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Mesh joinery is an innovative method to produce illustrative shape approxi-
mations suitable for fabrication. Mesh joinery is capable of producing com-
plex fabricable structures in an efficient and visually pleasing manner. We
represent an input geometry as a set of planar pieces arranged to compose
a rigid structure, by exploiting an efficient slit mechanism. Since slices are
planar, to fabricate them a standard 2D cutting system is enough.
We automatically arrange slices according to a smooth cross field defined
over the surface. Cross fields allow representing global features that char-
acterize the appearance of the shape. Slice placement conforms to specific
manufacturing constraints.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling

General Terms: Algorithms, Design

Additional Key Words and Phrases: geometry processing, object fabrica-
tion, manufacturing

1. INTRODUCTION

In this paper we introduce mesh joinery, a novel and practical ap-
proach to fabricate artistic illustrative shape approximations made
up of several interlocked planar pieces, called slices. Such slices
can be easily fabricated using any 2D cutting device and then as-
sembled through a sequence of manual operations.
Compared to previous approaches (such as [McCrae et al. 2011;
Hildebrand et al. 2012; Schwartzburg and Pauly 2012]) we oriented
the slides according to a given cross field defined on the surface.
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As most of the recent quadrangulation papers have shown [Ray
et al. 2006; Kälberer et al. 2007; Bommes et al. 2009; Pietroni et al.
2011; Bommes et al. 2012], cross fields are an excellent instrument
for capturing the global structure of a given shape.
We provide a novel formalism to design a slice-to-slice interlock-
ing system. This formalism provides enough degrees of freedom
to follow complex cross fields and, consequently, to efficiently ap-
proximate the global structure that characterizes the input shape.
Additionally, we ensure a sufficient degree of physical stability of
the final structure along with the sequence of manual operations re-
quired for the assembly procedure.
Our approach provides limited but low-cost solutions due to the
simple cutting technologies employed and the relatively cheap ma-
terial used (such as cardboard). Although the proposed slice struc-
ture approximates, to some extent, the original geometry, it cannot
be considered as a ‘physical copy’. Nevertheless, we believe that
our approach could be attractive in specific markets, e.g. in artistic
or illustrative contexts, in puzzles or toys and where assembly is a
key part of user experience.

1.1 Motivation

Rapid prototyping [Dimitrov et al. 2006] has been developed over
the last decade to support the manufacturing process, especially
for the production-quality parts in relatively small numbers. It
exploits a wide variety of basic technologies to create real-world
tangible reproductions from 3D digital models. While initially the
range of materials was very limited, modern technologies enable
a wide range of materials (plastic, glued gypsum, steel, ceramic,
stone, wood, etc.) to be used. At the same time, the printing
resolution has improved substantially and, consequently, accuracy
in terms of reproduction has reached high standards. Nevertheless,
rapid prototyping is still perceived as being too expensive for the
mass market. Moreover, the input geometry has to satisfy certain
geometric characteristics (manifoldness, watertightness, etc.) and
static mechanical properties, in order to produce a compact, high
quality, fabricated model that is free of artifacts.
A few years ago radically new paradigms for shape fabrication
were proposed [Mitani and Suzuki 2004; Shatz et al. 2006;
Massarwi et al. 2007; Mori and Igarashi 2007; Li et al. 2010]. The
main idea was to drastically simplify the overall printing procedure
by fabricating a plausible representation of the digital model,
instead of its exact copy. This class of methods relies on a simple
concept: approximating an object does not necessarily mean that
there will be a visual deficit.
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Fig. 1: Given a 3D shape with a smooth cross-field, we generate a set of planar slices that can be interlocked in a self supporting structure.

(a) (b) (c)

Fig. 2: (a) The classical waffle approach modeling technique (with axis
aligned slices); (b) Our method applied to a cross field calculated with
[Bommes et al. 2009]; (c) field symmetrization techniques [Panozzo et al.
2012] increase the visual appeal of the final result. The total length of the
polylines for each method is approximately the same.

A recent approach proposed approximating the surface using an
orthogonal arrangement of planar pieces [Hildebrand et al. 2012].
The slices are plugged into each other to compose a rigid shape.

1.2 Contributions

We redesigned the traditional slice-interlocking approach in order
to approximate generic 3D surfaces with greater flexibility. We
focused on building arrangements composed of shallow ribbon-
shaped pieces which follow a cross field defined on the surface.
These structures are made up of planar pieces that interlock with
each other using an extended slit mechanism. Specifically, we:

—propose a novel strategy to fabricate illustrative shape approx-
imations based on ribbon-shaped planar slices. Compared to
classical planar sections [Hildebrand et al. 2012], ribbon-shaped
slices reduce the physical constraints involved in the assembling
procedure, allowing for more complex structures.

—extend the classical slit mechanism [Hildebrand et al. 2012] by
providing additional structural degrees of freedom. In particu-
lar, we consider insertion movements that are not orthogonal to
slices. In addition, we formulated non orthogonal slice place-
ment [McCrae et al. 2011; Schwartzburg and Pauly 2012] in
a novel, structurally sound, perspective. We have demonstrated

how these additional degrees of freedom can be exploited to ef-
ficiently represent complex models.

—propose a novel, efficient strategy to approximate a surface with
a set of slices. Slice placement is driven by an input cross field
(such as [Hertzmann and Zorin 2000; Bommes et al. 2009; Ray
et al. 2009]). It provides a set of appealing, uniformly distributed
polylines lying on the surface of a mesh. In addition, the method
also takes into account slice insertion constraints and, while it
does not theoretically guarantee that the mounting sequence is
collision free, it yields arrangements that are practically assem-
blable and that exhibit a sufficiently robust slice structure. Our
method may also take advantage of field symmetrization tech-
niques, such as [Panozzo et al. 2012] (see Fig. 2) for a better
perception of the global structure of the generated structure.

—propose an automatic procedure to ensure that the slice structure
is physically achievable. First, it improves the final rigidity, act-
ing upon the slit interlocking mechanism. Secondly, it ensures
that the slice structure conforms to the physical constraints re-
quired by the manual assembling procedure. This procedure is
specifically designed to deal with our extended slit mechanism.

2. RELATED WORK

Fabricating tangible models from a digital 3D shape is fundamen-
tal in many industrial production processes. The majority of current
applications require a high level of accuracy, i.e. the printed model
needs to be a highly accurate physical copy of the digital shape. For
example, several applications require this level of accuracy for aes-
thetic purposes or for performing functional tests. However, differ-
ent contexts (toys, artistic reproductions) do not require the same
level of accuracy, or even prefer the production of an illustrative
version of the digital model.

On the basis of accuracy and reproduction we can classify the
various methods into two broad categories:

—Accurate: Modern devices enable almost exact copies of a given
shape to be reproduced. To guarantee high reproduction accu-
racy, the printer and the reproduction material may both be ex-
pensive;

—Illustrative: These methodologies fabricate approximate copies
of a given object, usually by relying on standard and cheap print-
ing technologies.

In both categories, the model can be fabricated as a single piece or it
can be split into a set of separate pieces and assembled afterwards.
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2.1 Accurate Methods

Rapid prototyping techniques [Dimitrov et al. 2006] have been cre-
ated to support the design industry. Usually the digital model needs
to be represented as a closed, piecewise, manifold mesh. Due to
the physical properties of the material employed and the produc-
tion procedure, specific mechanical constraints must be satisfied.
These constraints guarantee that the model is kept physically com-
pact throughout the printing procedure.

Recent research has focused on how to acquire the physical prop-
erties of a real object to transplant onto the fabricated model. For
example, [Bickel et al. 2010] proposed a technique to match the
elastic properties of a given object. Other papers focus on appear-
ance properties: [Cignoni et al. 2008] proposed a technique to en-
hance colors for rapid prototyping; [Weyrich et al. 2009] and [Ma-
tusik et al. 2009] reported a method for the improved reproducibil-
ity of surface reflectance properties by adding micro geometry; and
[Hašan et al. 2010] and [Dong et al. 2010] proposed a technique to
print specific subsurface scattering characteristics.

One common strategy is to divide up the original shape into dif-
ferent components, which are fabricated separately but assembled
together to produce the desired shape. One example is architec-
tural modeling, where the original shape is subdivided into a fi-
nite set of triangular [Singh and Schaefer 2010] or quadrilateral
[Fu et al. 2010][Eigensatz et al. 2010] basic panels. A method to
fit a freeform shape with a set of single direction bendable panels
(like wooden panels) is proposed in [Pottmann et al. 2010]. To fur-
ther improve the smoothness of freeform surfaces in architectural
design, [Bo et al. 2011] introduced the so-called Circular Arc struc-
tures.

In architecture, the decomposition of an object is usually manda-
tory, and depends on the dimensions of the fabricated shape. Con-
versely, generic shapes were deliberately decomposed into small
pieces to create a puzzle-like structure in [Lo et al. 2009] and [Xin
et al. 2011].

2.2 Illustrative Methods

The aim of illustrative methods is to fabricate an illustrative ap-
proximation of an input digital model.

Illustrative methods are generally designed to employ materials
and devices that are very popular and inexpensive. Since the fab-
rication process does not require a sophisticated device, a number
of cheap, accessible, servicing companies have recently flourished.
The interest in these technologies is testified by the recent release of
software tools devoted to planar slice fabrication procedures (such
as Autodesk 123DMake [Autodesk 2013]).

For example, [Mori and Igarashi 2007] proposed a sketching in-
terface to design plush toys. [Li et al. 2010] and [Li et al. 2011] put
forward a strategy to automatically fabricate pop-up models made
of paper. Pop-up models can remain in two different states: open
(showing the modeled shape) and closed (reduced to a simple sheet
of paper). A method to fabricate a three-dimensional shape illus-
trated through a stack of colored slices was reported by [Holroyd
et al. 2011]. Finally, several methods [Mitani and Suzuki 2004;
Shatz et al. 2006; Massarwi et al. 2007] represent the input model
through a set of foldable strips (usually made of paper), which can
be glued together to create a layered 3D representation.

[McCrae et al. 2011] create shape abstractions arranging planar
slices to optimize the perception of the original object. This method
allows non orthogonal slices, however it is not designed for the fab-
rication of tangible objects and problems of the assembly of these
slices have not been investigated.

Recently, [Hildebrand et al. 2012] proposed a method to semi-
automatically fabricate objects made up of planar slices. Altough
this method produces a wide range of visually appealing results,
unfortunately, it does not fit well with complex geometries (models
with a high degree of asymmetry or even complex topology) and it
favors arrangements of orthogonal slices. Similarly, [Schwartzburg
and Pauly 2012] allows non orthogonal slices, but it tries to re-
tain the simplicity of orthogonally intersecting pieces. Recently
[Schwartzburg and Pauly 2013] extended their approach to provide
a more detailed formulation on the assembly of non-orthogonal
slices by dealing with rigidity constraints. Given a set of prede-
fined intersecting slices, [Schwartzburg and Pauly 2013] optimize
slice positions to restrict the possible movement of each slice, thus
maximizing the rigidity of the resulting structure.
However, as demonstrated by the results, our method is capable of
automatically sampling planar slices in a visually appealing man-
ner. Our approach captures and represents the global structure of
complex objects, providing, at the same time, a fabrication strategy
that meets the physical rigidity constraints.

3. AN OVERVIEW OF THE COMPLETE PIPELINE

Our fabrication pipeline, as shown in Fig. 3, has the following
steps:

(1) As input, we get a triangle mesh with a cross field defined on
its surface (see Fig. 3.a). We obtained the cross field using
the method proposed in [Bommes et al. 2009] with the sym-
metrization of [Panozzo et al. 2012])

(2) We sample a set of planar polylines that lies on the original
surface (see Fig. 3.b). These polylines need to be oriented con-
sistently with the cross field and uniformly distributed on the
surface of the object. At the same time, the polylines need to
conform to specific constraints thus ensuring the stability of
the final structure. This step is detailed in Section 5.

(3) The polylines are transformed into a set of ribbon-shaped slices
(see Fig. 3.c). These profiles are obtained through a sequence
of boolean operations performed in a 2D space (using Clipper-
Lib [Johnson 2013]).

(4) We derive the interlocking mechanism to produce a physically
stable structure. At the same time we provide the sequence of
inserting gestures that make up the assembly procedure. This
step requires some slices to be split/carved (highlighted by the
close-up in Fig. 3.d). This step is detailed in Section 6.

(5) Each slice is then converted to a vectorial representation and
organized into sheets ready for automatic laser cutting (see Fig.
3.e).

(6) Finally the slices are assembled by following the sequence
specified by our system (see Fig. 3.f). The derivation of the
assembling sequence is detailed in Section 7.

4. INTERLOCKING PLANAR SLICES

In this section we provide an overview of the basic concepts
regarding interlocking mechanisms between planar slices. For a
more general discussion on interlocking shapes, see [Séquin 2012].

For the sake of simplicity, consider the simple situation of two
perpendicular slices fitting together (see Fig. 4). One slice moves
along a line parallel to the intersection between the two slices, to fit
with the other one which is fixed (this is the typical configuration
of waffle meshes). For each piece we create a rectangular slit at the
intersection line. The width of the slit must be equal to the width of
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(a) (b) (c) (d) (e) (f)

Fig. 3: A complete overview of our fabrication pipeline: (a) We get as input a triangle mesh and an associated smooth (possibly symmetric)
cross field; (b) We sample a set of well-distributed field oriented planar polylines; (c) The polylines are transformed into ribbon-shaped slices;
(d) The slice structure is modified to ensure that the final structure is physically achievable; (e) The slices are transformed into 2D vectorial
profiles that are laser cut; (f) The pieces are assembled manually by following the instructions.

Fig. 4: The classical situation of two connected slices: for each piece we
create a rectangular slit in correspondence with the intersection line.

the material used to create the slicing structure.
This classical, well known, configuration is built on two hard con-
straints:

Orthogonality constraint: The angle between each pair of in-
tersecting slices must be a right angle.

Parallelism constraint: For each pair of intersecting slices, the
insertion movement is parallel to the segment defined by their in-
tersection.

Conforming to these constraints means that the slice arrange-
ment is mostly arranged as an axis-aligned grid, the well known
waffle-shaped configuration.
Unfortunately, orthogonality and parallelism constraints have sev-
eral modeling limitations. These limitations produce serious ar-
tifacts, especially for an input shape with a low degree of axis-
alignment. Obviously, this reduces the range of possible shapes that
this method can be applied to.
To overcome this problem (instead of increasing the sampling rate)
we explicitly relax these two constraints.

4.1 Relaxing the Orthogonality Constraint

The traditional slit insertion forces the two slices to be orthogonal
to each other. This assembling mechanism is solid and strong be-
cause it relies on a tight grip of the slits around the slices, which
ensures a firm interlock of the two pieces. If the two slices are not
orthogonal, the slit has to be widened by the factor λ:

λ = (| tan(π/2− α)|+ 1) · τ (1)

Fig. 5: Three interlocked slices are rigid and tightly connected, although
the slices are not orthogonal and the wide slits are not tightly fitted onto
the surface of the other slice. The red dots denote where the slices are
pressed/forced against each other, such that the resulting friction ensures
the stability of the structure.

where τ is the slice thickness and α is the angle between the two
slice planes.

On the other hand, if we consider arrangements consisting of
multiple slices, the solidity of the grip can be guaranteed by a
simple triangular arrangement (see Fig. 5) or, alternatively, by
four slices interlocked together with non-parallel intersections (see
Fig. 7). In the latter case, the rigidity derives from the fact that a non
orthogonal slit is like a hinge and the four connected slices form
a four-bar linkage [McCarthy and Soh 2000]. Any spatial linkage
formed by four links and four hinged joints, when in general posi-
tion, is a highly constrained (rigid) mechanical system. Section 5
outlines how we exploit this mechanism to ensure stability in the
final structure.

4.2 Relaxing the Parallelism Constraint

Just allowing the angle between slice planes to deviate from 90◦ is
not sufficient to deal with all the possible real scenarios. Indeed, as
illustrated in Fig. 6, when a slice (the green one) has to be inserted
over four existing non parallel slices (the blue ones), the direction
of insertion will definitely not be parallel to some of the intersec-
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Fig. 6: The shape of the slit widening depends on the insertion direction.
The divergence of the green slice is the maximum angle between the various
intersection segments when the best insertion direction is chosen. On the
right we show how the slit widening varies when different insert directions
are chosen.

tions. In these cases the slit has to be enlarged so that it can accom-
modate the insertion movement. The size and shape of the widened
slit (trapezoidally-shaped), depend on the chosen direction for the
insertion.

Guaranteeing that the inserted piece has a firm grip is important,
so an insertion direction that is parallel with at least one of the
intersection segments is required, so that at least one of the slits
holds the other piece steady.

To increase the overall rigidity, arrangements that limit the slit
widenings are clearly preferable. The size of the slit widening also
depends on the order we insert the slices. In the example shown in
Fig. 6, we could have avoided any widening by simply placing the
slices in a different order: for example by inserting the four blue
slices one at a time on the green slice. An even more complex ex-
ample is shown in Fig. 7 where four slices are interlocked together.
Note that, given the ordering shown in the figure, just a single slit
widening is enough to assemble the structure. To quantify how well
a slice can be inserted over a set of existing slices we introduce the
concept of divergence. Given a slice s that is inserted over a set of
slices s1, ...sn, let `i = s ∩ si be the intersection segment formed
between the slice s and the i-th slice; we define the divergence Λ
of the slice s with respect to s1, ...sn as:

Λ(s) = min
i

(max
j 6=i

ANGLE(`i, `j)) (2)

In practice Λ(s) denotes the maximum slit widening that we are
forced to make even when the best slice for the perfect slit is cho-
sen. For the example in Fig. 6, the divergence of the green slice is
the angle indicated in the second row of the right part of the figure.

4.3 Exploiting Oblique Slice-to-Slice Arrangement

By relaxing the orthogonal and insertion constraints we consider-
ably increase the resulting expressive power. However, this addi-
tional degree of freedom needs to be carefully tuned to ensure that
the final structure is physically stable. This entails optimizing the
overall structure. Thus:

—The physical stability for a given slice arrangement is influenced
by the shape of the slits. As the slits become larger, there is less
friction between the pieces, thus reducing their physical stability.
When the slit between two pieces is not enlarged, then we have
a perfect plug.

Fig. 7: Four interlocked slices that are rigidly and tightly connected, even
though the slices are neither orthogonal nor inserted along a direction par-
allel to the intersections. Starting from the green slice, the blue and yellow
slices are inserted one by one onto the previous slice along the intersection
line (no slit widening needed). The last pink slice is inserted over two non
parallel slices, so widening is required. The red dots denote contact points.

—The shape of the slit is directly related both to the position of
the slice and its insertion direction. As the slices become less
and less perpendicular and, likewise, as the divergence between
the insertion direction and intersection segment increases, the slit
increases in size.

Our framework must be general enough to guarantee a correct
slice structure for a given, arbitrary, placement. This means that the
absolute position of slices must be maintained constant, though the
insertion directions can be changed.

From an overall, purely aesthetic perspective, the final slice
structure does not depend on the sequence of gestures needed to as-
semble it. We only have to ensure the existence of a valid mounting
sequence. Then, for a given set of slices, we optimize the insertion
direction in order to increase the overall stability of the structure.

4.4 Ribbon-Shaped Slices

In our framework, we shaped the slices into ribbons, i.e. the slices
are not solid but they only define the main silhouette of the object.
This kind of shape has particularly appealing visual results. Since
it is possible to see through the slices, this provides a complete
vision of the overall structure. Ribbon-shaped slices have additional
advantages in terms of fabrication: there are considerable savings
in terms of material and it is very uncommon for three slices to
intersect at the same point.

Having three slices intersecting at the same point is, indeed,
the standard situation of the approaches based on solid slices
(such as [Hildebrand et al. 2012]). The solution to these cases
consists in decomposing the slices hierarchically using a BSP tree.
Unfortunately, this approach means that the slices are excessively
fragmented as the sampling resolution is incremented.
This situation may also arise in our approach, especially in a high
curvature region, where ribbons degenerate into solid sections of
the mesh. In this case, we follow a heuristic similar to [Hildebrand
et al. 2012]: we remove one intersecting slice by splitting the
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Fig. 8: The constraint used to guarantee an even distribution of the traces.
Gray disks represent intersection distances, while the red disks show the
distances between points that are far from the intersections.

ribbon that has the smallest area.

5. FIELD ALIGNED SLICE DISTRIBUTION

We define a set of ribbons by inflating planar polylines that lie on
the surface of the input object.
As mentioned in Section 1 we exploit a smooth feature-aligned
cross field defined over the original surface. Given a manifold,
single-connected component mesh and a cross field, we automat-
ically provide a set of polylines, on the original surface, which con-
form to the following characteristics:

Cross Field Alignment The polylines should be as aligned as
possible to the input cross field. In general, since gradient lines of
a cross field are not planar, it is impossible to provide a perfect
alignment (unless we rely on tiny polylines). We must then make a
tradeoff between length and alignment.

Uniform Distribution Polylines must sample the original sur-
face as uniformly as possible. Since polylines intersect each other,
then the intersection points must also be distributed uniformly on
the original surface. This makes the overall shape seem more ‘reg-
ular’.

Stability Once assembled, the fabricated structure must be rigid.
As explained in Section 4.1, stability can be ensured locally by the
orthogonality of the slices or, globally, by mutual interlocking.

5.1 Alignment to Cross Field

We designed a simple procedure to trace field-aligned planar
polylines. For each face and for each direction, we iteratively trace
a polyline, called a separatrix, which follows the orientation of
the field. Since the cross field is invariant to 90◦ rotations, at each
tracing step the separatrix follows one of four possible directions
which has the smallest angle with the previous direction. At each
tracing step, we also fit a plane to the current separatrix (the plane
is constrained to lie on the initial face). We perform tracing steps
iteratively while the maximum distance between the separatrix and
its fitting plane stay below a certain threshold. Additionally, we
may also stop the iterative tracing if the separatrix self-intersects.
The final set of planar polylines, which we call traces, is defined
as the intersection between the mesh and the fitting planes. The
extremes of each trace are chosen according to the extremes of the
generating separatrix.

5.2 Distribution Constraints

We formalized a set of constraints between slices to distribute them
uniformly on the surface of the object. Given a disk radius r, we

sample a set of traces Σ = {t0, t1, ..., tn} generating a set C of
intersections cj such that:

—for each ci, cj ∈ C: D(ci, cj) > r

—for each xi ∈ ti, xj ∈ tj :
D(xi, xj) < r →
∃ ck ∈ ti, tj : D(xi, ck) < r

∨
D(xj , ck) < r

where D() is the geodesic distance on the original surface. In prac-
tice, we search for traces whose intersections are well spaced and
so that the geodesic distance between traces is larger than r (except
in a neighborhood of the intersections). An example of the uniform
distribution of polylines on the surface is shown in Fig. 8.
Fig. 9 shows a mesh sampled at different radius resolutions. Obvi-
ously the higher resolution (small values of r) increases the details
of the final model.

5.3 Stability Constraints

In order to keep the final structure stable, the slice arrangement
must be a single connected component.
Moreover, the slices should be almost orthogonal to each other. In-
deed, orthogonality provides a good grip for the interlocking mech-
anism, by minimizing the slit widening.
We consider a slice stable if:

—It is the first slice placed on the structure;
—or it has a perfect fit with at least one other stable slice. We con-

sider two slices to be in a perfect fit if the intersection between
their planes is in between [π/2− δ, π/2 + δ].

—or the slice is interlocked in a rigid substructure (see Sect. 4.1,
following the intuition of the triangular configuration in Fig. 12).

5.4 The Sampling Strategy

We designed a simple algorithm to produce a slice arrangement
that conforms to the constraints we mentioned above.
We build a candidate set by collecting two traces for each face
(corresponding to each orthogonal direction of the cross field). We
then assign a priority value to each candidate trace. The priority
of a candidate trace is the maximum length without violating the
distribution constraints.
Initially we place the longest trace, since it is the first one it is
consequently stable. Then, we iteratively search for the longer
trace which, when placed, would become stable.
By following this simple greedy strategy, we add candidates one
by one, until no further trace can be inserted.

5.5 Global Regularization

Finally, we improve the distribution of the traces with a global reg-
ularization step in order to balance the space between slice inter-
sections.
Given a trace with its intersection points, we evaluate the optimal
position of each intersection point. Given an intersection point pint

its optimal position is the one that minimizes the squared sum of
distances with the surrounding intersections (or endpoints). After
we have calculated the optimal points, each trace is slightly moved
to approach the optimal points. This operation is executed only if
distribution and stability constraints are not violated.
We repeatedly execute optimization operations until the trace dis-
placements become lower than a certain threshold.
A sequence showing the placement and optimization of slices is
shown in Fig. 10.
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r = 3.5%, 80 slices r = 2%, 138 slices r = 1.2%, 193 slices

Fig. 9: The bunny model sampled at different radius resolutions. Sampling radius r is given as a percentage of the diagonal of the model’s
bounding box.

(a) (b)

(c) (d)

Fig. 10: A sequence of the slice sampling procedure: (a) (b) show two inter-
mediate steps of the slice sampling procedure, composed of 6 and 12 slices
respectively; (c) the final slice structure composed of 33 slices and its global
regularization (d).

6. FROM RIBBONS TO ASSEMBLABLE SLICES

The planar polylines defined over the surface in the previous sec-
tions can be easily transformed into ribbons by simple extrusion.

However, if we consider a set of generic intersecting slices, there
are several situations where physical assembly is impossible. For
example, it is impossible to interlock two closed rings without
opening at least one of them. In relation to this specific problem,
Fig. 11 shows a typical situation: three orthogonal ribbons each
one intersecting the other two in two different points. In this case

Fig. 11: Three interlocked looping ribbons must be split into four pieces so
that they can be untangled.

the slices must be decomposed into at least four pieces leaving only
one annular ribbon. We refer to the situation where two ribbons in-
tersect in two different points as multiple intersections.

Let us assume that we have a set S = s0, ..., sn of planar ribbons
that approximate a given 3D surfaceM . We aim to transform S into
a set S ′ = s0, ..., sm of ribbons such that:

(1) for each pair of ribbons s1 s2, the intersection s1 ∩ s2 is a
proper segment ` with exactly one of the two endpoints lying
over the surface M ;

(2) we have a proper assembly sequence, such that the resulting
divergence is lower than a given threshold.

Under the above constraints, we are able to create the slit mech-
anisms described in Section 4 and, in order to fulfill them, we use
the following two-step procedure which:

—removes multiple intersections that limit the assembly procedure

—minimizes the divergence by shuffling the slice order or if nec-
essary by splitting some of the ribbons.

In the following subsections, we first introduce all the basic con-
cepts behind the process, and then provide a more detailed descrip-
tion of each step.
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Fig. 12: The two Slice Graphs corresponding to the slice arrangements
shown in Figs. 5 and 7. The last two rows show two different arc orien-
tations for the same slice arrangement: the slit widenings are affected by
the orientation.

6.1 Slice Graph

We model the relations between slices in the arrangement structure
using a directed graph. Each node si of this graph represents a slice.
Each arc corresponds to a physical intersection between two slices
(and has to be transformed into a slit mechanism). The direction of
each arc represents the priority in the partial ordering of the assem-
bly sequence, e.g. the arc si → sj means that the piece si must be
plugged into sj , which should already have been assembled.

Three simple examples of slice graphs with the corresponding
slice arrangements are shown in Fig. 12.

A valid slice graph must be acyclic. A cycle in the slice graph
involves plugging one slice onto another slice that still needs to
be inserted (in some geometric cases this may still be feasible by
assembling all the pieces simultaneously), but this is obviously not
desirable.

The orientation of the arcs in the Slice Graph can significantly
affect the shape of the slit widenings, as described in Section 4
and shown in the last two rows of Fig. 12 where the different arc
orientations generate different slit widenings; the configuration in
the middle row needs two slit widenings, while the bottom row
needs only one.

6.1.1 Finding a good sink set. Initially we must select a sink
set, i.e. the initial set of disconnected, independent slices into which
the remaining slices are inserted one by one. Intuitively, the sink set
of a slice graph represents the ribs of the whole structure which we
try to preserve in the various processing steps. More formally, we
search for the sink set that is composed of a maximal independent
set of nodes and exhibits the maximum number of arcs/relations.
Unfortunately finding this optimal sink set is closely related to the
problem of finding the maximum independent set of nodes in a
graph: an NP-hard problem. For practical purposes, we verified that
it is sufficient to randomize the procedure in order to build a maxi-
mal independent set (we randomly add nodes until the set is maxi-
mal), repeat it for a limited time, and then pick the best candidate.
We found that for a typical set of slices (100 pieces), 10k to 100k
attempts (a few hundred msecs of computing time) are sufficient to
get a stable sink set.

6.1.2 Optimizing the graph. Once the sink set has been de-
fined, we need to sort all the remaining nodes. In order to provide a
good initial order, we sort all the non-sink nodes according to their
maximal divergence between each pair of intersection segments.
The idea is to minimize the variance of the insertion directions and
their divergence once the arcs have been oriented.

Starting from this initial ordering, we swap the direction of each
arc if this reduces the divergence between the insertion direction
and intersection segment. We follow a greedy approach by swap-
ping the arc that produces the greatest divergence improvement.
Simultaneously, we reject any swap operation that would introduce
cycles into graph. The result of the optimization process is shown
in Table I, which highlights how the graph optimization process
improves the quality of the interlocking between slices. The table
reports the number of slices that are perfect fits (i.e. slices with a di-
vergence equal to zero) and the number of slices with a significant
divergence (i.e. larger than 45 degrees).

6.2 Intersection Graph

Given a set of ribbons during the process of making it physically
achievable, we need to control the degree of solidity of the assem-
bled structure.

For this purpose let us consider the Intersection Graph. Each
node represents a ribbon intersection and an arc represents a slice
that embeds two adjacent intersections.

We exploit the concept of isoperimetric number [Bobkov et al.
2000] (or Cheeger constant) h(G) of a graph G = {V,E}, a com-
mon measure of the presence of bottlenecks in a graph. The isoperi-
metric number h(G) is defined as:

h(G) = min
0<|G|≤n

2

|∂(U)|
|U |

, (3)

where the minimum is over all nonempty sets U ⊂ V of at most
n/2 vertices and ∂(U) is the edge boundary of S, i.e., the set of
edges with exactly one endpoint in U . In practice h(G) becomes
small when a significant portion of the graph is connected to the
rest of the graph by just a few arcs.

6.3 Splitting a Ribbon

Given two slices s1, s2 with intersection segments `1, ..., `k,
we can improve the set of ribbons by using a split operation
Split(s1, `j) which modifies s1 so that it no longer intersects s2
along `j . The splitting operation Split(s1, `j) is performed by
carving out from s1 all the points at a distance lower than λ from
`j (e.g. taking into account the relative orientation between s1 and
s2, as specified by equation 1). This operation may split a slice into
two separate components or, if the ribbon is a loop, it may open it.

6.4 Removing Improper Intersections

At the very beginning of the process we clean out all the im-
proper intersections from S, e.g. all the intersection segments `
between two slices s1, s2 that do not intersect the surface of M .
These intersections do not correspond to any intersections of the
generating polyline and are caused only by the intersections of
the inner extrusion of the polylines. We simply remove all of
them by applying two split operations for both the involved slices
Split(s1, `), Split(s2, `). In all the encountered examples there
are only a few of these improper intersections and, once removed,
we ignore their contribution for the rest of the process. In Fig. 3.d
the two blue circles highlight the ribbons that were processed for
removal of improper intersections. Fig. 13 shows a close up of one
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Fig. 13: A close up of an improper intersection in the Hand model. The two
ribbons marked in red have an intersection that does not touch the original
surface

of these improper intersections: the two ribbons marked in red have
an intersection that does not touch the original surface and there-
fore does not correspond to an intersection between the originating
traces.

6.5 Removing Double Intersections

There are two main reasons for splitting a ribbon:

—to remove double intersections
—to lower slice divergence

First, we remove all the double intersections, i.e. pairs of slices
si, sj whose intersection is not a single segment `, but it is com-
posed of two (or more) segments. A typical situation is depicted in
Fig. 11.

To clean out a double intersection, we have to carve out a por-
tion of the slice from one of the two slices around the intersec-
tion. There is generally a choice of four different carvings (one
for each slice/intersection pair). We opt for the split operation that
maximizes the resulting isoperimetric number. If there are many
slice splittings that lead to the same isoperimetric number, we split
the non-sink slice that has the largest number of intersections with
other slices.
We keep the slices in the sink intact because they were chosen
specifically to increase the rigidity of the structure. Similarly, of
the non-sink slices, we pick the one that will remain connected as
much as possible with other slices.

Fig. 14 shows an example of this process for a small arrange-
ment made up of non orthogonal looping ribbons on a sphere. The
top row of the figure shows how the arrangement evolves during the
process. The red circle highlights the result of the last split opera-
tion. The red lines highlight the double intersections that are still
present in the arrangement. The last image in the top row, shows
the slice arrangement after transforming the remaining six inter-
sections into slit mechanisms (machining tolerances are exagger-
ated for sake of image readability). At the beginning the first sink
set has just one random ribbon (in this case the yellow one). Each
ribbon intersects every other ribbon in two points, so there are six
double intersections. The intersection graph corresponding to each
step of the process is shown in the bottom row of the figure. At
the beginning, the intersection graph is equivalent to the edges of

Model Slice Perf. Fit Perf. Fit > 45 > 45
after before after before

Man 112 71 54 6 17
Hand 123 82 68 0 26
Bimba 196 134 110 4 22
Ico 90 70 58 0 0

Table I. : The slice graph optimization allows us to increase the number of
slices that make perfect fits (all the insertion directions are parallel) and to
reduce the slices whose divergence is higher than a given threshold.

a cuboctahedron and its isoperimetric number is 8/6, i.e. the most
fragile set of intersections has six intersections from which there
are eight connections to other intersections.

We start with a sequence of five split operations and we re-
move the double intersections. Then the only slice that remains un-
touched is the original sink, two of the other ribbons have been split
twice thus generating four ribbons and the last one has been split
only once, thus remaining a connected component. At this point in
the process there are no more double intersections and the whole
structure is still rigid (see Sect. 4.1: each slice is involved in a four-
cycle of non parallel intersections).

6.6 Lowering Divergence by Splitting a Slice

Once all the double intersections have been removed, and the slice
graph has been optimized, we can still improve the overall arrange-
ment by splitting those slices with a high divergence which could
cause huge slit widenings. In general, when we have a slice with
high divergence we can split it along one of its intersection seg-
ments. Of all the possible splitting operations that significantly
minimize the divergence, we pick the operation that maximizes the
resulting isoperimetric number.
Looking again at the final arrangement in Fig.14 there is a slice
with a high divergence which causes slit widening. We could re-
move this widening by splitting the slice, but this would lead to
significant loss of rigidity. In fact, with another split, we would fail
to satisfy the rigidity conditions described in Sect. 4.1.

In Fig. 3.d the three red circles highlight some of the split oper-
ations that were performed in order to remove double intersections
(the two top red circles) and to lower the divergence (bottom red
circle).

7. ASSEMBLING PROCEDURE

To facilitate the assembly procedure we provide basic references:
all the slices and slits are labeled so that matching between pieces
is unambiguous. We derive an appropriate assembling sequence as
follows.

The Slice Graph optimization steps described in Sect. 6.1 gener-
ate a partial ordering which is tailored to minimize the divergence
of the slices. Starting from this relation we want to generate a to-
tal ordering that is easy to assemble in the real world. We thus use
a greedy procedure which, starting from the fully-assembled slice
arrangement, removes at each step the slice si that satisfies the fol-
lowing conditions:

(1) the Isoperimetric Number of the Intersection Graph of S \ si
is maximum (i.e. we remove the slice that leaves the structure
as robust as possible);

(2) of all the slices with the minimal h(), si has the smallest num-
ber o(si) of outgoing arcs in the Slice Graph,
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Fig. 14: An arrangement containing multiple double intersections (indicated by red lines) is corrected by means of repeated split operations
(indicated with red circles). In the bottom row we show the intersection graph at each step of the process. The top-right image shows the
arrangement when all the remaining six intersections are transformed into slit mechanisms.

(3) of all the slices with the minimal h() and o(), si is the closest
(in terms of Euclidean distance) slice to si−1.

In practice, given the fact that we consider h(S) as a measure of
the robustness of the structure, we try to find an assembly order that
keeps the structure reasonably solid at each step, and in ambiguous
cases, we proceed by adding the slice that has the most intersections
with the already assembled structure and if possible close to the
previous slices. This ordering is used to label both slices and slits.

8. RESULTS

We tested our method with several models from the Stanford 3D
Scanning Repository (bunny) and the AIM@SHAPE Repository
(hand, bimba and kneeling man). All the results presented in this
paper have been generated automatically.
If a cross field is not available we may simply arrange slices proce-
durally. As an example, two configurations approximating an icosa-
hedron and a sphere are illustrated in Fig. 16.
We successfully applied the entire pipeline described in Sect. 3 to
approximate input geometries with an associated feature-aligned
cross field as input. These structures are shown in Figs. 15, 17 and
18. It took from about one to three hours to manually assemble
each final model, with most of the time spent searching for the next
slice. Once assembled, the resulting models were physically stable.
Exploiting an input cross field has several advantages over axis-
aligned approaches, such as [Hildebrand et al. 2012] (this compar-
ison is shown in Fig. 2). In addition, the cross field can be further
optimized in a preprocessing step to increase the quality of the re-
sults (see Fig. 2).

Although the entire process is completely automatic, users can
perform some simple editing operations to obtain a more visually
pleasing result at the end of the process. Users can suggest which
slice should be inserted in the sink set and force the split of a partic-
ular slice. We used the first option in the bunny, preferring a vertical
orientation of the sink slices, which is much easier to assemble.

9. CONCLUSIONS AND FUTURE WORK

We have proposed a novel method for the automatic fabrication
of an illustrative representation of a given geometry made up of
interlocked planar slices. We have shown the effectiveness of our
method both in terms of illustrative quality and physical stability.
To the best of our knowledge, no existing fabrication paradigms are
able to represent such complex objects.

Our method is particularly efficient in terms of production costs. In
fact, the production costs scale with the surface of the object since
slices are sampled almost uniformly over the surface. In addition,
due to the slice decomposition, mesh joinery is also suitable for the
production of medium-scale objects.
A useful extension of our framework would be to automatically
generate effective instructions to simplify the manual assembly
procedure, for example a packing strategy that could preserve the
partial ordering of the model to facilitate the search for the next
piece.

9.1 Limitations

Although the range of shapes that we can efficiently approximate
is wide, our method suffers from minor limitations. We did not ac-
count for the presence of other slices that could obstruct a straight
insertion. However, in our experience, due to the ribbon shape of
the slices, this never constitutes a serious limitation.
Moreover, we did not consider the physical issues regarding gravity
and the position of the barycenter and the resulting stress acting on
each individual slice. Again, in our experience, given the rigidity of
the material, we had no stability problems for any of the assembled
structures shown in the paper.
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BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFISTER, H.,

GROSS, M., AND MATUSIK, W. 2010. Design and fabrication of ma-
terials with desired deformation behavior. ACM Trans. Graph. 29, 3,
63:1–63:10.

BO, P., POTTMANN, H., KILIAN, M., WANG, W., AND WALLNER, J.
2011. Circular arc structures. ACM Trans. Graph. 30, #101,1–11.

BOBKOV, S., HOUDR, C., AND TETALI, P. 2000. λ∞,vertex isoperimetry
and concentration. Combinatorica 20, 2, 153–172.
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Fig. 17: Our algorithm applied the ‘hand’ model. The arrangement is com-
posed of 122 pieces.
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Fig. 18: Our algorithm applied to the ‘bimba’ model. The arrangement is composed of 178 pieces.
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