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Abstract
We propose an algorithm for computing the projection of a symmetric second-order 
tensor onto the cone of negative semidefinite symmetric tensors with respect to the 
inner product defined by an assigned positive definite symmetric fourth-order tensor 
C . The projection problem is written as a semidefinite programming problem and an 
algorithm based on a primal-dual path-following interior point method coupled with a 
Mehrotra’s predictor-corrector approach is proposed. Implementations based on well-
known symmetrization schemes and on direct methods are theoretically and numeri-
cally investigated taking into account tensors C arising in the modelling of masonry-
like materials. For these special cases, indications on the preferable symmetrization 
scheme that take into account the conditioning of the arising linear systems are given.

Keywords  Conic projection · Negative semidefinite tensors · Quadratic semidefinite 
programming · Interior point methods

Mathematics Subject Classification  90C22 · 74E10 · 90C51 · 74B20

1  Introduction

Matrix nearness problems are introduced in [14] where for a fixed matrix A, the 
problem of finding the nearest member of some given class of matrices is addressed, 
where distance is measured in a matrix norm. The problem of approximating a 
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matrix with a positive semidefinite symmetric matrix is ubiquitous in scientific com-
puting, see e.g. [13–16]. In particular, in [15], numerical methods are proposed to 
calculate the minimum distance between a matrix A and a positive definite symmet-
ric matrix X, considering the Frobenius norm and the 2-norm. Motivated by relevant 
applications in finance industry, more recent contributions [2, 13, 16, 23, 27] deal 
with the computation of the projection of a symmetric matrix onto the set of cor-
relation matrices, namely positive semidefinite symmetric matrices with ones on the 
diagonal.

In this paper, we are concerned with the computation of the projection of a sym-
metric second-order tensor onto the cone of negative semidefinite symmetric tensors 
with respect to the inner product defined by an assigned positive definite symmetric 
fourth-order tensor C . In particular, for a given symmetric tensor � , we want to min-
imize the distance �(�) =∥ � − � ∥2

C
 between � and � , with � belonging to the 

cone Sym− of negative semidefinite symmetric tensors. Problems similar to the mini-
mization of �(�) in Sym− have been addressed in [13], where numerical methods for 
conic projection problems are presented. In particular, in [13], the problem of mini-
mizing the standard Frobenius distance between a given matrix C and a symmetric 
positive semidefinite matrix X and satisfying a further equality linear constraint is 
introduced. Then, in [13] (Eq. (7)) the focus is on the more general problem of find-
ing the projection of a vector c onto the intersection of a convex closed set and a 
convex polyhedron defined by affine inequalities, with respect to ∥ x ∥2

Q
= x ⋅ Qx , the 

norm associated to a positive definite matrix Q. In particular, Eq. (7) in [13] is the 
vector counterpart of our tensor problem in the cone Sym−.

The relevance of the projection problem proposed in the present paper is twofold. 
Firstly, it is a generalization of the problem dealt with in [15], as in the place of 
the Frobenius norm, we consider a norm induced by a scalar product defined by an 
assigned fourth-order tensor C . Secondly, its solution allows to model masonry-like 
materials [7, 22]. In fact, the stress tensor for materials that do not withstand ten-
sion can be obtained by suitably projecting the strain tensor onto the cone of nega-
tive semidefinite symmetric tensors. Solving such a projection problem has a crucial 
role in solid mechanics and civil engineering applications, as it allows to calculate a 
solution to the equilibrium problem of masonry constructions. Fourth-order tensor 
C contains the mechanical properties of the masonry material and can take different 
forms depending on the anisotropy of the material [22]. Apart from the isotropic 
case, for which the explicit solution to the projection problem is available, in the 
general anisotropic case numerical methods are necessary to calculate the approxi-
mate solution. Rather than designing efficient algorithms for large scale problems 
as done in most of the literature [2, 13, 23], the focus of this work is providing an 
accurate and cost-effective numerical procedure for small size projection, as done 
in [17], where an algorithm to compute the polar decomposition of a 3 × 3 matrix 
is proposed. This framework is strongly motivated by the application in the field of 
solids mechanics and, in particular, on masonry-like materials, where the dimension 
of the addressed problem is very low. Indeed the considered second-order tensors 
are linear functions from a three-dimensional vector space into itself. Moreover, the 
accurate solution of a projection problem is required for each Gauss points of each 
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element constituting the finite element discretization of the masonry structure under 
examination. Thus, similarly to [17], our algorithm must solve a large number of 
small size problems accurately.

Inspired by the works [2, 31, 32] for the large-scale setting, we propose to solve 
the projection problem by using a SemiDefinite Programming (SDP) approach and 
developing an interior point algorithm that exploits the peculiarities of the problem 
under consideration. Interior point methods stand out as reliable algorithms which 
enjoy enviable convergence properties and usually provide accurate solutions within 
reasonable time. Several proposals are available in the literature for both general and 
application oriented SDPs, see e.g. [4, 5, 12, 20, 29, 32] and references therein.

In this work we first show that our projection problem can be reformulated as 
a special monotone semidefinite linear complementarity problem (SDLCP) and 
observe that it is equivalent to a convex Quadratic SemiDefinteProgramming 
(QSDP) problem where there are no linear equality constraints. Then we describe 
a primal-dual path-following interior point that uses Mehrotra’s predictor-corrector 
steps [31, 32, 34] and adapted it to our QSDP. In particular, we considered two of 
the most used symmetrization schemes, that is the Nesterov-Todd (NT) direction 
and the Alizadeh-Haeberly-Overton (AHO) one [28], and focused on the solution of 
the linear system by direct methods. As a major contribution of this work we show 
that, when a very accurate solution is required, the use of the popular NT direction 
yields highly ill-conditioned Schur complement linear systems that may prevent the 
computation of an accurate solution. On the other hand, we provide a formulation 
of the Newton’s equation with a much favourable condition number when the AHO 
direction is used and the C has a special form of interest in solid mechanics. For this 
case, a theoretical insight of this behaviour is given. The addressed theoretical issues 
are validated on a number of application oriented numerical tests.

As an outcome of the obtained good numerical results, the proposed algorithm 
will be implemented in the finite element code NOSA-ITACA [24] developed at 
ISTI-CNR for the structural analysis of masonry constructions. The implementation 
and the application of the code to a case study will be the subject of future work.

This paper is organized as follows. In Sect. 2, we list several notions and defini-
tions to be used in the paper that attempt to merge standard notation used in solid 
mechanics and in SDPs. Section  3 describes the projection problem in the space 
of symmetric tensors equipped with the scalar product associated with a positive 
definite symmetric fourth-order tensor C . Some results deriving from the minimum 
norm theorem are proved, including the possibility of expressing the projection 
problem as a complementarity problem. In Sect. 4, some special forms of C of inter-
est in solid mechanics are presented, focusing on isotropic and transversely isotropic 
C . In particular, the explicit expression of the projection for isotropic C is provided. 
The transversely isotropic case can not be solved explicitly, and the projection is cal-
culated only for a restricted class of tensors � . Section 5 contains the description of 
the primal-dual path-following interior point algorithm adopted for the efficient and 
accurate solution of the complementarity problem associated with the projection 
problem. Issues about the conditioning of the arising Newton’s equations depending 
on the symmetrization scheme are discussed in Sect. 5.1. Section 6 is devoted to the 
description of the numerical experience. First the implementation of the proposed 
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algorithm is described. Then the data sets are introduced and numerical results are 
discussed. Conclusions are drawn in Sect. 7.

2 � Notations and preliminaries

Let V be a real vector space of dimension 3 with the inner product ⋅ . Let Lin be the 
set of all second-order tensors (a second-order tensor, or more simply a tensor, is a 
linear application from V to itself) with the inner product � ∙ � = tr(�T�) for any 
�,� ∈ Lin, with �T the transpose of � and let ∥ � ∥=

√
� ∙ � be the associated 

Frobenius norm.
For Sym the subspace of symmetric tensors, Sym− , Sym+ and Sym++ are the sets 

of all negative semidefinite, positive semidefinite and positive definite elements of 
Sym, respectively. Orth denotes the group of all orthogonal tensors.

Given the tensors � and � , the tensor product �⊙ � of � and � is the fourth-
order tensor (a fourth-order tensor is a linear application from Lin to itself) defined 
by

�⊗ � is the fourth-order tensor defined by

and we denote by �Sym the fourth-order identity tensor on Sym. For � and � vectors, 
the tensor product �⊙ � of � and � is defined by �⊙ �� = (� ⋅ �)�, for any vector �1.

Let C be a fourth-order tensor from Sym to Sym. Let us assume that C is symmet-
ric, i.e.

and positive definite on Sym, i.e.

Because of (2) and (1) C is invertible and its inverse C−1 is symmetric and positive 
definite. Moreover, properties (2) and (1) allow defining the following inner product 
◦ on Sym,

and the associated squared C-norm

�⊙ �(�) = (� ∙�)� for all � ∈ Lin;

�⊗ �(�) =
1

2
(���T + ��T�T ), for all � ∈ Lin,

(1)� ∙ C(�) = � ∙ C(�), for all �,� ∈ Sym,

(2)� ∙ C(�) > 0 for all � ∈ Sym, � ≠ 0.

(3)�◦� = � ∙ C(�), for �,� ∈ Sym,

1  In solid mechanics the tensor product between tensors and between vectors is usually denoted by the 
symbol ⊗ , which, instead, in linear algebra is used to denote the Kronecker product (or the symmetrized 
Kronecker product). In this work we adopt the notation used in numerical linear algebra for the symmet-
ric Kronecker product and we introduce the symbol ⊙ to denote the tensor product of solid mechanics.
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Let � = (�1, �2, �3) be an orthonormal basis of V . For � ∈ Sym and C symmetric and 
positive definite, the components Dij of � , Cijkl of C and C−1

ijkl
 of C−1 with respect to � 

are

These components are reported in the Appendix for the special forms of C described 
in Section 4.

Because C and C−1 are symmetric fourth-order tensors from Sym to Sym, their com-
ponents satisfy the following equalities

With these notations, for a given symmetric tensor � , the symmetric tensor

has components

It may be convenient to adopt a vector notation in the place of the tensor notation 
described above. Thus, a symmetric tensor � is replaced by the vector � with the six 
components

such that � ⋅ � = � ∙ � = tr(�2) . Then, for � the vector associated to � , from (6) we 
get

where the matrix of the components of �̃ is

∥ � ∥2
C
= �◦�.

Dij = �i ⋅ ��j, with Dij = Dji, i, j = 1, 2, 3

Cijkl = �i ⋅ C

(
�k ⊙ �l + �l ⊙ �k

2

)
�j, i, j, k, l = 1, 2, 3,

C
−1
ijkl

= �i ⋅ C
−1

(
�k ⊙ �l + �l ⊙ �k

2

)
�j, i, j, k, l = 1, 2, 3.

(4)Cijkl =Cklij, Cijkl = Cjikl = Cijlk, i, j, k, l = 1, 2, 3,

(5)C
−1
ijkl

=C−1
klij
, C

−1
ijkl

= C
−1
jikl

= C
−1
ijlk
, i, j, k, l = 1, 2, 3.

� = C(�)

(6)Bij =
∑
kl

CijklAkl =
∑
k

CijkkAkk + 2
∑
k<l

CijklAkl.

(A11,
√
2A12,A22,

√
2A13,

√
2A23,A33)

T ,

� = �̃�,
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Finally, we denote by �min(�) , and �max(�) the minimum and maximum eigenvalue 
of a tensor � , respectively. Analogous notation is adopted for a fourth-order tensor 
A.

3 � The projection problem

Given � ∈ Sym , we address the problem of minimizing the following functional

over the set of negative semidefinite symmetric tensors Sym− . Since Sym− is a closed 
convex cone of Sym, in view of the minimum norm theorem [6], there exists a 
unique minimum point �∗ ∈ Sym− for the functional (7). Moreover, �∗ is the mini-
mum point of (7) if and only if it satisfies the variational inequality

which, expressed in terms of the inner product ∙ , reads

The following proposition gives a characterization of the minimizer of the func-
tional � in (7) over Sym−.

Proposition 1  For � ∈ Sym , there exists a unique �∗ ∈ Sym− satisfying the follow-
ing three equivalent statements 

	 (i)	 �∗ minimizes functional � in (7) 

	 (ii)	 �∗ satisfies the following complementarity problem 

	 (iii)	 �∗ satisfies the variational inequality (8).

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1111

√
2C1112 C1122

√
2C1113

√
2C1123 C1133√

2C1211 2C1212

√
2C1222 2C1213 2C1223

√
2C1233

C2211

√
2C2212 C2222

√
2C2213

√
2C2223 C2233√

2C1311 2C1312

√
2C1322 2C1313 2C1323

√
2C1333√

2C2311 2C2312

√
2C2322 2C2313 2C2323

√
2C2333

C3311

√
2C3312 C3322

√
2C3313

√
2C3323 C3333

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)�(�) =∥ � − � ∥2
C
= (� − �) ∙ C(� − �),

(� − �∗)◦(� − �∗) ≤ 0, ∀ � ∈ Sym−,

(8)C(� − �∗) ∙ (� − �∗) ≤ 0, ∀ � ∈ Sym−.

�(�∗) ≤ �(�), for each � ∈ Sym−.

(9)C(� − �∗) ∈ Sym+,

(10)�∗ ∙ C(� − �∗) = 0.
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Proof  Equivalence of (i) and (iii) follows from the minimum norm theorem [6]. It is 
an easy matter to show that (ii) implies (iii). The proof that (iii) implies (ii) is based 
on the fact that Sym− is a cone, in fact from (8), for � = � and for � = 2�∗ , we get 
(10); condition (9) follows from (8) putting � = �∗ + �# , with �# ∈ Sym− . 	�  ◻

The minimum point �∗ of the functional (7) is the projection of � onto Sym− with 
respect to the inner product ◦ in Sym. Letting PC,Sym− ∶ Sym → Sym− be the nonlin-
ear function which associates to each symmetric tensor its projection onto Sym− with 
respect to the inner product (3), we have, therefore that

The projection PC,Sym− is monotone, Lipschitz continuous, and homogeneous of 
degree 1, i.e.

and satisfies

Moreover, it is infinitely often Fréchet differentiable on an open dense subset of Sym 
[25].

From (9) and (10), it follows that if C(�) ∈ Sym+ , then �∗ = � , and if � ∈ Sym− , 
then �∗ = � . Moreover, it is easy to prove that when tensors �∗ and C(� − �∗) satisfy 
(9) and (10), then they commute [7, 22],

Thus �∗ and C(� − �∗) are coaxial [7, 22], that is there exists an orthonormal basis 
of V constituted by eigenvectors of both �∗ and C(� − �∗) . From Proposition 1, it 
follows that each tensor � ∈ Sym can be expressed as the following sum

where �∗ belongs to Sym− and � − �∗ belongs to C−1Sym+ , with

4 � Fourth‑order tensors C in solid mechanics

We now describe some possible choices of the symmetric and positive definite tensor C 
giving details of tensors arising when modelling masonry-like materials that motivated 
this work.

When the tensor C coincides with the identity tensor, i.e.

�∗ = PC,Sym−(�).

(11)PC,Sym−(��) = �PC,Sym−(�), ∀� ∈ Sym and ∀� ≥ 0,

(12)P𝛼C,Sym−(�) = PC,Sym−(�), ∀� ∈ Sym and ∀𝛼 > 0.

�∗
C(� − �∗) = C(� − �∗)�∗ = �.

� = �∗ + � − �∗,

C
−1Sym+ =

{
�: C(�) ∈ Sym+

}
.

C = �Sym,
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then the C-norm coincides with the Frobenius norm. Given � ∈ Sym positive defi-
nite, the fourth-order tensor defined by

is symmetric and positive definite and define the weighted Frobenius norm

This norm was introduced in [16], where the problem of finding the nearest correla-
tion matrix is addressed, [14, 15].

Other expressions for C can be chosen within the framework of solids mechanics. 
In particular, minimizing functional (7) has interesting applications in modelling the 
mechanical behaviour of masonry constructions. If one adopts the constitutive equa-
tion of masonry-like materials [7, 22] to model masonry materials, it is possible to 
prove that the stress �∗ associated with the infinitesimal strain � is the projection of 
C(�) onto Sym− with respect to the inner product defined in (3), with C−1 in place of C . 
Here C represents the elasticity tensor of the material and can have several expressions 
depending on its different degrees of anisotropy. In order to recall some of these expres-
sions [10, 11, 26] the following definition has to be introduced. Let �  be a subset of 
Orth, we say that C is invariant under �  if

It is an easy matter to show that if C is invariant under �  , the same holds for C−1.

4.1 � The isotropic case

If C satisfies the condition (13) with � = Orth , then there exist two real numbers  E and 
� such that C has the representation

where � ∈ Sym is the identity tensor [10]. In this case, tensor C is called isotropic 
and is the elasticity tensor of an isotropic elastic material with Young’s modulus E 
and the Poisson’s ratio � [11]. Because of (2), E and � satisfy the conditions

We point out that if E = 1 and � = 0 , tensor in (14) is the identity tensor. When C has 
the expression in (14), its inverse is

Let us now limit ourselves to consider the isotropic fourth-order tensor C in (14). 
In this case, from the coaxiality of tensors �∗ and C(� − �∗) , it follows that � and 
�∗ are coaxial as well. This property makes it easy to calculate for each choice of 

C(�) = ���, � ∈ Sym,

∥ � ∥C=∥
√
��

√
� ∥ .

(13)C(���T ) = �C(�)�T , ∀� ∈ Sym,� ∈ � .

(14)C =
E

1 + 𝜈
(�Sym +

𝜈

1 − 2𝜈
�⊙ �),

(15)E > 0, − 1 < 𝜈 < 1∕2.

(16)C
−1 =

1 + 𝜈

E
�Sym −

𝜈

E
�⊙ �.
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� the minimum point of � explicitly, and then compare the explicit solution to the 
numerical one. By virtue of Proposition 1 the minimum point of � coincides with 
the solution of (9)–(10), which, since the involved tensors are coaxial, is a classical 
linear complementarity problem in ℝ3 , the unknowns being the eigenvalues of �∗ . 
For the sake of comparison, the explicit solution �∗ is summarized in the following 
(see e.g. [22]).

For � ∈ Sym, let d1 ≤ d2 ≤ d3 be its ordered eigenvalues and �1, �2, �3 be the cor-
responding eigenvectors. We introduce the following tensors of Sym

Given � , the corresponding minimum point �∗ of the functional � in (7) is

When � = 0 , tensor C is equal to E�Sym and the projection of � onto Sym− with 
respect to the inner product associated with C , is

where the square root 
√
� of the positive semidefinite symmetric tensor � is the 

unique positive semidefinite symmetric tensor � , such that �2 = �.

4.2 � The transversely isotropic case

If �  is a proper subset of Orth, then C satisfying (13) is said anisotropic. In this 
paper, we limit our attention to only one kind of anisotropic tensors, corresponding 
to the transverse isotropic materials, described in the following.

A fourth-order tensor C is said transversely isotropic if there exists a unit vector 
�3 (the preferred direction of transverse isotropy) such that C is invariant under the 
subgroup 𝛤TI ⊂ Orth constituted by all the rotations about �3,

Let � = (�1, �2, �3) be an orthonormal basis of V . If tensor C is transversely isotropic 
with respect to the direction �3 , then C has the following representation [26]

(17)�11 = �1 ⊙ �1,�22 = �2 ⊙ �2,�33 = �3 ⊙ �3.

(18)�∗ =�, if d1 +
�

1 − 2�
(d1 + d2 + d3) ≥ 0,

(19)
�∗ =[d1 +

�

1 − �
(d2 + d3)]�11, if (1 − �)d1 + �(d2 + d3) ≤ 0,

d2 + �d3 ≥ 0,

(20)�∗ =(d1 + �d3)�11 + (d2 + �d3)�22, if d2 + �d3 ≤ 0, d3 ≥ 0,

(21)�∗ =�, if d3 ≤ 0.

�∗ =
� −

√
�2

2
,

C(���T ) = �C(�)�T , � ∈ Sym,� ∈ �TI .
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where

with � = �3 ⊙ �3 and � = � − � . The real numbers �i satisfy the conditions

which guarantee the positive definiteness of C in (22). Tensor C in (22) describes 
the mechanical behaviour of a transversely isotropic elastic material [10, 26]. For 
�3 = 2�2 − �1 and �4 = �5 = �1 − �2 the fourth-order tensor in (22) becomes 
isotropic,

with

In the anisotropic case � and �∗ are not coaxial and the the minimum point of func-
tional � can be calculated explicitly only for a few choices of � . In particular, when 
� has the eigenvector �3 , then � , �∗ and C(� − �∗) are coaxial and the minimum 
point �∗ of � can be calculated adopting the same procedure as in the isotropic case. 
Its explicit expression is provided in the following.

Given � ∈ Sym, let d1 ≤ d2 ≤ d3 be its ordered eigenvalues and �1, �2, �3 be the cor-
responding eigenvectors. For �11 and �22 defined in (17), the solution �∗ has the fol-
lowing expressions.

(22)C =

5∑
i=1

�iCi,

(23)C1 =�⊙ �, C2 = �⊙�, C3 = �⊙� +�⊙ �,

(24)C4 =4�⊗�, C5 = 2�⊗� − C2,

𝛼4 > 0, 𝛼5 > 0, 𝛼1 + 2𝛼2 > 0, 𝛼1𝛼2 − 𝛼2
3
> 0,

C = 2(𝛼1 − 𝛼2)�Sym + (2𝛼2 − 𝛼1)�⊙ �,

�1 =
(1 − �)E

(1 + �)(1 − 2�)
, �2 =

E

2(1 + �)(1 − 2�)
.

(25)
�∗ =�, if (�2 + �5)d1 + (�2 − �5)d2 + �3d3 ≥ 0,

�3(d1 + d2) + �1d3 ≥ 0,

(26)

�∗ =[d1 +
(�2 − �5)d2 + �3d3

�2 + �5
]�11, if (�2 + �5)d1 + (�2 − �5)d2 + �3d3 ≤ 0,

2�2d2 + �3de ≥ 0, 2�3�5d2 + [�1(�2 + �5) − �2
3
]d3 ≥ 0,

(27)

�∗ =[d1 +
�3

2�2
d3]�11 + [d2 +

�3

2�2
d3]�22, if 2�2d2 + �3d3 ≤ 0, d3 ≥ 0,

(28)�∗ =�, if d3 ≤ 0.
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In general, suitable numerical strategies should be adopted to calculate the mini-
mum point of � , as proposed in the next section.

5 � A primal‑dual path following interior‑point method

The numerical computation of the minimum point of functional (7) can be effi-
ciently performed by exploiting the characterization of the solutions described in (9) 
and (10). Indeed, setting � = −� these conditions describe the following monotone 
semidefinite linear complementarity problem (SDLCP) in the space of symmetric 
tensors

where the affine subspace 𝛬 ⊆ Sym × Sym is given by

The subspace � has dimension 6 and is monotone as

for all (��, ��) and (�,�) ∈ �.
We now describe an interior point algorithm for the efficient and accurate solu-

tion of (29) that exploits the form of the tensors C presented in the previous section. 
In [18–20], the general theoretical framework of the algorithm is given for SDLCPs 
with affine subspaces � of a general form but our practical implementation is based 
on that of interior-point approaches in [31, 32] for a somehow related problem, that 
is the solution of convex Quadratic SemiDefinte Programming (QSDP) problems.

Problem (29), and equivalently (9) and (10) with � = −� , are in fact the first-
order optimality conditions of the following QSDP problem

This problem differs with respect to the standard formulation of QSDPs as only pos-
itive semidefiniteness constraints are present while the usual linear constraints are 
not included, see e.g. [32]. Clearly, the functionals p(�) and �(�) defined in (7) and 
(30) respectively, have the same minimizers (up to the sign).

Several methods have been proposed in the literature for standard QSDPs ranging 
from interior point methods [31, 32] to semismooth Newton approaches [21], pass-
ing through reformulations as a standard semidefinite-quadratic-linear program [2]. 
Most of these works focus on the design and analysis of efficient algorithms for the 
case where the matrix dimensions and/or the number of linear constraints are large, 
and it may be impossible to explicitly store or compute the matrix representation 
of C . Conversely, here we are interested in the accurate solution of problem (30) in 
the small case setting and propose to use a primal-dual path-following interior point 
method in the spirit of [31, 32].

(29)(�,�) ∈ �, � ∈ Sym+, � ∈ Sym+ and � ∙ � = 0,

� = {(�,�) ∈ Sym × Sym | � = C(� + �)}.

(� − ��) ∙ (� − ��) = ‖� − ��‖2
C
≥ 0,

(30)min� p(�) =
1

2
� ∙ C(�) + � ∙ C(�)

s.t. � ∈ Sym+.
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We now describe the main steps of an interior point method based on the primal-
dual path-following method given in [31, 32] for the solution of (30) coupled with its 
dual form:

The algorithm, named IPM-Proj, uses Mehrotra’s predictor-corrector steps and 
practical details are postponed to Sect. 6.1. IPM-Proj is based on approximating a 
sequence of points on the central path. The central path is defined as the set of solu-
tions (��, ��) to the central path equations

where � ∈ [0, 1] is the centering parameter and � is the duality measure defined by

Equations (32) can be also interpreted as the perturbed first-order optimality condi-
tions for problems (30)–(31). Fixed � and assuming that there exists (�,�) ∈ � with 
� ∈ Sym++ and � ∈ Sym++ , then [20, Theorem  3.1] ensures that for every 𝜇 > 0 , 
there exists a unique (��, ��) that lies on the central path, that is that solves (32).

Note that the first block equation in F� above is affine linear, while the second is 
mildly nonlinear. Hence a Newton step seems a natural idea for an iterative algo-
rithm. Unfortunately, the residual map F� takes an iterate (�,�) ∈ Sym × Sym to a 
point in Sym × Lin (since �� − �� is in general not symmetric), which is a space 
of higher dimension, and so Newton’s method cannot be applied directly. To apply 
Newton-type algorithms it is previously necessary to symmetrize the term �� so 
that the resulting equivalent nonlinear system gives a function that maps Sym × Sym . 
A popular and effective technique to overcome this issue is introducing general sym-
metrization scheme based on the fourth-order tensor H� ∶ Lin → Sym defined as

where � is some nonsingular tensor, see [28] and references therein.
It has been shown that for any nonsingular tensor � , the system F�(�,�) = � in 

(32) is equivalent to the system

to which a Newton-type method can be applied, see e.g. [30]. Having fixed � and 
given the current iteration (�,�) , let (��,��) ∈ Sym × Sym denote a Newton direc-
tion. Then it satisfies

(31)
max�,� d(�) = −

1

2
� ∙ C(�)

s.t. � = C(� + �)

� ∈ Sym+.

(32)F�(�,�) =

(
� − C(� + �)

�� − ���

)
= �, � ∈ Sym++, � ∈ Sym++,

� =
� ∙ �

3
.

H� = �⊗ �−T

(33)F̃𝜇(�,�) =

(
� − C(� + �)

H�(��) − 𝜎𝜇�

)
= �,
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where the fourth-order tensors E = E(�,�) and F = F(�,�) are the derivative of H� 
with respect to � and � respectively, evaluated at the current iterate, i.e.

and �d and �c are the current dual residual and complementarity gap given by

We remark that a crucial role in the the theory and implementation of interior-point 
methods is played by centrality, that is the solution of the equation �� = ��� (or 
its symmetrization) that takes into account the fulfillment of the complementa-
rity conditions [8] . The main idea of the Mehrotra’s predictor-corrector approach 
takes inspirations from the predictor-corrector algorithms in ordinary differential 
equations and consists in splitting the computation of the solution of the system 
(34)–(35) into two steps. The first step, named the “predictor step”, attempts to reach 
complementarity and optimality in just one shot by ignoring the perturbation � in 
the system and then solves (35) by setting � = 0 . In fact, the predictor step ignores 
centrality and predicts how much progress in reducing the complementarity gap and 
infeasibilities may be achieved. Let (��, ��) denote the predictor step. If a full step 
in this direction was made then the new complementarity product would be

as H�(� �� + ���) = � from (35) with � = 0 . Therefore, the “corrector step" 
solves (34)–(35) with the “corrected" right-hand-side

see also [31] (see further algorithmic details of the predictor-corrector approach in 
Section 6.1).

Depending on the choice of � , the tensors E and F  have a different form and 
therefore different forms for the equations (34)--(35) can be derived. Several choices 
for � are available in the literature [28]. One of the most popular choice yields the 
so-called Nesterov-Todd (NT) direction [30] and is obtained by choosing � = �−1∕2 
with � being the geometric mean of � and �−1 , i.e.

(��� = � ). The corresponding forms of E and F  and �c are:

(34)−C(��) + �� =�d

(35)E(��) + F(��) =�c

E = �⊗ (�−T�) F = (��)⊗ �−T ,

(36)�d =C(� + �) − �,

(37)�c =��� −H�(��).

H�((� + ��)(� + ��)) =H�(�� + �� ��) +H�(� �� + ���)

=H�(�� + �� ��),

�c = ��� −H�(�� + �� ��),

(38)� = �1∕2(�1∕2��1∕2)−1∕2�1∕2 = �−1∕2(�1∕2��1∕2)1∕2�−1∕2,
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The popularity of the NT direction is motivated by the fact that methods based 
on NT are shown to be fast and robust. Also, the NT direction is implemented in 
SDTP3 [34] that is widely considered as the state-of-art software for solving SDPs. 
Moreover, system (34)–(35) has a unique solution under mild assumptions, e.g. 
[30, Theorem 3.1]. Indeed, assuming that E is nonsingular, system (34)–(35) has a 
unique solution if and only if the Schur complement

is positive definite [30]. This condition holds when �,� and H�(��) are positive 
semidefinite. In particular, H� is positive definite whenever � is an invertible tensor 
that satisfies �T� = �−1 where � is such that ��� = � , as for the NT direction, 
see [30].

The application of the method in [31, 32] to problems (30)–(31) yields the 
following procedure for the solution of the Newton system (34)–(35): solve the 
Schur complement system

and compute �� = C
−1(�d − ��).

For the NT direction, the Schur complement tensor takes the form

where � is given in (38) and we recall that C is nonsingular on Sym and that the 
inverse C−1 is explicitly available in the applications considered in this work.

In the next section we will show that the solution of (39) with SNT may yield 
an inaccurate solution of the original problem (29) due to the fast increasing of 
the condition number of SNT as � goes to zero.

In order to provide an accurate solution of problem (29), we propose to use an 
alternative choice of the tensor � that was firstly proposed in [1] and yields the 
so-called Alizadeh–Haeberly–Overton (AHO) direction. The AHO direction cor-
responds to set � = � that gives

We observe that with this choice of � , the Newton system (34)–(35) admits a unique 
solution when �,� are positive semidefinite and �� + �� is positive definite [20, 
Corollary 3.2].

As alternative to the linear system with the Schur complement in (39), in this 
work we propose to solve a different linear system that for the AHO direction 
possesses optimal conditioning properties when the tensor C is of the form (14) 
or (22)–(24) discussed in Sect. 4. Indeed, a solution of (34)–(35) can be obtained 
also by computing �� from

E = �⊗�−1, F = �⊗�, �c = 𝜇�−1 − �.

S = E
−1
F + C

−1,

(39)S(��) = E
−1(�c) − C

−1(�c),

(40)SNT = (�⊗�) + C
−1,

E = �⊗ �, F = �⊗ �, �c = 𝜇� −
1

2
(�� + ��).
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where

and then retrieving �� form (34). In fact, for the AHO direction, the above tensor M 
has the following special form

We observe that while the Schur complement S is symmetric the tensor M is in 
general nonsymmetric. The conditioning properties of SNT and MAHO are discussed 
in the next section.

5.1 � Conditioning issues

Let �(k) be a monotonically decreasing sequence such that limk→∞ �(k) = 0 and let 
(�(k), �(k)) be a point on the central path corresponding to �(k) , that is (�(k), �(k)) 
satisfies (32). Moreover, let S(k)

NT
 and M(k)

AHO
 be the corresponding tensors of the 

Newton systems given in (40) and (42), respectively.
Assume that the sequence (�(k), �(k)) converges to the optimal solution (�∗, �∗) 

as �(k) tends to zero and that the ranks of �∗ and �∗ sum up to 3.
We will now show that under these conditions, the condition number of S(k)

NT
 

may not be bounded for �(k)
→ 0 while the condition number of M(k)

AHO
 is uni-

formly bounded for �(k)
→ 0 when C is the isotropic tensor in (14). Moreover we 

conjecture that the condition number of M(k)

AHO
 is still bounded in the transversely 

isotropic case in (22).
Let �(k)

1
, �

(k)

2
, �

(k)

3
 and �(k)

1
, �

(k)

2
, �

(k)

3
 be the eigenvalues of �(k) and �(k) , respec-

tively. We observe that �(k) and �(k) commute and we denote by (�(k)
1
, �

(k)

2
, �

(k)

3
) a 

basis of common eigenvectors, moreover it holds

Let �∗
1
, �∗

2
, �∗

3
 and �∗

1
, �∗

2
, �∗

3
 be the eigenvalues of �∗ and �∗ , respectively. They satisfy 

�∗
i
�∗
i
= 0 and since rank(�∗) + rank(�∗) = 3 , only the following 4 cases can occur:

–	 case 1: 𝜉∗
1
, 𝜉∗

2
, 𝜉∗

3
> 0 , �∗

1
= �∗

2
= �∗

3
= 0;

–	 case 2: 𝜉∗
1
, 𝜉∗

2
> 0 and �∗

3
= 0 , �∗

1
= �∗

2
= 0 and 𝜆∗

3
> 0;

–	 case 3: 𝜉∗
1
> 0 and �∗

2
= �∗

3
= 0 , �∗

1
= 0 and 𝜆∗

2
, 𝜆∗

3
> 0;

–	 case 4: �∗
1
= �∗

2
= �∗

3
= 0 , 𝜆∗

1
, 𝜆∗

2
, 𝜆∗

3
> 0.

(41)M(��) = �c − F(�d)

M = E + FC,

(42)MAHO = (�⊗ �) + (�⊗ �)C.

(43)�
(k)

i
�
(k)

i
= ��(k), for i = 1, 2, 3.
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We now compute the eigenvalues of �(k) ⊗�(k) . Since �(k) and �(k) lie on the 
central path, by the definition of �(k) in (38) we have that the eigenvalues of �(k) 
are 

√
�
(k)

i
∕

√
�
(k)

i
 for i = 1, 2, 3.

Therefore, the eigenvalues of �(k) ⊗�(k) are 
√

�
(k)

i
�
(k)

j√
�
(k)

i
�
(k)

j

 for i, j = 1, 2, 3 , i ≤ j ; thus, 

taking into account (43) the following cases can occur:

–	 case 1: �(k) has eigenvalues �(k)
1

 , �(k)
2

 , �(k)
3

 and �(k) has eigenvalues ��
(k)

�
(k)

1

 , ��
(k)

�
(k)

2

 , ��
(k)

�
(k)

3

 , 

then the eigenvalues of �(k) ⊗�(k) are 

–	 case 2: �(k) has eigenvalues �(k)
1

 , �(k)
2

 , ��
(k)

�
(k)

3

 and �(k) has eigenvalues ��
(k)

�
(k)

1

 , ��
(k)

�
(k)

2

 , �(k)
3

 , 

then the eigenvalues of �(k) ⊗�(k) are 

–	 case 3: �(k) has eigenvalues �(k)
1

 , ��
(k)

�
(k)

2

 , ��
(k)

�
(k)

3

 and �(k) has eigenvalues ��
(k)

�
(k)

1

 , �(k)
2

 , �(k)
3

 , 

then the eigenvalues of �(k) ⊗�(k) are 

–	 case 4: �(k) has eigenvalues ��
(k)

�
(k)

1

 , ��
(k)

�
(k)

2

 , ��
(k)

�
(k)

3

 and �(k) has eigenvalues �(k)
1

 , �(k)
2

 , �(k)
3

 , 

then the eigenvalues of �(k) ⊗�(k) are 

From the Courant–Fisher–Weyl min-max principle [3, Corollary  3.13]2 we get:

��(k)

�
(k)

i
�
(k)

j

, i, j = 1, 2, 3, i ≤ j.

��(k)

(�
(k)

1
)2
,

��(k)

(�
(k)

2
)2
,

��(k)

�
(k)

1
�
(k)

2

,
(�

(k)

3
)2

��(k)
,

�
(k)

3

�
(k)

1

,
�
(k)

3

�
(k)

2

.

��(k)

(�
(k)

1
)2
,

(�
(k)

2
)2

��(k)
,

(�
(k)

3
)2

��(k)
,

�
(k)

2

�
(k)

1

,
�
(k)

3

�
(k)

1

,
�
(k)

1
�
(k)

2

��(k)
.

(�
(k)

1
)2

��(k)
,

(�
(k)

2
)2

��(k)
,

(�
(k)

3
)2

��(k)
,

�
(k)

1
�
(k)

2

��(k)
,

�
(k)

1
�
(k)

3

��(k)
,

�
(k)

2
�
(k)

3

��(k)
.

2  We recall that by the Courant-Fisher-Weyl min-max principle [3, Corollary 3.13], for any symmetric 
tensor � and � , we have that �

i
(�) + �

min
(�) ≤ �

i
(� + �) ≤ �

i
(�) + �

max
(�) , where �

i
(⋅) denotes the ith 

eigenvalue ordered in increasing order.
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and

and the condition number �(S(k)

NT
) of S(k)

NT
 satisfies the inequality:

Therefore in cases 1 and 4 �(S(k)

NT
) is bounded, while in cases 2 and 3 we have that 

�(S
(k)

NT
) = O((�(k))−1).

Let us now consider the nonsymmetric fourth-order tensor M(k)

AHO
 defined in (42) 

with �(k) and �(k) in the place of � and � . In order to analyze its condition number, we 
consider the positive definite symmetric fourth-order tensor

which has the form

and calculate its eigenvalues focusing on the case in which C is isotropic with 
expression (14). By introducing the Lamé moduli

from (44) we get for � ∈ Sym

𝜆max(�
(k) ⊗�(k)) + 𝜆min(C

−1) ≤ 𝜆max(S
(k)

NT
) ≤ 𝜆max(�

(k) ⊗�(k)) + 𝜆max(C
−1)

𝜆min(�
(k) ⊗�(k)) + 𝜆min(C

−1) ≤ 𝜆min(S
(k)

NT
) ≤ 𝜆min(�

(k) ⊗�(k)) + 𝜆max(C
−1)

𝜆max(�
(k) ⊗�(k)) + 𝜆min(C

−1)

𝜆min(�
(k) ⊗�(k)) + 𝜆max(C

−1)
≤ 𝜅(S

(k)

NT
) ≤

𝜆max(�
(k) ⊗�(k)) + 𝜆max(C

−1)

𝜆min(�
(k) ⊗�(k)) + 𝜆min(C

−1)
.

L
(k) = M

(k)

AHO
(M

(k)

AHO
)T ,

(44)
L
(k) =(�⊗ �(k))2(�(k) ⊗ �)C(�⊗ �(k))

+ (�⊗ �(k))C(�(k) ⊗ �) + (�(k) ⊗ �)C2(�(k) ⊗ �),

� =
E

2(1 + �)
, � =

�E

(1 + �)(1 − 2�)
,

(45)

L
(k)(�) =

1

4

(
�(�(k))2 + (�(k))2� + 2�(k)��(k)

)

+ �2
(
�(�(k))2 + (�(k))2� + 2�(k)��(k)

)

+
�

2

(
2�(k)��(k) + 2�(k)��(k) + �(k)�(k)�

+ �(k)�(k)� +��(k)�(k) +��(k)�(k)
)
+ �

(
tr(��(k))�(k)

+ tr(��(k))�(k) + (3� + 4�)tr(��(k))�(k)
)
.
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By straightforward calculations we get that the following three positive real numbers

are eigenvalues of L(k) with eigentensors

The remaining eigentensors belong to the subspace of Sym spanned by �(k)
1

⊙ �
(k)

1
 , 

�
(k)

2
⊙ �

(k)

2
 and �(k)

3
⊙ �

(k)

3
.

Thus, we look for real numbers m and triples (�1,�2,�3) ≠ (0, 0, 0) such that, 
putting

we have

From (45) we get

and, taking into account the linear independence of tensors �(k)
i

⊙ �
(k)

i
 , i = 1, 2, 3 , we 

can conclude that nonzero triples (�1,�2,�3) exist provided that m is a root of the 
following third-degree polynomial

(46)m
(k)

1
=
1

4
(�

(k)

1
+ �

(k)

2
)2 + 2�2(�

(k)

1
+ �

(k)

2
)2 + (�

(k)

1
+ �

(k)

2
)(�

(k)

1
+ �

(k)

2
),

(47)m
(k)

2
=
1

4
(�

(k)

1
+ �

(k)

3
)2 + 2�2(�

(k)

1
+ �

(k)

3
)2 + (�

(k)

1
+ �

(k)

3
)(�

(k)

1
+ �

(k)

3
),

(48)m
(k)

3
=
1

4
(�

(k)

2
+ �

(k)

3
)2 + 2�2(�

(k)

2
+ �

(k)

3
)2 + (�

(k)

2
+ �

(k)

3
)(�

(k)

2
+ �

(k)

3
),

(49)
1√
2
(�

(k)

1
⊙ �

(k)

2
+ �

(k)

2
⊙ �

(k)

1
),

1√
2
(�

(k)

1
⊙ �

(k)

3
+ �

(k)

3
⊙ �

(k)

1
),

(50)
1√
2
(�

(k)

2
⊙ �

(k)

3
+ �

(k)

3
⊙ �

(k)

2
).

� = 𝜒1�
(k)

1
⊙ �

(k)

1
+ 𝜒2�

(k)

2
⊙ �

(k)

2
+ 𝜒3�

(k)

3
⊙ �

(k)

3

(51)L
(k)(�) = m�.

L
(k)(�

(k)

i
⊙ �

(k)

i
) =(𝜉

(k)

i
+ 2𝜓𝜆

(k)

i
)2�

(k)

i
⊙ �

(k)

i

+ 𝜔
[(

𝜉
(k)

i
+ (3𝜔 + 4𝜓)𝜆

(k)

i

)
�(k) + 𝜆i�

(k)
]
,

(52)p̃k(m) = m3 + akm
2 + bkm + ck,
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which is the determinant of the shifted system derived from (51). The coefficients of 
p̃k(m) are

and

with

and

From the symmetry and positive definiteness of L(k) it follows that the polynomial 
(52) has three positive real roots m(k)

4
 , m(k)

5
 and m(k)

6
 , which are the sought eigenvalues 

of L(k).
Taking into account the complementarity condition (43) and considering the four 

cases for the forms of �(k)
i

 and �(k)
i

 as done in the analysis of �(SNT ) , we get that in all 
cases ak , bk and ck are polynomials of the variable �k of degree 2, 4 and 6, respec-
tively. Thus the roots of p̃k(m) have the expressions

for some scalars e(k)
i

 , f (k)
i

 and g(k)
i

.
We point out that the eigenvalues of L(k) given in (46)–(48) are of the type (53) 

with e(k)
i

≠ 0 for i = 1, 2, 3 in the four possible cases. Assuming e(k)
i

≠ 0 for all k and 
i = 4, 5, 6 , we can conclude that the condition number of M(k)

AHO
 does not depend on 

�(k) . We are aware that the assumption on e(k)
i

 in (53) is rather strong but we remark 
that it is fulfilled in all the performed experiments.

In addition, the independence of the condition number of M(k)

AHO
 on �(k) is cor-

roborated by the analysis of the case C = �Sym . For this choice of C , tensor M(k)

AHO
 is 

symmetric and its eigenvalues are

with eigentensors in (49) and (50), and

ak = − (�
(k)

11
+ �

(k)

22
+ �

(k)

33
),

bk =�
(k)

11
�
(k)

22
− (�

(k)

12
)2 + �

(k)

11
�
(k)

33
− (�
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with eigentensors �(k)
1

⊙ �
(k)

1
 , �(k)

2
⊙ �

(k)

2
 and �(k)

3
⊙ �

(k)

3
 , respectively. Once again, tak-

ing into account the complementarity condition (43) and considering the four cases 
for the forms of �(k)

i
 and �(k)

i
 , we get that h(k)

i
 have the expression in (53), with g(k)

i
= 0 

and e(k)
i

≠ 0 and the desired result follows.
The calculation of the eigenvalues of L(k) for C transversely isotropic is not easy 

and their explicit expressions are not available. Nevertheless, the numerical experi-
ments reported in Section 6 show that, as in the isotropic case, the condition number 
of M(k)

AHO
 is uniformly bounded for �(k)

→ 0.

6 � Numerical experiments

This section is devoted to numerical experiments; our purpose here is validating the 
proposed interior point approach for minimizing functional (7) and showing that it 
provides accurate solutions. Moreover, we show that it is suitable for being imple-
mented in the finite element code NOSA-ITACA [24] for the structural analysis of 
masonry constructions as it is able to solve problems where � is the infinitesimal 
strain tensor calculated within NOSA-ITACA for each Gauss point (see the third 
data set in Sect. 6.2).

We first describe the details of the implemented methods and then discuss the 
testing sets and the numerical results.

We remark that in the following sections we focus on the problem formulation 
(30) in the description of both the algorithm and the experiments. Clearly, analogous 
considerations can be retrieved focusing on the minimization of (7) changing the 
variable � = −�.

6.1 � The IPM‑Proj algorithm and implementation details

We report in Algorithm 1 a pseudo-code for the IPM-Proj method that is in fact an 
adaptation of the Mehrotra-type predictor corrector primal-dual algorithm [31, 32] 
applied to problem (30). This algorithm is very-well-known and is currently imple-
mented in general purpose software for general QSDPs [33]. It is a generalization of 
the method used in SDTP3 and cvx for linear semidefinite programming problems 
[9, 34].

In the description of the algorithm, let the current and the next iterate be (�,�) 
and (�+, �+) , respectively. Also, let the current and the next step-length parameter 
be denoted by � and �+ , respectively.

h
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The step-length � is defined at Line 18 as � = min{��, ��} with

and

At Line   32, � is defined analogously replacing �� and �� with �� and �� , 
respectively.

We implemented IPM-Proj in Matlab. In particular, regarding the NT direction, 
we closely followed the detailed implementation description in [30], where the com-
plexity of each iteration of the algorithm using either the NT or the AHO direction 
is also given, see [30, Table 2].

The computation of the predictor and the corrector steps involves the computation 
and factorization either of the Schur complement SNT (if flag = NT) or of the tensor 
MAHO (if flag = AHO). We used the Cholesky factorization for SNT and the LU fac-
torization with partial pivoting for MAHO . Moreover, in computing �� we computed 
the minimum eigenvalue of the symmetric tensor �−1���−T where � = ��T is the 
Cholesky factorization of � ; analogously for �� (in both Lines 18 and 32).

In all the experiments, we used (�,�) = 2(�, �) as a starting guess. Moreover, we 
set the accuracy level � to the tight value � = 10−15 . Finally, a maximum number of 
200 interior point iterations is allowed. The execution of the algorithm is also pre-
maturely interrupted in case an error occurs in the Cholesky factorization of � , � or 
SNT meaning that these tensors are numerically loosing the positive definiteness.

Finally, we mention that IPM-Proj has been implemented using the vector for-
malism described in Sect. 2 as done in [33, 34].

6.2 � Data sets

The performance of the IPM-Proj algorithm is tested on three data sets designed to 
highlight the features of the projection problem and show the good behaviour of the 
algorithm for different choices of C . In what follows, we denote by CI the isotropic 
tensor defined in (14) and by CTI the transversely isotropic tensor in (22).

First data set: random � We generated 105 random symmetric tensors � with 
random eigenvalues in the interval [−l, l] and removed from the set tensors such that 
� ∈ Sym− or such that C(�) ∈ Sym+ as in these cases the solution is trivial. Overall, 
we get sets of 74839, 70529 and 83373 tensors for C = �Sym , for CI and for CTI with 
parameters given in Table 1, respectively.

Second data set: Temple � The goal of this data set is to test our algorithm with 
a view toward applications. To show the algorithm’s efficiency without implement-
ing it into the code NOSA-ITACA, we resort to an artificial case study constituted 

𝛼� =

{
−1

𝜆min(�
−1𝛿�)

if 𝜆min(�
−1𝛿�) < 0

∞ otherwise ,

𝛼� =

{
−1

𝜆min(�
−1𝛿�)

if 𝜆min(�
−1𝛿�) < 0

∞ otherwise .
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by the domed temple discretized into 31052 8-nodes hexahedral elements shown in 
Fig. 1. First, the temple is subjected to its weight, and the strain field is calculated 
via a static analysis conducted with the NOSA-ITACA code.

Then, tensors � of the data set are the strain tensors calculated by NOSA-ITACA 
at each of 248216 Gauss points of the mesh. As for the random case, we removed 
from the set the tensors that gave trivial solutions. In particular, we tested tensors CI 
and for CTI with values of � , E and � ’s given in Table 1 which are driven by physi-
cal considerations. Since in our tests the magnitude of these parameters in C greatly 
differed from the the magnitude of the elements of � generated by NOSA-ITACA, 
we found numerically convenient to normalize both � and C , taking into account the 
properties of homogeneity (11) and invariance (12) of the projection introduced in 
Sect. 3. Taking into account the normalization, overall we get 89492 and 21747 ten-
sors � using CI and CTI , respectively.

Third data set: parametric � As pointed out in Sect.  4.2, unlike the isotropic 
case, in the transversely isotropic case, the data � and the exact solution �∗ (and 
then �∗ ) are in general not coaxial, and this lack of coaxiality seems to affect the 
performance of the IPM-Proj algorithm. Thus, the third data set is aimed at showing 
that the AHO direction behaves better than the NT direction when � is not coaxial 
with � and � . To this purpose, let (�1, �2, �3) be an orthonormal basis of V , with �3 the 
direction of transverse isotropy and let us consider the orthonormal vectors

and the tensors

for �1 and �2 ∈ [0, 2�] . We then construct tensors � ∈ Sym of the type

For �2 = 0,�, 2� we have �3(�1, 0) = �3 , thus tensors � and the solution �∗ are coax-
ial and the explicit solution is provided in (25)–(28); for any other choice of �2 , � 
and �∗ deviates from coaxiality.

6.3 � Numerical results

All results given in this section were obtained on an a Intel Core i7-9700K PC run-
ning at 3.60 GHz x 8 with 16 GB of RAM, 64-bit and using Matlab R2019b.

We first discuss the performance of the proposed algorithm and the effectiveness 
of the symmetrization schemes described in Sect. 5 on the first two data sets. As a 
measure of performance we use the complementarity gap defined as gap = � ∙ � and 

�1(�1, �2) = − cos�1cos�2�1 − sin�1cos�2�2 + sin�2�3,

�2(�1, �2) =sin�1�1 − cos�1�2,

�3(�1, �2) =cos�1sin�2�1 + sin�1sin�2�2 + cos�2�3,

�ii(𝜃1, 𝜃2) = �i(𝜃1, 𝜃2)⊙ �i(𝜃1, 𝜃2), i = 1, 2, 3,

(54)�(�1, �2) = d1�11 + d2�22 + d3�33, with d1, d2, d3 ∈ ℝ.
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when an analytic solution �∗ is available, i.e. when C = �Sym or with CI , the absolute 
error computed as error = ‖� − �∗‖ . We observe that the gap can be interpreted as 
coaxiality measure, being �∗ ∙ �∗ = �∗ ∙ C(� − �∗).

We report in Table  2 the average number of interior point iterations iterAv , the 
average complementarity gap gapAv , the average absolute error errorAv and the total 
CPU time cputot . The symbol ‘-’ means that that errorAv is not available (transversely 
isotropic case). We observe that both the accuracy measures error and gap are in 
favour of the IPM-Proj implementing the AHO direction as, in fact, using the NT 
direction yields from 3 to 6 less order of accuracy. Moreover, the use of the NT 
direction implies, on average, a larger number of iterations when CTI is used. Both 
issues are related to the fact that the Schur complement SNT becomes very-ill condi-
tioned for small � yielding poor interior point directions and, in several cases, runs 
are prematurely stopped due to an error in the Cholesky factorization. Conversely, 
the nice condition number of MAHO as � → 0 allows to compute very accurate 

Fig. 1   Finite element model of 
the domed temple

Table 1   Parameters used in the experiments for the definition of the tensors C

CI CTI

E � �
1

�
2

�
3

�
4

�
5

Random � 1 0.1 8 2 0.8 6 9
Temple � 3 ⋅ 10

9 0.2 2.0338 ⋅ 10
9

1.91 ⋅ 10
9

2.5423 ⋅ 10
8

2 ⋅ 10
9

1.25 ⋅ 10
9

Parametric � 1 0.1 8 2 0.8 6 9
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solutions. Finally, although aware that evaluating the cpu time of Matlab codes is 
not always meaningful, especially when built-in functions are employed, we note 
that IPM-Proj with the AHO direction is faster than with the NT one.

In order to deepen the analysis on the condition number of SNT and MAHO , we ran-
domly drew one tensor � from the random data set and one from the temple one. For 
both tensors, we plotted in Figs. 2 and 3 the values of �(SNT ) and �(MAHO) along the 
interior point iterations (IPM iterations), for both CI and CTI , together with the value of 
1∕� for a matter of comparison. As expected �(SNT ) grows as 1∕� , while �(MAHO) is 
constant both for CI and CTI as discussed in Sect. 5.1.

In order to interpret the results discussed above with a further tool, we report in 
Fig. 4 the boxplots of the runs performed for the Temple � related to the log10(gap) 
computed using the AHO and the NT directions for both CI and CTI . The plots show 
that the maximum, i.e. the highest data point in the data set excluding any outliers, is 
larger using NT than using AHO. Moreover, the use of NT yields a large number of 
outliers with values above the maximum. We remark that these outliers correspond to 
runs prematurely stopped for a failure in the Cholesky factorization due to the ill-condi-
tioning of the Schur complement SNT.

Concerning the third data set, Fig. 5 reports the plot of the complementarity gap ver-
sus the angle �2 , for �1 = �∕4 , and (d1, d2, d3) randomly chosen in [−1, 1] , when CTI is 
employed. The trend of the complementarity gap clearly shows how the deviation from 
coaxiality of � and � influences the coaxiality of � and � and then the accuracy of the 
numerical solution. The use of the AHO direction seems to mitigate this effect. The 
solutions calculated using the AHO and NT direction coincide for �2 = 0,�, 2�.

Table 2   Aggregated results for the experiments on random � (for l = 1, 10 ) and Temple � varying C : 
average number of iterations iterAv , average complementarity gap gapAv , average absolute error errorAv 
and the total CPU time cputot
Random � iterAv gapAv errorAv cputot

AHO NT AHO NT AHO NT AHO NT

C = �Sym l = 1 12 11 3E-16 1E-10 6E-15 6E-10 68.1 89.7
l = 10 11 10 1E-14 1E-08 1E-14 1E-08 63.5 91.6

CI l = 1 12 11 3E-16 1E-10 5E-15 7E-10 64.2 84.9
l = 10 11 10 1E-14 1E-08 2E-14 6E-09 59.3 87.7

CTI l = 1 12 20 2E-15 8E-08 - - 73.3 178
l = 10 12 22 7E-13 8E-06 - - 78.8 199.4

Temple � iterAv gapAv errorAv cputot

AHO NT AHO NT AHO NT AHO NT

CI 11 11 8E-13 3E-11 2E-11 2E-10 78.9 110.6
CTI 11 17 4E-13 1E-10 - - 19.5 41.9
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7 � Conclusions

In this paper, we addressed a projection problem consisting in determining the pro-
jection of a symmetric second-order tensor onto the cone of negative semidefinite 
symmetric tensors with respect to the inner product defined by an assigned positive 
definite symmetric fourth-order tensor C . Applications of interests in solid mechan-
ics strongly motivated this work supplying special forms for the tensors C which 
require the numerical solution of the projection problem. To this purpose, we con-
sidered an interior point method for a semidefinite programming reformulation of 
the problem and discuss reliable implementations based on direct solvers for the lin-
ear algebra. Several numerical tests are performed to validate the proposed method 
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showing that the use of the AHO direction might be preferable to get accurate 
solutions.

The implementation of the algorithm in the finite element code NOSA-ITACA 
[24] developed at ISTI-CNR for the structural analysis of masonry constructions 
will be the subject of future work together with the analysis of a real-world case 
study of engineering interest.
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Components of tensor C

The components Cijkl of C and C−1
ijkl

 of C−1 with respect to an orthonormal basis 
� = (�1, �2, �3) of V are introduced in Sect. 1. These components are reported in the 
following for the fourth-order tensors C used in the numerical experiments.

In the isotropic case we have

AHO NT

-13

-12

-11

-10

-9

-8

-7

(a) log10(gap) - CI

AHO NT
-14

-12

-10

-8

-6

(b) log10(gap) - CTI

Fig. 4   Temple � : box-plots of the log10 of the complementarity gap gap = X ∙ S using C
I
 (plot (a)) and 

using C
TI

 (plot (b))

0 2 4 6
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Fig. 5   Parametric � : value of the complementarity gap at the computed solution varying �2 in the defini-
tion of � in (54)
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The other components, if not zero, are given by relations (4) and (5).
In the transversely isotropic case, if �3 is the direction of transverse isotropy, then 

we have

with

and the remaining components are defined by (4) and (5) or are equal to zero.
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