophisticated testing algorithms based on probabilistic sampling, as developed in previous work 39;
• We plan to consider similar approaches that leverage usage data for improving the testing of other non-functional properties, such as
performance or usability;

• Finally, we aim at performing extensive empirical evaluations, by deploying the approach under a true workload.
In pursuing the above future research directions, we foresee both technical challenges related to the need of minimizing the impact of the

approach to the users and to the tight and agile DevOps schedules, and practical challenges, descending from the paucity of real-world benchmarks
for experimentation.Wehope that our promising results canmotivate other researchers andpractitioners that reliability estimation can and should
be naturally included in DevOps acceptance testing.

ACKNOWLEDGMENTS
This work has been partially supported by the PRIN 2015 project “GAUSS" funded by MIUR (Grant n. 2015KWREMX_002). The work by G. De
Angelis has also been supported by the Italian Research Group INdAM-GNCS.

References
1. Baresi L, Ghezzi C. TheDisappearing Boundary BetweenDevelopment-time and Run-time. In: Proceedings of the FSE/SDPWorkshop on Future of
Software Engineering Research (FoSER), ACM; 2010: 17–22

2. Bass LJ,Weber IM, Zhu L.DevOps - A Software Architect’s Perspective. SEI series in software engineering. Addison-Wesley . 2015.
3. Dyck A, Penners R, Lichter H. Towards definitions for release engineering and DevOps. In: IEEE/ACM 3rd International Workshop on Release
Engineering (RELENG), IEEE; 2015: 3–3.

4. Smeds J, Nybom K, Porres I. DevOps: A Definition and Perceived Adoption Impediments. In: Lassenius C, Dingsøyr T, Paasivaara M., eds. Agile
Processes in Software Engineering and Extreme Programming, Springer International Publishing; 2015; Cham: 166–177.

5. WallsM. Building a DevOps culture. O’ReillyMedia, Inc. . 2013.
6. Humble J, Farley D. Continuous delivery: reliable software releases through build, test, and deployment automation. Addison-Wesley . 2011.
7. Forsgren N, KerstenM. DevOpsMetrics. Communications of the ACM 2018; 61(4): 44–48.

A. Bertolino ET AL 17
8. Brunnert A, Hoorn vA,Willnecker F, et al. Performance-oriented DevOps: A Research Agenda. CoRR 2015; abs/1508.04752.
9. Mazkatli M, Koziolek A. Continuous Integration of Performance Model. In: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, ICPE ’18. ACM; 2018: 153–158

10. RahmanAAU,Williams L. Software Security in DevOps: Synthesizing Practitioners’ Perceptions and Practices. In: 2016 IEEE/ACM International
Workshop on Continuous Software Evolution and Delivery (CSED), IEEE; 2016: 70–76

11. Lee JS. The DevSecOps and Agency Theory. In: IEEE 29th International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE;
2018: 243–244

12. Musa JD, EverettWW. Software-Reliability Engineering: Technology for the 1990s. IEEE Software 1990; 7(6): 36–43.
13. Forsgren N, Humble J, Kim G. Accelerate: State of DevOps, Strategies for a New Economy. https://cloudplatformonline.com/2018-state-of-

devops.html; 2018. Accessed: 2020-03-02.
14. Beyer B, Jones C, Petoff J, Murphy NR. Site Reliability Engineering: How Google Runs Production Systems. O’Reilly . 2016.
15. LyuMR. Software reliability engineering: A roadmap. In: Future of Software Engineering (FOSE), IEEE; 2007: 153–170.
16. Musa JD. Software-Reliability-Engineered Testing. IEEE Computer 1996; 29(11): 61–68.
17. Pietrantuono R, Bertolino A, De Angelis G, Miranda B, Russo S. Towards Continuous Software Reliability Testing in DevOps. In: Proceedings of

the 14th InternationalWorkshop on Automation of Software Test, IEEE; 2019: 21–27
18. Fitzgerald B, Stol KJ. Continuous software engineering and beyond: trends and challenges. In: Proceedings of the 1st International Workshop on

Rapid Continuous Software Engineering, ACM; 2014: 1–9.
19. Soni M. End to end automation on cloud with build pipeline: the case for DevOps in insurance industry, continuous integration, continuous

testing, and continuous delivery. In: IEEE International Conference on Cloud Computing in EmergingMarkets (CCEM), IEEE; 2015: 85–89.
20. Di Nitto E, Jamshidi P, Guerriero M, Spais I, Tamburri DA. A software architecture framework for quality-aware DevOps. In: Proceedings of the

2nd InternationalWorkshop on Quality-Aware DevOps (QUDOS), IEEE; 2016: 12–17.
21. Angara J, Prasad S, Sridevi G. The Factors Driving Testing in DevOps Setting - A Systematic Literature Survey. Indian Journal of Science and

Technology 2017; 9(48): 1–8.
22. Soares Cruzes D, Melsnes K, Marczak S. Testing in a DevOps Era: Perceptions of Testers in Norwegian Organisations. In: Misra S. et al. ., ed.

International Conference on Computational Science and Its Applications (ICCSA), . 11622 of LNCS. Springer, Cham; 2019: 442–455.
23. Fitzgerald B, Stol KJ. Continuous software engineering: A roadmap and agenda. Journal of Systems and Software 2017; 123: 176–189.
24. KitchenhamB, Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineering. Tech. Rep. EBSE 2007-001,Keele

University and DurhamUniversity Joint Report; 2007.
25. Marijan D. Multi-perspective Regression Test Prioritization for Time-Constrained Environments. In: IEEE International Conference on Software

Quality, Reliability and Security (QRS), IEEE; 2015: 157–162.
26. Ali S, HafeezY,Hussain S, Yang S. Enhanced regression testing technique for agile software development and continuous integration strategies.

Software Quality Journal 2019.
27. Najafi A, Shang W, Rigby PC. Improving test effectiveness using test executions history: an industrial experience report. In: IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice (ICSE- SEIP), IEEE; 2019: 213–222.
28. Révész Á, Pataki N. Containerized A/B Testing. In: Proceedings of the 6th Workshop of Software Quality, Analysis, Monitoring, Improvement, and

Applications (SQAMIA), CEURWorkshop Proceedings; 2017.
29. Mijumbi R, Okumoto K, Asthana A, Meekel J. Recent Advances in Software Reliability Assurance. In: IEEE 29th International Symposium on

Software Reliability EngineeringWorkshops (ISSREW), IEEE; 2018: 77–82

18 A. Bertolino ET AL

30. Janes A, Russo B. Automatic PerformanceMonitoring and Regression Testing During the Transition fromMonolith toMicroservices. In: 2019
IEEE International Symposium on Software Reliability EngineeringWorkshops (ISSREW), IEEE; 2019: 163–168.

31. Pietrantuono R, Russo S, Guerriero A. Run-time Reliability Estimation of Microservice Architectures. In: IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE), IEEE; 2018: 25–35.

32. Pietrantuono R, Russo S, Guerriero A. Testing microservice architectures for operational reliability. Software Testing Verification and Reliability
2020; 30(2). doi: 10.1002/stvr.1725

33. Frankl PG, Hamlet RG, Littlewood B, Strigini L. Evaluating testing methods by delivered reliability [software]. IEEE Transactions on Software
Engineering 1998; 24(8): 586–601.

34. Cai KY. Towards a Conceptual Framework of Software Run ReliabilityModeling. Information Sciences 2000; 126(1-4): 137–163.
35. Thayer TA, LipowM, Nelson EC. Software Reliability. North-Holland Publishing, TRWSeries of Software Technology, Amsterdam . 1978.
36. Chaudhuri A. Survey Sampling Theory andMethods. Chapman &Hall/CRC, Second Edition, Taylor & Francis Group . 2005.
37. Zhou X, Peng X, Xie T, et al. Fault Analysis and Debugging ofMicroservice Systems: Industrial Survey, Benchmark System, and Empirical Study.

IEEE Transactions on Software Engineering 2018.
38. Laranjeiro N, Vieira M, Madeira H. A robustness testing approach for SOAP Web services. Journal of Internet Services and Applications 2012;

3(2): 215–232.
39. Pietrantuono R, Russo S. On adaptive sampling-based testing for software reliability assessment. In: IEEE 27th International Symposium on

Software Reliability Engineering (ISSRE), IEEE; 2016: 1–11.
40. Pietrantuono R, Russo S. Probabilistic Sampling-Based Testing for Accelerated Reliability Assessment. In: 18th IEEE International Conference on

Software Quality, Reliability and Security (QRS), IEEE; 2018: 35–46
41. Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering 2009;

14: 131–164.
42. Sloss BT, Nukala S, Rau V.Metrics ThatMatter.Queue 2018; 16(6): 86–105.

How to cite this article: A. Bertolino, G. De Angelis, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo (2020), DevOpRET: Continuous
Reliability Testing in DevOps, Journal of Software: Evolution and Process.

http://dx.doi.org/10.1002/stvr.1725

	DevOpRET: Continuous Reliability Testing in DevOps
	Abstract
	Introduction
	Related work
	DevOpRET
	Overview
	Step 1: Test generation and execution
	Step 2: Reliability estimation
	Steps 3 and 4: Monitoring and update

	Experimental evaluation
	Research questions
	Experimental subjects
	Experiment design
	Evaluation metrics
	Experimental artifacts
	Experimental procedure
	DevOps cycles emulation
	True profiles
	Profiles initialization
	Test cases generation
	Tests execution

	Results
	RQ1: Accuracy, efficiency, failing tests
	RQ2: WOT vs. OT
	RQ3: Adaptivity
	Threats to validity

	Conclusions and Future Work
	Acknowledgments
	References

