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Abstract. Although convolutional neural networks (CNNs) showed
remarkable results in many vision tasks, they are still strained by simple
yet challenging visual reasoning problems. Inspired by the recent success
of the Transformer network in computer vision, in this paper, we intro-
duce the Recurrent Vision Transformer (RViT) model. Thanks to the
impact of recurrent connections and spatial attention in reasoning tasks,
this network achieves competitive results on the same-different visual
reasoning problems from the SVRT dataset. The weight-sharing both in
spatial and depth dimensions regularizes the model, allowing it to learn
using far fewer free parameters, using only 28k training samples. A com-
prehensive ablation study confirms the importance of a hybrid CNN +
Transformer architecture and the role of the feedback connections, which
iteratively refine the internal representation until a stable prediction is
obtained. In the end, this study can lay the basis for a deeper under-
standing of the role of attention and recurrent connections for solving
visual abstract reasoning tasks. The code for reproducing our results is
publicly available here: https://tinyurl.com/recvit.
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1 Introduction

Deep learning methods largely reshaped classical computer vision, solving many
tasks impossible to face without learning representations from data. Convolutional
neural networks (CNNs) obtained state-of-the-art results in many computer vision
tasks, such as image classification [13,35], or object detection [6,26,27]. Recently, a
novel promising architecture took hold in the field of image processing: the Trans-
former. Initially developed for solving natural language processing tasks, it found
its way into the computer vision world, capturing the interest of the whole com-
munity. These Transformer-based architectures already proved their effectiveness
in many image and video processing tasks [2,7,11,23,24]. The Transformer’s suc-
cess is mainly due to the power of the self-attention mechanism, which can relate
every visual token with all the others, creating a powerful relational understanding
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Fig. 1. Positive and negative examples from the considered SVRT problems: P.1: same
shapes; P.5: two twisted pairs of same shapes; P.20: same shapes reflected along an
unknown symmetry axis; P.21: same shapes but rotated and scaled.

pipeline. In this paper, we aim at studying the relational understanding capabili-
ties of Vision Transformers in the context of an apparently simple yet non-trivial
task, called same-different task. In short, the same-different task consists in under-
standing if two shapes in an image satisfy a certain rule. In the simpler case, the rule
is merely that the two shapes must be equal ; however, the rule is not known a priori
and must be internally understood from the provided positive and negative exam-
ples. An example is given in Fig. 1. Humans perceive the world as a complex set of
patterns composite together to form higher-level structures, such as the repeating
chorus in a song. Through the same-different task, we can better understand the
abstract abilities of current deep neural network models, even outside the com-
puter vision world. The long-term results from these studies can be applied in a
wide range of disciplines, from robotics and intelligent video surveillance to cul-
tural heritage preservation.

The same-different task can be framed as a binary classification problem,
and it has been partially solved with state-of-the-art convolutional architectures,
particularly with ResNets [3,14,22,25]. From these studies, it has been observed
that (a) deep CNNs are needed, with lots of free parameters, to relate distant
zones of the image in search of matching patterns, and (b) usually, a lot of data
is needed to learn the underlying rule, while humans can spot it with only a few
samples. Furthermore, some works [18] emphasized the role of recurrent connec-
tions, which can iteratively refine the visual input until an optimal and stable
conclusion is drawn. In the light of these observations, in this paper, we introduce
a novel architecture, called Recurrent Vision Transformer (RViT), for solving the
same-different problems. It is inspired by both the recent Vision Transformer
(ViT) model [11] and by a recurrent version of the Transformer architecture
called Universal Transformer [8]. The introduced architecture can understand
and relate distant parts in the image using the powerful Transformer’s attentive
mechanism and iteratively refine the final prediction using feedback connections.
Notably, we find that the base ViT model cannot learn any of the same-different
tasks, suggesting that both a hybrid architecture (upstream CNN + downstream
Transformer) and feedback connections can be the keys for solving the task.
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To summarize, the contribution of the paper is many-fold: (a) we intro-
duce a novel architecture, called Recurrent Vision Transformer (RViT), a
hybrid Convolutional-Transformer architecture for solving the challenging same-
different tasks; (b) we compare the network complexity and accuracy with
respect to other architectures on the same task, obtaining remarkable results
with less free parameters and thus better data efficiency; (c) we qualitatively
inspect the learned attention maps to understand how the architecture is
behaving, and we provide a comprehensive study on the role of the recurrent
connections.

2 Related Work

Vision Transformers. The massive engagement of the Transformer architecture
[33] in the Natural Language Processing community grew at the point that it
trespassed the boundaries of language processing, finding wide applications in
computer vision. In fact, it is possible to subdivide images into patches which
can be fed as input to a Transformer encoder for further processing. Some of
the Transformer-based architectures for vision, like Cross Transformers [10] or
DETR [4], use the regular grid of features from the last feature map of a CNN as
visual tokens. More recently, fully-transformer architectures, first among which
ViT [11], have taken root. For the first time, no convolutions are used to pro-
cess the input image. In particular, the ViT architecture divides the image in
patches using the grid approach; the RGB pixel values from every patch are
concatenated, and they are linearly projected to a lower-dimensional space to
be used as visual tokens. The BERT-like [CLS] token [9] is then used as the
classification head. Similarly, the TimeSformer [2] redefined attention both in
space and time to understand long-range space-time dependencies in videos.

Same-Different Task. Many tasks have been proposed in computer vision to
tackle abstract visual reasoning abilities of machine learning models, like CLEVR
and Sort-of-CLEVR [17], Raven’s Progressive Matrices (RPM), or Procedurally
Generated Matrices (PGMs) [28]. In [12], the authors introduced the Synthetic
Visual Reasoning Test (SVRT) dataset, composed of simple images containing
closed shapes. It was developed to test the relational and comparison abilities of
artificial vision systems. The work in [30] first showed, using the SVRT dataset,
that the tasks involving comparisons between shapes were difficult to solve for
convolutional architectures like LeNet and GoogLeNet [31]. The authors in [20]
drawn a similar conclusion, introducing a variation of the SVRT dataset – the
Parametric SVRT (PSVRT) for solving some shortcomings of the SVRT dataset
– and concluding that the Relation Network [29] is also strained on the same-
different judgments. Similarly, [25] developed a more controlled visual dataset
to evaluate the reasoning abilities of deep neural networks on shapes having
different distributions. The authors in [3,14] found that deep CNNs, like ResNet-
50, can solve the SVRT problems even with a relatively small amount of samples
(28k images). The authors in [21,22] demonstrated that also many other state-
of-the-art deep learning architectures for classifying images (ResNet, DenseNets,
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CorNet) models can learn this task, generalizing to some extent. Recently, [32]
discussed the important role of attention in the same-different problems.

Recurrent Models. Recurrent models – LSTMs [16] and GRUs [5], to name a few
– have been widely used for dealing with variable-length sequences, especially in
the field of natural language processing. However, recently, many neuroscience
and deep-learning works claimed the importance of recurrent connections out-
side the straightforward text processing, as they could have an essential role
in recognition and abstract reasoning. The work in [18] claimed that the visual
cortex could be comprised of recurrent connections, and the visual information
is refined in successive steps. Differently, many works in deep learning tried to
achieve Turing-completeness by creating recurrent architectures with dynamic
halting mechanisms [1,8,15]. Although our work does not include dynamic halt-
ing mechanisms, it partially embraces these ideas, experimenting with recurrent
connections for iteratively refining the final prediction.

3 The Recurrent Vision Transformer Model

The proposed model is based on the recent Vision Transformer – in particular,
the ViT model [11]. The drawback of CNNs in solving the same-different prob-
lems is that sufficiently deep networks are needed to correlate distant zones in
the image. The Transformer-like attention mechanism in ViT helps in creating
short paths between image patches through the self-attention mechanism. Fur-
thermore, inspired by the role of recurrent connections in the human’s visual
cortex [18], we modify the ViT Transformer encoder module by sharing the
encoder weights among all the T layers (i.e., along the depth dimension), effec-
tively creating a recurrent Transformer encoder model, similar to [8]. This has
the effect of sharing weights not only in the sequence dimension as in standard
Transformers, but also in the depth dimension, further constraining the model
complexity. As a feature extractor, we use a small upstream CNN that outputs
N×N D−dimensional features used as visual tokens in input to the Transformer
encoder. The overall architecture is shown in Fig. 2.

By leveraging the recurrent nature of the architecture, we avoid explicitly
tuning the depth of the network (i.e., the total number of recurrent iterations)
by forcing the architecture to perform a prediction at each time step, using the
CLS token. The most likely outcome among the predictions from all the time
steps is then taken as the final prediction. More in detail, the model comprises
T binary classification heads, one for each time step. During training, the binary
cross-entropy loss at each time step is computed as Lt = BCE(yt, ŷ), where yt is
the network output from the t-th time step, and ŷ is the ground-truth value. The
various losses are then aggregated to obtain the final loss Ltotal. We noticed that
a simple average 1

T

∑T
t=1 Lt already led to good results. However, we obtained

the best results by using the automatic loss-weighting scheme proposed in [19]:

Ltotal =
1
2

T∑

t=1

(
1
est

Lt + st

)

, (1)
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Fig. 2. The RViT architecture. The image is processed by a 4-layer CNN, outputting
a 8 × 8 grid of visual features. The CLS token is added to this set, and the tokens
are processed multiple times by the recurrent module. At each time step, the binary
cross-entropy loss is computed against the ground-truth labels.

where st is a free scalar parameter that encodes the predicted uncertainty of
the classification at the t-th time step, and the model automatically learns it
during the training phase. We refer readers to [19] for more detailed derivation
and discussion.

During inference, the maximum-likelihood prediction is taken as the final
network output. In particular, the time step t̄ at which the network reaches the
maximum confidence is the one where the output probability is farthest from
the pure chance in a binary classification setup (p = 0.5):

t̄ = arg max
t

|yt − 0.5|. (2)

At this point, the final output is simply y = yt̄.

4 Experiments

In this section, we briefly introduce the SVRT dataset used in the experiments,
and we present and discuss the performance of the Recurrent Vision Transformer
on these problems.
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4.1 Dataset

In this work, we use the Synthetic Visual Reasoning Test (SVRT) benchmark to
test our proposed architecture. SVRT comprises 23 different sub-problems; each
sub-problem comprises a set of positive and negative samples generated using a
problem-specific rule. The objective of any classifier trained on a problem is to
distinguish the positive and negative samples, and the only way to succeed is to
discover the underlying rule.

From previous works [3,20] it is clear that relational problems – the ones
involving shape comparisons under different geometric transformations – are
the most difficult to solve for Deep Neural Networks. Thus, as in [21,22], we
focus the attention on four of these problems: Problem 1 (P.1) - detecting the
very same shapes, randomly placed in the image, having the same orientation
and scale; Problem 5 (P.5) - detecting two pairs of identical shapes, randomly
placed in the image. Problem 20 (P.20) - detecting the same shape, translated
and flipped along a randomly chosen axis; Problem 21 (P.21) - detecting the
same shape, randomly translated, orientated, and scaled. Positive and negative
samples from each of these visual problems are shown in Fig. 1.

4.2 Setup

For the upstream CNN processing the pixel-level information, we used a 4-layer
Steerable CNN [34]. A Steerable CNN describes E(2)-equivariant (i.e., rotation-
and reflection-equivariant) convolutions on the image plane R

2; in contrast to
conventional CNNs, E(2)-equivariant models are guaranteed to generalize over
such transformations other than simple translation and are therefore more data-
efficient. In the ablation study in Sect. 4.4, we will give more insights on the role
of Steerable CNNs over standard CNNs in solving the same-different task.

We forged two different versions of the RViT, a small and a large version,
having the same structure but a different number of hidden neurons in the core
layers: the small RViT produces 256-dimensional keys, queries, and values and
outputs 256-dimensional visual features from the CNN, while the large RViT
has these two parameters set to 512. We used the Adam optimizer; after a minor
hyper-parameter tuning, we set the learning rate for all the experiments to 1e–4,
and the number of attention heads to 4; we let the models train for 200 epochs,
decreasing the learning rate to 1e–5 after 170 epochs. We tested the models using
the snapshot with the best accuracy measured on the validation set.

In order to better compare with the ResNet-50 experiments in [3], we also
tried to use as up-stream CNN the first two or three layers of a ResNet-50
pre-trained on ImageNet. For the image resolution, we mainly used N = 16,
outputting 16 × 16 visual tokens from the CNN. During the pre-training exper-
iments, instead, we used N = 8 for accommodating the output feature map
resolution of the pre-trained model and also for performance reasons. During
training, we set the maximum time steps T = 9.

We collected results using both 28k training images, following [3], and 400k
training images, for comparing our proposed architectures with convolutional
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Table 1. Accuracy (%) of our method, trained from-scratch, with respect to the base-
lines. #pars indicate the number of free parameters of the model.

Model 400k training samples 28k training samples #pars ↓
P.1 ↑ P.5 ↑ P.20 ↑ P.21 ↑ P.1 ↑ P.5 ↑ P.20 ↑ P.21 ↑

RN [29] 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0.4M

ViT [11] 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 26M

ResNet-18 [22] 99.2 99.9 95.5 96.2 99.2 98.4 93.7 50.0 11M

ResNet-50 [3] – – – – 95.4 89.9 92.9 72.6 23M

DenseNet-121 [22] 99.6 98.2 94.2 95.1 73.9 54.7 94.4 85.8 6.9M

CorNet-S [22] 96.9 96.8 95.0 96.9 98.8 97.1 92.3 82.5 52M

RViT-small 99.9 99.4 98.9 95.7 99.6 98.0 93.9 78.6 0.9M

RViT-large 99.9 99.0 98.8 96.4 99.6 99.3 95.3 77.8 3.1M

Table 2. Accuracy (%) of RViT-small, with the first layers of a ResNet-50 pre-trained
on ImageNet, with respect to the full ResNet-50 baseline. In ResNet-50/11 we kept the
first 11 layers, while in ResNet-50/23 the first 23.

Model P.1 ↑ P.5 ↑ P.20 ↑ P.21 ↑ #pars ↓
ResNet-50 [3] 99.5 98.7 98.9 92.5 23M

RViT ResNet-50/11 99.6 98.6 94.5 91.6 2.3M

RViT ResNet-50/23 99.7 99.7 99.4 85.2 9.5M

networks trained in [21,22]. We used 18k images both for validation and testing.
The images were generated with the SVRT original code, available online1.

4.3 Results

We compared our model with other key architectures: the Relation Network
(RN) [29] which by design should be able to correlate distant zones of the
image; the Vision Transformer (ViT) [11] which recently achieved remark-
able performance on classification tasks, although it is very data-hungry, and
some state-of-the-art convolutional models—ResNet18, ResNet50, CorNet-S and
DenseNet121—trained on the same task in [3,21,22]. Notably, CorNet-S also
implements feedback connections, although it is much more complex, in terms
of number of parameters, than our RViT architecture.

Looking at Table 1, we can see how neither the Relation Network nor the ViT
converges on the four visual problems, for both 400k and 28k data regimes. The
ViT probably needs more architectural inductive biases to understand the rules,
while the relational mechanism of Relation Network is probably too simple for
understanding the objects in the image and their relationships. Instead, our RViT
model can obtain very competitive results on all tasks and on both data regimes,

1 https://fleuret.org/git-tgz/svrt.

https://fleuret.org/git-tgz/svrt
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often outperforming the baselines. Noticeably, the RViT-small can learn all the
four problems using only 0.9M free parameters, about 8 times fewer parameters
than the smallest convolutional network able to solve the task (DenseNet121).
This suggests that the model has the correct structure for understanding the
visual problems, without having the possibility to memorize the patterns.

In Table 2, we instead report the accuracy of the small RViT model, where the
upstream path is pre-trained on the classification task on ImageNet, following
the work in [3]. Even in this case, the RViT achieves competitive results, but
with much fewer free parameters and using only a slice – the first 11 and 23
layers – of the pre-trained ResNet-50 architecture.

4.4 Ablation Study

Following, we report some in-depth analysis of the RViTs performed with 28k
training images.

The Role of Recurrent Connections and Steerable Convolution. In
Table 3, we experimented with some variations of the RViT to understand the
roles of recurrent connections and the employed 4-layers steerable CNN. The
basic configuration is Conv. ViT, which is the same as the standard ViT from
[11] but with an upstream CNN as the visual feature extractor. In contrast
to the original ViT formulation, the Conv. ViT can improve significantly on
P.1, P.20, and P.21, moving away from the chance accuracy. However, the most
significant jump in accuracy happens when recurrent connections are introduced
(Conv. RViT). In this case, the same model can learn all the visual problems,
with an improvement of 67% on P.1 and 7% on P.21. Another improvement
is obtained when using the Steerable CNNs [34]. This kind of CNN produces
features equivariant to rotations and reflections. For this reason, it has a wider
impact on P.20 and P.21, where shapes are reflected and rotated, respectively.

Recurrent connections seem to have critical importance. They highly regular-
ize the model, making it more data-efficient and performing a dynamic iterative
computation that procedurally refines both the previous internal representations
and the previous predictions. To better appreciate this aspect, in Fig. 3 we show
the mean time step t̄, for each problem, where the model reaches the maximum
confidence. Interestingly, P.1 and P.5 reach the best confidence in few iterations,
while the more challenging P.20 and P.21 need much more pondering before sta-
bilizing. More in detail, it can be noticed that although there is not too much
difference considering the size of the models (Fig. 3a), the network seems majorly
strained when the shapes are the same (Fig. 3b). This is reasonable: it is heavier
to be sure that shapes coincide in every point, while it takes little to find even
a single non-matching pattern to output the answer different.
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Table 3. Ablation study on Convolutional ViT (Conv. ViT), on Convolutional Recur-
rent ViT (Conv. RViT), and Equivariant Convolutional Recurrent ViT (Eq. Conv.
RViT). The last one is the model effectively employed in Tables 1 and 2. Accuracy (%)
is in this case measured on the validation set.

Model P.1 ↑ P.5 ↑ P.20 ↑ P.21 ↑
Conv. ViT 59.5 50.0 88.5 62.5

Conv. RViT 99.9 99.0 93.9 66.8

Eq. Conv. RViT 99.8 99.4 95.6 77.3

(a) (b)

Fig. 3. The distribution of the best time step t̄ grouped by (a) the two different RViT
sizes (small, large), and (b) by the same-different label.

Visualizing the Attention. In Fig. 4, we reported a visualization of the
self-attention maps learned by the trained models, computed in specific points
(marked with red dots) in the image, and by averaging the four attention heads.
The 16 × 16 grid allows us to appreciate fine details; in particular, we can see
what parts of the shapes the model is attending to for producing the final answer.
In most cases, the model correctly attends the other shape in search of the cor-
responding edges. In some instances, the attention map is not so neat (e.g., in
(d) and (f)), emphasizing the intrinsic complexity of the tasks. Furthermore, in
Fig. 5 we report the evolving attention maps at different time steps. The map is
initially very noisy, but it is slowly refined as the number of iterations increases
to create a stable representation.
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(a) Different shapes (b) Problem 1 - Same shape (c) Problem 5 - Same shape (1st pair)

(d) Problem 5 - Same shape (2nd pair) (e) Problem 20 - Same shape (f) Problem 21 - Same shape

Fig. 4. Attention visualization on the different visual problems. The red dot shows
the point in space with respect to which the self-attention is computed. (Color figure
online)

Problem 1

Problem 5

Fig. 5. Evolving attention maps at different time steps.

5 Conclusions

In this work, we leveraged the power of Vision Transformer and recurrent connec-
tions to create the Recurrent Vision Transformer Model (RViT) capable of solv-
ing some of the most challenging same-different tasks from the SVRT dataset. We
showed that this architecture can defeat current methods on the same dataset,
while being simpler, more data-efficient, and explainable to some extent. The
experiments confirm the hypothesis that recurrent connections provide helps for
understanding these visual problems, and the Transformer-like spatial attention
enabled us to visualize what parts of the image the model is attending during
the inference. The model outperforms the basic ViT model on this task, as well
as other relation-aware architectures such as Relation Networks. In the future,
we plan to transfer the seeds of this research to real use cases, where multiple
possibly distant inputs need to be related and analyzed to draw a conclusion. For
example, in surveillance applications, it may be useful to recognize the same per-
son across multiple cameras or, in audio processing, recognize repeating patterns
in a song for clustering or retrieval.
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