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Antioxidants by nature: an
ancient feature at the heart of
flavonoids’ multifunctionality

Introduction

Early land plants’ ability to adapt to novel environmental pressures
associated with an ever-changing terrestrial habitat was the result of
a vast set of evolutionary innovations, including metabolic ones
(Wagner, 2011; Bowman et al., 2017). Land plants, as sessile
organisms, were driven to evolve integrated andmodularmetabolic
pathways. Several of them were true metabolic network innova-
tions, responsible for synthesizing several novel compounds
(Cannell et al., 2020; Dadras et al., 2023b). The new specialized
metabolites (SMs) contributed to thrive in these new and
frequently hostile environments (Rensing, 2018; Cheng et al.,
2019; Han et al., 2019; Buschmann, 2020; F€urst-Jansen
et al., 2020). There is evidence that metabolic plasticity is a key
component of a highly complex network in the plant–environment
interaction, which also includes morphoanatomical traits. This
network largely and ultimately determines the ability of terrestrial
plants to escape from themost severe environmental threats, the so-
called ‘flight strategy’ of sessile organisms (Potters et al., 2007;
Lauder et al., 2019). While an elaborate metabolic system was
already placed in the closest algal ancestors of land plants (Rieseberg
et al., 2021; Dadras et al., 2023a), primary and particularly
secondary metabolic networks have grown far more sophisticated
throughout plant evolution (Keeling et al., 2010;Wang et al., 2015;
Maeda, 2019;Bowles et al., 2020; Li et al., 2024).They contributed
to land plant distribution toward more challenging habitats
(Steemans et al., 2009). For instance, the R2R3MYB family of
transcription factors (TFs), which regulates a wide array
of biological processes, including the expression of genes involved
in the biosynthesis of phenylpropanoids, has been extraordinarily
expanded and diversified in the lineage of angiosperms (Feller
et al., 2011; Bowman et al., 2017; Albert et al., 2018; Jiang &
Rao, 2020; Davies et al., 2021). Enzymes involved in both the
‘decoration’ of basic phenylpropanoid skeletons (e.g. the C6-C3-
C6 core skeleton of flavonoids) and their transport to different
subcellular compartments have also expanded much throughout
plant evolution (Kitamura, 2006; Tohge et al., 2018; Alseekh
et al., 2020; Davies et al., 2020; Li et al., 2020; Wen et al., 2020).
The extraordinary chemical diversity originated from the rise and
evolution of multiple SM pathways, coupled with their location
in different tissues and cellular compartments, well explains
the outstanding plant adaptability to harsh stressful conditions

(sensu stricto, that is, distance from pre-existing homeostasis)
associated with the terrestrial habitat (F€urst-Jansen et al., 2020;
Rensing, 2020).

The pivotal role of SMs in the adaptability of landplants depends
not only on their extraordinarily high number and diversified
skeletons, synthesized by different taxa (Weng et al., 2021), but also
on their inherent ability to play multiple functions (Milo &
Last, 2012; Ehlers et al., 2020; Mutwil, 2020; Dur�an-Medina
et al., 2021; Hu et al., 2021; de Vries et al., 2021; Weng
et al., 2021). Although SM biosynthesis might have served as a sink
for the excess of carbon available to plants during their initial
exploration of a highly enriched CO2 atmosphere (Dadras
et al., 2023a,b), SMs multifunctionality efficiently compensates
for the energetic cost required for their biosynthesis (Klieben-
stein, 2013; Erb & Kliebenstein, 2020). The multifunctional
nature of SMs and their high responsiveness to abiotic and biotic
stressors provide plants with an unlimited defense arsenal, in which
each SM may play different roles depending on the severity of the
stress events and the degree of plant body complexity. These factors
determine the metabolite distribution at the organ, tissue, cellular,
and subcellular levels (Schneider et al., 2019; Wang et al., 2019;
Shitan & Yazaki, 2020; Weng et al., 2021). In simpler terms, the
evolution of multifunctional SM biosynthesis follows the natural
tendency to catch as many flies with one clamp as possible
(Wink, 1999; Izhaki, 2002).

Here, we focus on the ancient and ubiquitous class of flavonoids
(Fig. 1), which are highly responsive to abiotic and biotic
environmental stressors and are capable of regulating key steps in
plant growth and development (Pollastri & Tattini, 2011;
Schneider et al., 2019; Chapman & Muday, 2021; Garagounis
et al., 2021; Venegas-Molina et al., 2021; Daryanavard
et al., 2023). However, their multifunctionality makes it difficult
to determine the foremost environmental drivers for the emergence
and diversification of the flavonoid metabolic network, despite
decades of extensive research (Rozema et al., 1997, 2002; Buer
et al., 2010; Tripp et al., 2018; Yonekura-Sakakibara et al., 2019;
Davies et al., 2020). We provide a detailed analysis of the complex
relationship between the multifunctional nature of flavonoids and
the environmental stimuli primarily responsible for the rise of the
flavonoid metabolic network, offering conclusive evidence for
the structural–functional relationship that is at the root of their
functional versatility.

Did flavonoid metabolism first emerge in response to
biotic pressures?

The emergence of flavonoids represented an outstanding major
metabolic innovation during the plants’ water-to-land transition
(de Vries et al., 2017; Davies et al., 2020; Dos Santos Nascimento
& Tattini, 2022). This rise has been initially hypothesized to have
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occurred in response to herbivore pressure (Swain, 1977; Cooper
Driver, 1980), the long-known ‘biochemical coevolutionary
arms–race theory’ (Ehrlich & Raven, 1964). In brief, the rise and
the diversification of flavonoids, in terms of number and structural
complexity, paralleled with major changes in plant morphology,
would have been a direct consequence of the selective pressure
caused by predation and diseases (Levin, 1971; Swain, 1975,
1977). This coevolution hypothesis has been proven for several
classes of SMs, but questioned in other instances, such as the case of
flavonoids and other phenolics (Jones & Firn, 1991; Close &
McArthur, 2002; Davies et al., 2020; Erb & Kliebenstein, 2020).

For instance, Rausher (2001) argued that plant enemies are too
rare to generate a frequent evolution of defensive features, such as
the biosynthesis of many SMs, particularly flavonoids. Close &
McArthur (2002) pointed out the relatively minor role of many
phenolics, including flavonoids, as anti-herbivore agents, while
providing evidence for their main functions as photo-protectants.
Although tannins have historically been viewed as defense
compounds against herbivore insects, relatively new evidence
supports their antioxidant role (Salminen & Karonen, 2011;
Constabel et al., 2014; Gourlay & Constabel, 2019). Finally, the
vast literature concerning the phenylpropanoid biosynthesis in

Fig. 1 Simplified scheme of the phenylpropanoid pathway leading to the biosynthesis of hydroxycinnamic acid derivatives (HCAs, here reported are p-
coumaric and caffeic acids), mono- and dihydroxy B-ring-substituted flavones and flavonols (FLAV). The UV-absorbing capacity of HCAs and FLAV has
been measured by integrating individual molar extinction coefficients (e) over the 280–315 (UV-B) and 315–390 nm (UV-A) waveband. The antioxidant
capacity of FLAV, both aglycones and glycoside derivatives, has been estimated by calculating the concentration (lM) of individual metabolites capable of
reducing by 50% (IC50) that of the synthetic free radical DPPH (2,2-diphenyl-1-picrylhydrazyl) and the superoxide anion (O2

�), following the
spectrophotometric protocols of Baratto et al. (2003). Data of IC50 are means � SD of three replicate measurements. 4CL, 4-coumaroyl-CoA ligase; C3H,
p-coumarate 3-hydroxylase; C4H, cinnamate 4-hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; F30H, flavonoid 30-hydroxylase; F3H,
flavanone 3-hydroxylase; FLS, flavonol synthase; FNS, flavone synthase; OGT; 7-O-glucosyl transferase; PAL, phenylalanine ammonia-lyase; UFGT; UDP
glucose-flavonoid 3-O-glucosyl transferase.
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response to herbivores and their role in plant resistance has not
provided proof of the predominant role of flavonoids as deterrents
for herbivores (Serrano et al., 2012; Garcia-Molina & Pas-
tor, 2024). For instance, UV-B radiation, which is known to
trigger flavonoid biosynthesis, has been reported to either increase
or decrease the resistance to herbivores in a range of species
(Izaguiree et al., 2003; Rousseaux et al., 2004; Schneider
et al., 2019). The biosynthesis of flavonoids is strongly suppressed
by the bacterial flg22, which indeed stimulates other phenylpro-
panoid biosynthetic branch pathways (Serrano et al., 2012), in
agreement with the observation that sinapic and caffeic acid
derivatives offer higher herbivory resistance than flavonoids (for a
review, see Ballar�e, 2014). There is also convincing evidence that
most angiosperms prioritize immune responses over stress-induced
flavonoid accumulation under microbial attack, and this might
represent an ancient evolutionary regulatory crosstalk mechanism
(Lozoya et al., 1991; Lo & Nicholson, 1998; Logemann &
Hahlbrock, 2002; Serrano et al., 2012).

It is conceivable that, despite flavonoids’ excellent antibacterial
properties, resistance to natural enemies driven by greater
production of these compounds may merely be a side consequence
of chemicals that evolved to perform other ecological purposes
(Rausher, 2001; Erb & Kliebenstein, 2020). This hypothesis is
reasonable based on both the multifunctional nature of SMs and
the vast range of environmental stresses, other than predators, that
plants face on land (Rensing, 2018; Donoghue et al., 2021).

The intriguing relationship between flavonoids and
oxidative stress

It is worth noting that once plants moved onto land, they were
confronted with a novel set of abiotic environmental stresses, such
as the scarcity of water and nutrients, high solar irradiance and
changing spectral quality of light, and huge fluctuation in air
temperature (F€urst-Jansen et al., 2020; Markham & Green-
ham, 2021; Xu et al., 2021; Kim et al., 2022). The evolution of a
molecular network conferring water stress resistance is indeed the
typical feature of all land plants (Rensing, 2020; Schreiber
et al., 2022). This supports the view that the simultaneous action
of abiotic stressors, predominantly but not exclusively a combina-
tion of water scarcity and high sun irradiation, was the fundamental
driver for the rise of SM biosynthesis pathways, including for
flavonoids (Rensing, 2018; Brunetti et al., 2019; Dixon &
Dickinson, 2024). Flavonoid biosynthesis is greatly activated in
response to drought stress and high solar irradiation (Tattini
et al., 2004, 2015; Nakabayashi et al., 2015; Siipola et al., 2016;
Wang et al., 2020), but it is also triggered by nutrient deficiency,
salinity and cold (Lillo et al., 2008; Agati et al., 2011; Albert
et al., 2018; Bian et al., 2019; Sachdev et al., 2021). This leads to the
hypothesis that changes in reactive oxygen species (ROS)/redox
homeostasis, as commonly occur in plants exposed to a wide range
of environmental stressors (Devireddy et al., 2021; Pel�aez-Vico
et al., 2022; Dietz & Vogelsang, 2024), may have regulated the
flavonoid biosynthesis in land plants (Babu et al., 2003, 2005;
Taylor & Grotewold, 2005; Xu et al., 2015). This hypothesis fits
well with the notion that the activities of most TFs that regulate the

flavonoid biosynthetic genes, including the R2R3MYBs, are under
tight ROS/redox control (Heine et al., 2004;He et al., 2018; Imran
et al., 2018;Martin et al., 2022; Pratyusha & Sarada, 2022). There
is compelling evidence that stress-induced increase in the excitation
pressure on PSII and the subsequent change in the redox status of
the photosynthetic electron transport chain (PETC) serve as
retrograde signals (chloroplast-to-nucleus signaling) to regulate
flavonoid biosynthesis (Gerhardt et al., 2008; Akhtar et al., 2010;
Richter et al., 2020, 2023).

While ROS/redox regulation of flavonoid production does not
necessarily point to a primary function of these molecules as
quenchers/scavengers of stress-induced ROS accumulation (i.e.
as antioxidants sensu stricto), flavonoids are components of the
integrated antioxidant network, aimed at keeping the ROS level
within a sub-lethal concentration range, under the most severe
stressful conditions (to be described later, for details, Agati
et al., 2007, 2012, 2020; Nakabayashi et al., 2015; Tattini
et al., 2015; Muhlemann et al., 2018; Chapman &Muday, 2021;
Martin et al., 2022).Wenote that the addition of far-red light (FR),
which is known to induce a more oxidized PETC, inhibits the
biosynthesis of flavonoids and greatly decreases the ratio of
quercetin (Que) to kaempferol (Kae) derivatives, which is the
inverse of what happens when Brassica napus is supplemented with
UV-B radiation (Gerhardt et al., 2008). On the contrary, several
studies have observed a marked increase in Que to Kae ratio in
several angiosperms, such as pea, soybean, andArabidopsis thaliana,
supplemented with red light (R) (Furuya et al., 1962; Falcone
Ferreyra et al., 2021; Lim et al., 2023). An increase in Que to Kae
derivatives, or in dihydroxy B-ring (dihydroxy thereafter) to
monohydroxy B-ring-substituted (monohydroxy) flavonoids, is
commonly observed in plant lineages of different complexity (such
as bryophytes and angiosperms) in response to a wide range of
abiotic stressors, including to high PAR and UV-B radiation (for
review articles see, Pollastri & Tattini, 2011; Neugart &
Schreiner, 2018; Agati et al., 2020; Davies et al., 2020; Dos Santos
Nascimento & Tattini, 2022; Singh et al., 2023). While Que and
Kae aglycones, the last to a considerably lesser extent, have an
effective ability to scavenge free radicals and ROS, this is not the
case for Kae derivatives, in which the highly reactive 3-OH
(flavonol) group is usually glycosylated (Rice-Evans et al., 1996;
Fig. 1). Glycosylation makes flavonoids soluble in the aqueous
cellular milieu, prevents their auto-oxidation, facilitates their
transport from the endoplasmic reticulum (ER) to different cellular
compartments, but depresses to some extent their antioxidant
capacity (Fig. 1). TheROS-scavenging activity of flavonoidsmostly
depends on the presence of the catechol group in the B-ring,
followed by the presence of both C2-C3 unsaturation and a 4-oxo
function in the C-ring, just like in Que (Rice-Evans et al., 1996;
Williams et al., 2004).Consistently,Que 3-O-glucoside has a lower
ROS-scavenging ability than Que, but considerably higher
antioxidant capacity than Kae, whereas Kae 3-O-glucoside displays
negligible antioxidant capacity (Fig. 1). While we cannot rule out
the possibility that glycosylated flavonoids are de-glycosylated,
releasing the most active aglycone forms (e.g. plants contain a
plethora of b-glucosidase that may perform this function, Roepke
& Bozzo, 2015; Le Roy et al., 2016; Baba et al., 2017), there is no
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consistent body of evidence showing the presence of flavonoid
aglycones in plant cells prone to oxidative stress, such as in
epidermal and sub-epidermal tissues (Wollenweber et al., 2011;
Ketudat Cairns et al., 2015; Baba et al., 2017; Uehara et al., 2018).

The functional significance of flavonoids as antioxidants in an in
planta condition has long been debated (for critical review articles,
see Hern�andez et al., 2009; Agati et al., 2012, 2020), owing to early
observations of their almost exclusive location in the vacuoles of
epidermal cells (Hrazdina et al., 1982; Caldwell et al., 1983;
Hutzler et al., 1998). Instead, flavonoids occur in the vacuoles, the
cytoplasm, including the chloroplasts, and the nuclei of parenchy-
matic cells (Fig. 2; Polster et al., 2006; Agati et al., 2007, 2009,
2012; B€ottner et al., 2021) in significantly larger amounts than in
the epidermal tissues (Gori et al., 2021; Fig. 3). This makes
flavonoids ideal for fine-tuning the ROS concentration in different
subcellular compartments, as widely reported in several species
(Ferreres et al., 2011; Muhlemann et al., 2018; Chapman
et al., 2019; Agati et al., 2020; Singh et al., 2021; Cerqueira
et al., 2023). Agati et al. (2007) provided conclusive evidence that
chloroplast-located dihydroxy flavonoids (Fig. 2) efficiently
quenched singlet oxygen generated by a large excess of photo-
synthetically active radiation. Flavonols distributed in the
cytoplasm and the nuclei of stomata guard cells effectively scavenge

H2O2 (Watkins et al., 2014, 2017, see the next section for details).
Flavonoids’ ability to scavenge ROS may be especially advanta-
geous in plants dealing with multiple environmental stresses, such
as when solar irradiance causes severe light stress (Fini et al., 2011;
Tattini et al., 2015). It is known that plants experience severe
photooxidative stress, on a daily and seasonal basis, when light
irradiance vastly exceeds that usable for photosynthesis, as occurs
during the central hours of the day. Light excess is often
accompanied by high temperature and vapor pressure deficit,
consequently driving stomata closure. The resulting midday
depression of photosynthesis, which results in huge ROS
production, is further enhanced due to excess light- and heat-
induced reduction in the activity of photosynthetic enzymes
(Bagley et al., 2015; Moore et al., 2021). There is evidence that the
activity of antioxidant enzymes may fall significantly during
the central hours of the day,mostly due to the negative effect of high
air temperature (Peltzer & Polle, 2001; Lu et al., 2008; Tattini
et al., 2015; Soengas et al., 2018), further enhancing photoox-
idative stress. The large diurnal variations in flavonoid content
recently reported in a range of species, with higher concentrations
detected in the midday hours (Barnes et al., 2008, 2016; Gori
et al., 2021), equip plants with not only an effective shield against
the penetration of higher levels of UV-B but also with a more

Fig. 2 Inter- and intra-cellular distribution of
flavonoids (FLAV) and hydroxycinnamic acid
derivatives (HCAs) in 6-month-old Phillyrea

latifolia leaves newly developed in full sunlight.
Cross sections were stained with Naturstoff
reagent (NR, phosphate-buffered (pH 6.8) saline
(1%, w/v, NaCl) solution of 0.1% (w/v) 2-
amino ethyl diphenyl boric acid) and merged
fluorescence images (a–d) result from confocal
laser scanning microscopy (CLSM) analysis under
the following, sequential, excitation (exc)/
emission (em) setups. kexc = 365/
kem = 415–485 nm for HCA-derived blue
fluorescence; kexc = 488/kem = 565–535 nm for
FLAV-derived yellow fluorescence; kexc = 638/
kem = 690–785 nm for chlorophyll-derived red
fluorescence. FLAV accumulate in the vacuoles
and the nuclei of adaxial parenchyma (arrows in
a), in the outer envelope membranes of the
chloroplasts (arrows in b), and in the vacuoles of
adaxial epidermal cells (arrows in c). HCAs occur
in abaxial mesophyll cells, which have a palisade-
like morpho-anatomy (as typically occurs in sun-
adapted leaves), together with yellow
fluorescent FLAV (d). The multicellular glandular
trichome exclusively accumulates FLAV in the
vacuole and likely in the cytoplasm, whereas
HCAs are merely distributed in the wall of the
trichome stalk cell (d). Bars, 20 lm.
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efficient ROS-scavenging system. We have recently provided
evidence that themorning-to-midday increase in flavonoid content
observed at the whole-leaf level, almost exclusively involves sub-
epidermal tissues anddihydroxy flavonoids (Gori et al., 2021). This
is consistent with the common observation that flavonoids with
modest ROS-scavenger capacities respond poorly to light stress and
to a variety of other abiotic stimuli (Agati et al., 2012; Fig. 3).

While flavonoids have been reported to effectively counter
oxidative stress of different origins in a wide range of angiosperms
(Agati et al., 2020), there is no conclusive evidence for this role in the
bryophyte lineages. Stafford (1991) speculated that a fledgling
flavonoid metabolism was unlikely to provide flavonoid concentra-
tions suitable for efficient ROS scavenging. However, it is worth
noting that flavonoid concentrations in the low lM range are
sufficient to effectively counter the oxidative stress, and the extant
bryophyte lineage accumulate appreciable concentrations of flavo-
noids (high nmol to low lmol g�1 DW, Albert et al., 2018; Liu
et al., 2022). A recent study has shown that theDELLATF promotes
the exclusive biosynthesis of luteolin 7-O-glucuronide inMarchantia
polymorpha and enhances its tolerance to oxidative stress induced by
methyl viologen (which mostly generates superoxide anion and
hydroxyl radical, Hern�andez-Garc�ıa et al., 2021). The increase in
luteolin 7-O to apigenin 7-O-glucuronide in UV-B-treatedM. poly-
morpha also poses an antioxidant role of flavonoids in UV
photoprotection (Markham et al., 1998, see the next section). This
supports the hypothesis of the effective antioxidant role of flavonoids
during the evolution of land plant lineages challenged by awide range
of environmental injuries.

Flavonoids in UV photoprotection: a primary
antioxidant function?

There is vast, relatively old, literature supporting the idea that an
increase in UV, particularly UV-B irradiance, was the primary

driver for the rise of flavonoidmetabolismwhenplantsmoved from
freshwater to colonize land, which is consistent with the notion that
UV-B radiation greatly enhances flavonoid biosynthesis (Well-
mann, 1976; Robberecht & Caldwell, 1978; Caldwell, 1979). It
has been inferred that the accumulation of flavonoids in land plants
is to primarily equip these plants with an efficient shield against the
penetration of the shortest wavelengths of solar radiation. None-
theless, a very recent UV-omics investigation indicates that UV
radiation likely plays a secondary role compared with water
availability during plant terrestrialization (for a review, see
Mart�ınez-Abaigar & N�u~nez-Olivera, 2022). In other words, while
the biosynthesis of protective sunscreens is an ancestral molecular
adaptation of land plants (Rensing, 2018), this does not necessarily
favor a primary UV-B absorbing function of flavonoids in the
photoprotection systems of different land plant lineages, including
the bryophytes (Agati&Tattini, 2010). Even though early lineages
of land plants did experience an increase in UV-B irradiance when
moving from freshwater, it is worth noting that all flavonoids have a
relativeminimumabsorbance at theUV-Bportion (280–315 nm),
while maximally absorbing at the UV-A region of the solar
spectrum (usually in the range 330–365 nm; Fig. 1; Agati
et al., 2009, 2013). This leads to the hypothesis that flavonoids
are unlikely to fulfill a primary UV-B screening function in land
plants of varying complexity (Cockell & Knowland, 1999). It is a
prerequisite for a metabolite to serve a primary screening function
in the overlap between its absorbance spectrum and the light
spectrum responsible for its biosynthesis. The biosynthesis of acyl
flavonoids, which absorb effectively over the entire range of solar
UV wavelengths (Fischbach et al., 1999) is a derived trait of land
plants, and it is limited to a few species (Tohge et al., 2016; Alseekh
et al., 2020; Wen et al., 2020). For instance, we have reported
unusual mono- and di-coumaroyl derivatives of Kae 3-O-gluco-
side, with outstanding capacity to absorb effectively over the entire
solar UV spectrum, in the cell walls of stellate trichomes in leaves of

Fig. 3 Representative high performance liquid chromatography (HPLC)-DAD chromatograms of different tissue layers of 3-month-old Phyllirea latifolia

leaves newly developed in partial shading (25% full sunlight, a) or in full sunlight (b), showing large light-induced changes in phenylpropanoid
composition. While hydroxycinnamic acid (HCA) and apigenin (Api) derivatives mostly contribute to the phenylpropanoid pool in shaded leaves, quercetin
(Que) and luteolin (Lut) derivatives largely represent the phenylpropanoids synthesized by full-sun exposed leaves. Of note, HCAs accumulate poorly in
the mostly light-exposed adaxial epidermis in leaves exposed to the greatest UV-B irradiance (b), despite their greatest ability to absorb solar UV-B
wavelengths. Longitudinal sections were cut with a cryo-microtome following the protocols of�Alenius et al. (1995) and Tattini et al. (2015) from leaves
sampled at midday. The quali- and quantitative analysis of phenylpropanoids were performed using the protocol of Tattini et al. (2015) and
chromatograms (recorded at 350 nm) were normalized based on the fresh weight of different tissue layers.
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Cistus salvifolius (a shrub inhabiting most unfavorable areas
of Mediterranean basin, Saracini et al., 2005; Tattini et al., 2007).

Furthermore, we observe that hydroxycinnamic acid derivatives
(HCA), whose concentrations are comparable to those of
flavonoids under low UV-B radiation, are almost unresponsive to
increasingUV-Bfluence (Burchard et al., 2000;Tattini et al., 2000,
2004; Fig. 3). This finding, which conforms to the general
observation of UV-B-induced increase in flavonoids toHCAs ratio
(Agati&Tattini, 2010; Fig. 3), offers conclusive support to the idea
of a relatively minor role of flavonoids as UV-B absorbers in UV-B
photoprotection. HCAs display the greatest absorption capacity
over the UV-B portion of the solar spectrum among the
phenylpropanoid pool synthesized by most taxa (Agati
et al., 2013; Neugart et al., 2014; Fig. 1). We note that HCAs
distributed on the cuticle matrix, in both the walls and the vacuole
of epidermal cells, may effectively limit the entry of UV-B photons
in the leaf, when present in constitutively (i.e. in tissue exposed to
low fluence of UV-B irradiance) high concentrations (Schnitzler
et al., 1996; Clarke & Robinson, 2008; Gonz�alez Moreno
et al., 2022). The presence of cuticular HCAs may represent an
ancestral mechanism for efficient energy dissipation (Renault
et al., 2017), based on the observation that the level of cuticular
HCA (mainly p-coumaric and ferulic acids) of most bryophytes
largely exceed that of the majority of angiosperms (Gonz�alez
Moreno et al., 2022). The functional significance of HCAs,
especially those associated with the cuticle and the epidermal cell
walls, in UV-B photoprotection, has been often underestimated
(Mazza et al., 2000; Kolb et al., 2001; Fab�on et al., 2010;Monforte
et al., 2018). However, the matter is of interest, especially when
examining the photoprotection mechanisms of land plants at a low
degree of body complexity (Renault et al., 2017).

Recent evidence of highly conservedmechanisms for sensing and
signalingUV-B radiation in the liverwortM. polymorpha, themoss
Physcomitrella patens, and the flowering plant A. thaliana is of
interest and conforms to the notion that the UVR8-signaling
pathway has already originated during the movement of plants
from the deeper sea to shallow water (Han et al., 2019). All the
species use the UVR8 photoreceptor and the b-ZIP TF HY5, a
master regulator of light signaling and photomorphogenesis, to
acclimate to changes in UV-B wavelengths (Albert et al., 2018;
Soriano et al., 2018; Podolec et al., 2021). Moreover, UV-B
radiation similarly changes the flavonoid pool in both bryophytes
and angiosperms, since only the biosynthesis of dihydroxy flavones
and flavonols is stimulated by UV-B radiation (Markham
et al., 1998; Agati & Tattini, 2010; Wolf et al., 2010; Agati
et al., 2012; Fig. 3). It has been therefore inferred that flavonoids are
more involved in countering the photooxidative stress generated by
UV-B radiation, through their ROS-scavenging capacity, than in
avoiding photooxidative stress by acting as sunscreens (Ryan
et al., 2001; Agati et al., 2012; Emiliani et al., 2013; Dadras
et al., 2023b). As a corollary, this offers additional support to early
views that high UV-B irradiance is sensed as an oxidative stress
(Landry et al., 1995; Jenkins, 2009), just as occurs when plants
experience a wide array of abiotic and biotic stressors. Consistently,
the very same effective antioxidant flavonoids accumulate to a
similar extent in response to high visible or UV-B radiation in

a range of species (Agati et al., 2009, 2011; Siipola et al., 2016;
Albert et al., 2018; Taulavuori et al., 2018; Zhang et al., 2018;
Falcone Ferreyra et al., 2021). The antioxidant role of flavonoids
due to high light intensitymaywell explain why surface organs such
as glandular trichomes, which are autonomous in phenylpropanoid
biosynthesis, preferentially accumulate dihydroxy flavonoids at the
expense of HCAs in sun-adapted Phillyrea latifolia leaves (Tattini
et al., 2000; Agati et al., 2002; Fig. 2). It is additionally consistent
with the primary ROS-scavenging functions recently attributed to
Que 3-O-rutinoside in glandular trichomes of tomato (Sugimoto
et al., 2022).

We suggest that following the diversification and efficiency of
flavonoid metabolism, which led to the sequential production of
flavones, flavonols, and anthocyanins (Li et al., 2020) coupled with
a versatile transport system, plants had a vast arsenal of metabolites
available, capable of limiting the generation (avoidance through
light-screening) and allowing the scavenging of ROS once they are
formed. This enabled plants to reverse efficiently photooxidative
stress of increasing severity, allowing their successful adaptation in
more challenging habitats (Pollastri & Tattini, 2011; Dos Santos
Nascimento & Tattini, 2022).

Flavonoids as signaling molecules: a robust
‘antioxidant-dependent’ function

The notion that flavonoids act as signaling metabolites has been
widely reported in animal cells, and this ability is primarily
responsible for the health benefits usually attributed to flavonoids
(Williams et al., 2004). The capacity of flavonoids to modulate the
activity of a range of proteins that may act as downstream
components in diverse signaling pathways (mostly of oxidative
nature) has been explored to a lesser extent in plants, especially in
aboveground organs (Taylor & Grotewold, 2005; Peer &
Murphy, 2006; Brunetti et al., 2018, 2019; Daryanavard
et al., 2023). Nonetheless, Helen Stafford proposed, three decades
ago, that flavonoids had key functions as internal physiological
regulators and chemical messengers, rather than acting as UV-
screening pigments during the colonization of land by plants
(Stafford, 1991). She speculated indeed that: (1) a still-evolving
flavonoid metabolism combined with an undeveloped transport
system is unlikely to furnish the vacuolar compartment with
flavonoid concentrations sufficient to allow optimal UV-B screen-
ing in early land plants; and (2) a primary UV-screening role does
not fit with the extraordinary degree of glycosylation of the
flavonoid backbone observed in most plant species. On
the contrary, low amounts of flavonoids, which Stafford
hypothesized as having been likely synthesized by the first land
plants, should have been sufficient to modulate auxin signaling, by
acting on both its transport and degradation. Flavonoids had been
identified as endogenous regulators of phytochrome-induced
asymmetrical auxin (IAA) distribution, through their ability to
modulate the activity of IAA oxidase, in early, seminal experiments
conducted at Galston’s Lab at Yale University and by Stafford at
Reed College in Portland (Furuya et al., 1962; Furuya &
Thomas, 1964; Bottomley et al., 1965; Stafford, 1965). Notably,
both low red light and white light supplementation promoted
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asymmetrical IAA distribution, without affecting Kae glycosides
biosynthesis, while strongly inducing Que derivatives biosynthesis
in Pisum sativum (Bottomley et al., 1965). In the same species, Kae
derivatives were observed to act as cofactors of IAA oxidase, while
Que derivatives successfully hindered the enzyme activity (Furuya
et al., 1962; Galston, 1969). At the time of Stafford’s hypothesis,
there was additional evidence of antioxidant flavonoids being also
most effective in modulating IAA efflux, based on their ability to
inhibit the binding of the synthetic auxin transport inhibitor N-1-
naphthylphthalamic acid (NPA) to a plasma membrane protein
(Jacobs & Rubery, 1988). As flavonoids modulate IAA movement
and local auxin concentrations at extremely low concentration
ranges (from nM to low lM), Stafford speculated this was the
ancestral role of flavonoids during plant terrestrialization (Staf-
ford, 1991). Furthermore, she argued that flavonoids might serve
these functions in the cytoplasm, near the site of their biosynthesis,
that is, the cytoplasmic face of the ER. This argumentation received
support later when ancestral IAA auxin efflux PIN proteins, such as
the short-chain PIN5 and PIN8, were discovered to be localized at
the ER (Mravec et al., 2009; Viaene et al., 2014; Ung et al., 2022).
Incidentally, ER is also the site of IAA biosynthesis (Kriechbaumer
et al., 2017; Brunetti et al., 2018).

There is evidence of plasma membrane-associated PIN trafficking
and polarization mechanisms in M. polymorpha and P. patens
(Skokan et al., 2019; Tang et al., 2024), and auxin has been reported
to influence cell growth and differentiation in both bryophytes
(Flores-Sandoval et al., 2024). These findings support Stafford’s
opinion of an ancestral role of flavonoids as modulators of intra- and
intercellular IAA movement. We have also hypothesized that
flavonoids served a major function as chemical messengers during
plant terrestrialization (Brunetti et al., 2018), but this matter is far
from being fully elucidated, as we discuss below.

The role of flavonoids as chemical messengers has been widely
reported for the growth of belowground organs in angiosperms
(Hassan & Mathesius, 2012; Ng et al., 2020; Ghitti et al., 2022),
such as in the arbuscular mycorrhizal (AM) association. The effects
of flavonoids onAMresult from their ability tomodulate both local
IAAgradients and the level of downstream components of the auxin
signaling pathway, as occurs during nodulation (Zhang et al., 2009;
Abdel-Lateif et al., 2013). The finding that flavonoid aglycones,
which are usually exuded by roots, are more effective in promoting
AM compared with corresponding glycosylated forms (Zhang
et al., 2009; Tian et al., 2021; Kumar et al., 2024), adds further
support to the idea that the multifunctionality of flavonoids relates
with their antioxidant character. AM association was an event of
crucial significance for the adaptability of rootless bryophytes in
water- and nutrient-depleted terrestrial habitats (for recent reviews,
see Dos Santos Nascimento & Tattini, 2022; Gille et al., 2024;
Martin & van der Heijden, 2024). Although the putative role of
flavonoids in AM association in bryophytes is an attractive
suggestion, the strong relationship between flavonoids and auxin
observed in angiosperms needs conclusive support in bryophytes.
Nonetheless, flavonoids have been recently reported to block auxin
transport and inhibit auxin response, thus contributing to 2D-3D
transition in P. patens (Moody et al., 2021). There is also evidence
that SHORT-LEAF, a member of the Tandem direct repeat-

containing (TDR) proteins regulates gametophore development in
P. patens by mediating the auxin distribution pattern through its
strong influence on flavonoid biosynthesis (Palit et al., 2024).
These findings are remarkable and open the possibility of a putative
role of flavonoids as modulators of auxin response and signaling in
bryophytes.

The physicochemical features, especially the presence of the
catechol group in the B-ring, confer flavonoids (and other
polyphenols) the potential to scavenge ROS and interact with a
range of macromolecules as well (Pollastri & Tattini, 2011). For
instance, flavonoids may inhibit the activities of a wide array of
proteins, including protein kinases by strongly competing with
their ATP-binding sites (structural similarity), as well as acting at
the ATP noncompetitive binding site through the formation of
both hydrogen bonds and van der Waals interactions (Barron
et al., 2002; Bode & Dong, 2013). There is compelling evidence
that the 3 0-OHgroup as seen in dihydroxy flavones and flavonols is
pivotal for hydrogen bonds with protein kinase backbone amide
groups (for a review, seeHou&Kumamoto, 2010). This conforms
to the observation that Que and luteolin are more active than Kae
and apigenin, respectively, in inhibiting the activities of a range of
tyrosine kinases (Chin et al., 2013; Alizadeh & Ebrahimza-
deh, 2022). There is consensus that these features are significantly
more important than the conventional hydrogen-donating capa-
city (antioxidant role sensu stricto) to explain the effects of
flavonoids in the modulation of human cell growth and
metabolism (Hou & Kumamoto, 2010; Gu et al., 2019).
Flavonoids can regulate and modulate the activities of a wide
range of proteins in plant cells, including but not limited to protein
kinases. For instance, flavonoids inhibit the activity of PIDs, which
are serine/threonine kinases that phosphorylate the PIN, IAA efflux
carriers (Henrichs et al., 2012; Adamowski & Friml, 2015), thus
determining their asymmetrical distribution at the plasma
membrane, and hence the intercellular IAA fluxes, the well-known
polar IAA transport (PAT). However, flavonoids may also
modulate the activities of several ATP-binding cassette B subfamily
(ABCB)-type IAA transporters (multidrug resistance (MDR) P-
glycoproteins, Blakeslee et al., 2005) through bifunctional
interactions at both the vicinal ATP-binding site and the steroid-
interacting region within the protein cytosolic domain (Conseil
et al., 1998; Ferreira et al., 2015). In turn, flavonoids could
synergistically inhibit both PIN- and ABCB-based major IAA
streams (Mellor et al., 2022), through direct association with PINs
(Teale et al., 2020; Kurepa et al., 2023). Indeed, the synthetic
inhibitor of IAA transport NPA was shown to lead to conforma-
tional perturbation in PIN and hence to decreases in PIN activity
(Abas et al., 2021). It is not surprising that the antioxidant
dihydroxy flavonoids, particularly the flavonol Que, display the
greatest inhibitory effect on the activities of PIN and MDR
P-glycoproteins proteins (Mohana et al., 2016), and hence in
determining IAA gradients in different tissues and cells (Peer &
Murphy, 2006, 2007; Michniewicz et al., 2007; Bailly et al., 2008;
Adamowski & Friml, 2015). This may well explain the term
‘developmental regulators’, coined for flavonols by Taylor &
Grotewold (2005), a robust function of these molecules in both
plants and animals.
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We observe that flavonoids may influence IAA gradients in
shoots and roots not only by modifying hormone transport at the
organ, tissue, cellular, and subcellular levels, but also by influencing
IAA catabolism. Early research established that some flavonoids
block IAA oxidase (Furuya et al., 1962; Bottomley et al., 1966), a
peroxidase for which flavonoids display strong affinity, as is also the
case for vacuolar peroxidases that use flavonoids as preferential
substrates to detoxify hydrogen peroxide (H2O2, Yamasaki
et al., 1997). This has strong similarities with the mechanisms
through which flavonoids inhibit IAA oxidase activity, that is, by
serving as preferential substrates compared to IAA for IAA oxidase,
and by scavenging H2O2 generated during early steps of auxin
oxidation (Galston et al., 1950; Mathesius, 2001). It is not
surprising, therefore, that Que and its derivatives are much more
potent inhibitors of IAA oxidase than the corresponding Kae-
derived compounds, these last behaving indeed as cofactors of IAA
oxidase at certain concentrations (Furuya et al., 1962; Bottomley
et al., 1966). The largely different action ofQue andKae derivatives
on IAA oxidase activity may be in part explained by the capacity of
Que, but not of Kae derivatives, to chelate Mn (II), a well-known
cofactor of IAA oxidase (Morgan et al., 1966). The ability of
dihydroxy flavonoids to chelate transition metal ions (De Souza &
De Giovani, 2004) has also been used to explain their ability to
prevent irreversible oxidative damage in plant nuclei. Dihydroxy
flavonoids may efficiently chelate Fe(II)-ions involved in the
Fenton reaction (Fe(II) + H2O2 ? Fe(III) + OH*), thus limit-
ing the formation of hydroxyl radical (OH*) (Agati et al., 2012).
Recent findings suggest that the major route through which IAA is
oxidized in early and modern land plants is by the action of
DIOXYGENASE for AUXIN OXIDATION1 protein (DAO1,
Zhang et al., 2016), a member of the 2-oxoglutarate and Fe(II)-
dependent (2OG Fe(II)) oxygenase superfamily. Interestingly, an
Arabidopsismutant overaccumulating the antioxidant flavonolQue
displayed the lowest level of ox-IAA (Peer et al., 2013), likely due to
the effective inhibition of DAO activity and scavenging of ROS
(Zhang & Peer, 2017). The strong inhibitory effect of antioxidant
flavonoids on the activity of proteins regulating IAA-oxidation is
suggested as being of greater significance than their modulation of
inter- and intra-cellular auxin movement in determining auxin
gradients at cellular and subcellular levels and, hence, in regulating
plant growth (Zhang & Peer, 2017).

Overall, this evidence implies that flavonoids play a critical role
in modulating the auxin-signaling network beyond influencing the
distribution of IAA at both inter- and intra-cellular levels.
Furthermore, relatively recent findings support the notion that
flavonoids act as components of a regulatory circuit of the auxin-
signaling pathway. Grunewald et al. (2012) have shown that IAA
enhances the synthesis of Que derivatives, by acting on the
WRKY23 TF and, in turn, Quemay fine-tune IAA distribution, in
a PIN-independent manner. The auxin–flavonol relationship is
strong (Blilou et al., 2005; Lewis et al., 2011) and very recent
findings provide conclusive evidence that the IAA repressor
IAA17.1, a repressor of early IAA response genes, together with
the heat shock proteinHSFA5a, promote flavonol biosynthesis and
decrease ROS accumulation in salt-treated roots of Populus
tomentosa (Song et al., 2024).

There is also recent evidence of a robust relationship between
flavonols and the abscisic acid (ABA)-signaling pathway (Gao
et al., 2021; Segarra-Medina et al., 2023), which may have
contributed greatly to the adaptation of plants to the harsh
terrestrial habitat (Brunetti et al., 2019). The high integration of
ABA- and light signaling, which occurs at the level of primary
signaling components, such as the bZIP TFs ABA Insensitive 5
(ABI5) and HY5 (Chen et al., 2008), may well explain the ABA-
induced activation of flavonol biosynthesis, especially of quercetin,
in a vast range of species (Berli et al., 2010; Alonso et al., 2016; Song
et al., 2022; Castro-Cegr�ı et al., 2023). It is noted that the crosstalk
between ABA and light signaling is an ancient and robust trait of
terrestrial plants as the structure and function ofHY5 and ABI5 are
conserved among early and current-day land plants (Komatsu
et al., 2013;Gangappa&Botto, 2016). Flavonols, in turn, regulate
the ABA signaling, acting at the level of downstream network
components, such as H2O2 and MAPKs (Brunetti et al., 2019).
Studies conducted at GloriaMuday’s Lab have conclusively shown
that flavonols, accumulated (and likely synthesized) in the
cytoplasm and nucleus of stomata guard cells, antagonize
the closure of stomata by greatly decreasing the levels of H2O2, a
well-known downstream messenger of the ABA signaling network
(Watkins et al., 2014, 2017). However, it cannot be excluded that
flavonols additionally inhibit the activity of MAPKs that operate
downstream of H2O2 to induce stomata closure (Jammes
et al., 2009; De Zelicourt et al., 2016; Brunetti et al., 2019).

Conclusions: not all flavonoids are equally
multifunctional

The functional significance of the diversity and complexity of
specialized metabolism has been focused mostly on plant–
herbivore interactions and based upon the notions that: (1) most
SMs synthesized within specific pathways have low biological
activity; and (2) the deployment of a mixture of SMs provides
functional synergisms and evolutionary stability (Firn &
Jones, 2000; Steppuhun & Baldwin, 2008; Heiling et al., 2022;
Blanchard & Holeski, 2024).

Consequently, the extraordinary chemical diversity within the
flavonoid class, caused by the vast range of glycosylation and
substitution patterns of the C6-C3-C6 skeleton, complicates a
deterministic estimation of their multifunctionality. As previously
stated, flavonoids differ significantly in antioxidant capacity,
especially when considering the forms found in plant cells.
Monohydroxy flavonoid derivatives, for example glycosides of
apigenin and Kae, are poor antioxidants (Fig. 1), and their putative
effects in an in planta condition have been erroneously inferred
from studies conducted in vitro or ex-vivo using flavonoid aglycones
in toomany instances (Williamson, 2002).While studies involving
flavonoid aglycones may reveal the functions of distinct flavonoid
classes in belowground processes (e.g. lateral root emergence;
symbiotic nodulation and/or mycorrhizal association Zhang
et al., 2009; Chapman & Muday, 2021), this is not the case for
aboveground organs, which often accumulate flavonoid glycosides
in their tissues. Once again, we emphasize that Que 3-O-glucoside
has a lower antioxidant capacity than Que, but has a higher ROS-
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scavenging ability than Kae. The antioxidant capacity of Kae 3-O-
glucoside is indeed negligible in a concentration range consistent
with its solubility in the aqueous cellular milieu (Fig. 1).

Accordingly, monohydroxy flavones and flavonols have sig-
nificantly lesser multifunctional potential than their dihydroxy
counterparts. It may not be a mere coincidence that in plants
exposed to a variety of environmental stresses, including the
increase in UV-B or visible light irradiance, the biosynthesis of
antioxidant flavonoids is activated, while the monohydroxy
flavonoid pool remains unchanged (for extensive reviews see Agati
& Tattini, 2010; Agati et al., 2012, 2020; Fig. 3). Data here
reported support flavonoids’ key activities in both preventing
irreversible stress-induced oxidative damage and modulating
different oxidative stress-induced signaling pathways. Flavonoids
tune both ROS levels and the activity of downstream components
of oxidative signaling pathways, such as a wide range of protein
kinases, in plants and animals. The antioxidant function of
flavonoids is, therefore, robust and strongly tied to the plant’s
ability to evolve (i.e. evolvability, sensuLesne, 2008;Wagner, 2011)
in an ever-changing terrestrial habitat.

In fact, antioxidant flavonoids play a role in stress-induced
morphogenic responses (SIMR), a typical feature of plants exposed
to awide range of stresses (Jansen, 2002; Potters et al., 2007), which
are, indeed, strongly dependent on ROS (and IAA) signals
(Gayomba & Muday, 2020; Martin et al., 2022). Flavonoids
regulate the auxin-signaling pathway by severely reducing the
activity of proteins that regulate IAA-oxidation while determining
IAA gradients by acting on proteins that escort IAA at intra- and
intercellular levels. Consistently, flavonoids have been recognized
as modulating plant development (reviewed recently in Daryana-
vard et al., 2023), particularly root growth and architecture
(Mathesius, 2018; Gayomba &Muday, 2020). Studies examining
the involvement of flavonoids in the development of aboveground
organs, such as shoot architecture, have yielded conflicting results
(Beveridge et al., 2007; Buer&Djordjevic, 2009; Buer et al., 2013;
Fraser et al., 2017). This is because most research has been
conducted under growth conditions different enough from those
often experienced by plants concomitantly facingmultiple stressors
in their natural solar irradiation when SIMR truly makes sense
(Robson et al., 2015). For example, high levels of sunlight andUV-
B stimulate or inhibit IAA biosynthesis and signaling, respectively
(Hersch et al., 2012; Hayes et al., 2014; Huq, 2018), whereas both
light regimes stimulate the biosynthesis of antioxidant flavonoids
(Agati et al., 2020). In Arabidopsis, a high light-induced increase in
IAA biosynthesis also triggers the biosynthesis of flavonols,
particularly of Que (Lewis et al., 2011; Grunewald et al., 2012).
In turn, Que may attenuate local auxin signaling, thus inhibiting
apical dominance, as typically occurs inUV-B-treated plants under
natural conditions (Hayes et al., 2014; Robson et al., 2015). The
mutual regulation of auxin biosynthesis/signaling and flavonoids
usually observed in angiosperms is still lacking to be properly
described in bryophytes, but very recent studies open new
perspectives on this intriguing matter (Moody et al., 2021; Palit
et al., 2024).

The functional significance of the regulatory roles of flavonols on
the ABA signaling network has not yet received enough attention,

despite the fact they have the potential to significantly regulate the
gas exchange performance of plants facing multiple environmental
pressures associated with rapid climate change, such as a
combination of transient heat waves and rainfall scarcity in high
light-stressed habitats. However, the matter is of primary
significance for the ecology of plants with highly diverse complex-
ity.

Overall, we have shown that while flavonoids with varying
physicochemical properties have similar abilities to absorb UV
radiation and repel herbivores, they differ greatly in their ability to
scavenge ROS and hence tomodulate both hormone and oxidative
signaling pathways. We have provided conclusive evidence that
these antioxidant-related properties, coupled with the distribution
in different tissues and cellular compartments, confer only to
antioxidant flavonoids the ability to efficiently serve several
functions in plants undergoing changes in cellular homeostasis
because of a variety of external stimuli. The observation that the
biosynthesis of antioxidant flavonoids is a common response of
different land plants lineages when confronted with a range
of environmental pressures is remarkable, implying that this might
represent an ancient feature of land plants.
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