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Photosynthesis is responsible for the photochemical conversion of
light into the chemical energy which fuels the planet Earth. The
photochemical core of this process in all photosynthetic organisms
is a transmembrane protein called the reaction center. In purple
photosynthetic bacteria a simple version of this photo-enzyme
catalyzes the reduction of a quinone molecule, accompanied by
the uptake of two protons from the cytoplasm. This results in the
establishment of a proton concentration gradient across the lipid
membrane, which can be ultimately harnessed to synthesize ATP.
Herein we show that synthetic protocells, based on giant lipid
vesicles embedding an oriented population of reaction centers, are
capable of generating a photo-induced proton gradient across the
membrane. Under continuous illumination, the protocells gener-
ate a gradient of 0.061 pH units min-1, equivalent to a proton mo-
tive force of 3.6 mV min-1. Remarkably, the facile reconstitution of
the photosynthetic reaction center in the artificial lipid membrane,
obtained by the droplet transfer method, paves the way for the
construction of novel and more functional protocells for synthetic
biology.

photosynthetic reaction center | giant lipid lesicles | artificial cells |
light transduction | proton gradient

Introduction

The synthesis of living cells from scratch is one of the most
ambitious goals in biology and chemistry1-6. Initiated in the origin-
of-life community7-10, research on supramolecular assemblies
modelling primitive cells has rapidly increased in the past few
years. More recently the rapid expansion of synthetic biology11

has given additional conceptual stimuli and technical tools to this
field, especially by the so-called bottom-up approach12. Despite
the recent progress, which is mainly focused on the reconstitution
of essential biochemical functions inside confined environments13

like phospholipid4,5,14-19 and fatty acid vesicles8,20,21, water-in-oil
droplets22, and coacervates23, the primary generation of chemical
energy by molecular machineries remains a missing key function.

In this paper, we try to fill this gap by constructing proto-
cells capable of transducing light into chemical energy in the
form of a pH gradient. To this aim, the photosynthetic reaction
center (RC) extracted from Rhodobacter sphaeroides has been
reconstituted in giant lipid vesicles. RC is a membrane-spanning
protein located in biological membranes surrounded by other
chlorophyll- based proteins (see SI Appendix, section S3a for a
detailed description)24,25 and it is the core of the photosynthetic
apparatus of plants, algae and photosynthetic bacteria. However,
if extracted from living systems and reconstituted in suitable lipid
compartments, it can also work in the absence of its ancillary
proteins. RC is composed of two highly hydrophobic subunits L
and M, and the mostly hydrophilic H subunit26. These subunits
cooperate, by a mechanism based on photon absorption27, to
catalyze the reduction of quinone species, removing protons from
the cytoplasm (SI Appendix, Figs. S1-S2a,b). The RC photocycle
(illustrated in SI Appendix, Fig. S2c) starts when RC absorbs a

photon, and generates an electron-hole couple in the presence
of an electron donor (reduced cytochrome c2) and an electron
acceptor (ubiquinone). While reduced cytochromes c2 transfer
electrons to RC from the external pool, protons are taken up from
the cytoplasm by ubiquinone giving ubiquinol, thus establishing a
pH gradient across the intra-cytoplasmic membrane. The proton
gradient is used by the cell to fuel ATP synthesis28 and ultimately
the whole metabolism of the organism29.

Previous works30-40 have shown that RC can be reconstituted
with the detergent depletion method41 generally with random ori-
entation in submicrometer liposomes31,34-35,37-40. However, partial
(60%)33 and high physiological orientation (90%)30 have been
also reported and it has been shown that experimental condi-
tions play a decisive role in determining RC orientation32,36,42.
RC reconstitution has been reported in random orientation in
planar lipid bilayers43-46 as well, even if high orientation can be
also achieved in such systems42. We have already reported the
generation of a transmembrane proton gradient in RC-containing
conventional liposomes40. Herein we present a novel single-step
procedure for reconstituting RC in giant lipid vesicles with high
physiological orientation showing that the resulting RC@GUVs
are able to convert light into a transmembrane pH gradient.

Results
Reconstitution of RC in GUVs membrane by means of the
droplet transfer method. Giant unilamellar vesicles (GUVs)47

Significance

The photosynthetic reaction center (RC), an integral mem-
brane protein at the core of bioenergetics of all autotrophs
organisms, has been reconstituted in the membrane of giant
unilamellar vesicles (RC@GUV) by retaining the physiological
orientation at a very high percentage (90±1%). Owing to this
uniform orientation, it has been possible to demonstrate that,
under red-light illumination, photosynthetic RCs operate as
nanoscopic machines which convert light energy into chemical
energy, in the form of a proton gradient across the vesicle
membrane. This result is of great relevance in the field of
synthetic cell construction, proving that such systems can
easily transduce light energy into chemical energy eventually
exploitable for the synthesis of ATP.
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Fig. 1. Preparation of GUVs by the droplet transfer method48. (a) Water-in-oil (w/o) droplets, prepared by the emulsification of an aqueous solution (I-
solution) in a lipid-rich oil phase, are transferred to an aqueous solution (O- solution) by centrifugation. (b) For preparing RC@GUVs, a detergent-stabilized
RC solution (RC-micelles) is emulsified in oil, giving the w/o droplets. Owing to asymmetric RC-micelle structure a preferential "physiological" RC orientation
is expected, namely, with the H subunit (in orange) facing toward the aqueous core of the droplets (the cytoplasm-like GUV lumen), and the photoactive
dimer (SI Appendix, Fig. S2a,b) facing the GUV exteriors (in white). (c) RC@GUVs (POPC:POPG 9:1) as imaged by confocal microscopy. Red-fluorescent AE-RC
was reconstituted in calcein-containing GUVs. (c1) Green fluorescence channel (calcein); (c2) red fluorescence channel (AE-RC); (c3) bright field; (c4) overlay of
the c1, c2, and c3channels.

Fig. 2. Charge recombination of RCs reconstituted in giant vesicles after a
saturating light flash. The points represent the experimental data, the lines
are the bi-exponential best fit curves. Data refer to charge recombination
in the absence (blue points) and in the presence (dark green points) of
excess of reducing agent (cyt2+). In a control experiment (red points), a full
recovery of RC photo-activity is measured after the addition of an electron
acceptor, the decylubiquinone (dQ) and the exhaustion of cyt2+. Note that
values in the y-axis represent the absolute values of △A865. In the inset,
theoretical charge recombination curves in absence (blue) and in presence
(green) of cyt2+, corresponding to different RC orientation (100, 50, and 0 %
of physiological orientation). The histogram represents the initial amplitude
of the curves △A865(0). Dark green bar, marked with the asterisk, refers to
the experimental trace reported in the main plot.

were prepared using the droplet transfer method48 (Fig. 1) since
we envisaged that this method could be suitable for reconsti-
tuting transmembrane proteins with a high degree of physio-
logical orientation. Purified RC from R. sphaeroides was first
obtained by a well-established procedure requiring the deter-
gent lauryldimethylamine N-oxide (LDAO) to extract the protein
from the photosynthetic membrane and to solubilize it in aque-
ous solutions49. A homogeneous micellar solution was obtained

Table 1. Kinetic analysis of charge recombination experiments:
bi-exponential decay fitting of experimental data reported in Fig.
2 (further details in SI section S3b).

sample △A0 (mAU) Af (%) As (%) ks (s-1)

RC@GUVs 2.21 ± 0.03 71 ± 3 29 ± 3 1.52 ± 0.09
RC@GUVs + cyt2+ 0.21 ± 0.01 71 ± 13 29 ± 13 1.50 ± 0.10
RC@GUVs + cyt2+ + dQ 1.94 ± 0.03 45 ± 2 55 ± 2 1.86 ± 0.06

Fig. 3. Scheme of RC@GUVs function under red-light illumination. (a) RC is
reconstituted, in highly oriented manner (90%) in the membrane of GUVs,
whose average diameter is 20 μm. The asterisk marks a non physiologically
oriented RC. (b) Detail of the photochemical mechanism generating the pH
gradient.

with fully photo-active RCs surrounded by a toroid of LDAO
molecules that shield the LM core from aqueous environment50.
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Fig. 4. Generation of a pH gradient by RC@GUVs. (a) Bulk fluorescence measurements of pyranine-containing RC@GUVs, which have been suspended in a
fluorescence cuvette and illuminated from the top (SI Appendix, Fig. S9). Blue and red points refer to RC@GUVs with final RC concentration of 10 nM and 20
nM, respectively. Black lines represent the best fit straight-line , whose slopes are (2.64 ± 0.03)×10-4 a.u. min-1 and (5.57 ± 0.03)×10-4 a.u. min-1, respectively, for
the blue and red datasets. (b) Confocal images of three pyranine-containing RC@GUVs illuminated with red light. (c) Quantitative image analysis reveals the
increase of intra-vesicle pH in time (fluorescence values converted by means of a calibration, see SI Appendix, section S2h). The best fit slope is 0.061 ± 0.004
pH units min-1. (d) Comparison between the experimentally observed pH increase in the aqueous core of giant vesicles: circles with error bars (as in panel 4c)
and the theoretical outcomes (colored bands).

To prepare RC@GUVs, the RC micelle solution was emulsified
in mineral oil containing a mixture of phosphatidylcholine and
phosphatidylglycerol (POPC:POPG 9:1). This emulsion was then
layered on the aqueous solution generating a biphasic system and
RC@GUVs were obtained after centrifugation (Fig. 1c).

Considering the RC reconstruction mechanism in vesicle
membrane, it is reasonable to assume that, micelles when dis-
persed in w/o will deliver their protein cargo at the droplet w/o
interface, mainly driven by hydrophobic interactions. Moreover,
as RCs present asymmetric distribution of hydrophilic and hy-
drophobic regions, protein-containing micelles will have a prefer-
ential orientation while approaching to, and interacting with, the
lipid monolayer of the w/o droplet, because the large hydrophilic
H subunit prefers the aqueous phase (SI Appendix, Fig. S2a,b).
It is expected that the chemical vectoriality of both RC-micelles
and lipid monolayer will favor only one of the possible protein
orientations in the w/o droplets before and during their transfer
to the aqueous phase, so that a population of highly oriented RCs
in the GUVs membrane should be obtained.

RC@GUVs prepared in such a way have an average diameter
of 20±10 μm (statistical analysis performed on a population of 150

GUVs, Fig. S3) and are morphologically stable for at least two
days when stored in the dark at room temperature. Quantitative
image analysis shows calcein does not leak out from GUVs after
2 days from the preparation (SI Appendix, Fig. S4) proving also
that traces of detergent, present as a consequence of the RC
encapsulation, do not significantly affect the membrane stability.

The concentration of lipids and photoactive RCs, collected
in 100 μL volume of the thus prepared GUVs suspension, were
determined spectroscopically (SI Appendix, section S2g), result-
ing 440 μM and 0.2 μM, respectively, hence a protein/lipid molar
ratio of 1/2200 was reached. RC@GUVs are characterized by a
quite high RC density (∼1200 RC molecules μm-2), corresponding
to roughly one third of the RC average density in the intra-
cytoplasmic membranes of photosynthetic bacteria51,52. The col-
lected GUVs were washed twice before further use, in order to
remove any external fragments of RCs.

Fluorescently-labelled RCs were used to monitor the spa-
tial distribution of the protein in GUVs. As a fluorophore,
we selected a suitable fluorescent dye belonging to the aryle-
neethynylenes class, since these molecules emit53 light efficiently
and can be easily functionalized to be covalently conjugated to
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biomolecules (SI Appendix, section S2a). In this work, we used
the 7-AE fluorophore (AE) (SI Appendix, Fig. S6)54 that absorbs
light at 445 nm and emits it in the red region at 602nm (SI
Appendix, Fig. S7). The AE is covalently linked through an amide
bond to the protein lysine residues by exploiting the succinimidyl
ester derivative AE-NHS as an activated compound toward the
reaction with amine groups in the lysines (Figure S8)54. The AE-
RC conjugate can be easily visualized by confocal microscopy, al-
lowing its localization in AE-RC@GUVs. Figure 2c shows images
obtained by confocal laser scanning microscopy where vesicles
display an uniform red fluorescent ring overlapping with the
vesicle membrane, demonstrating a homogeneous incorporation
of RC in the lipid bilayer of all GUVs.

RC is active and highly oriented. The photoactivity of re-
constituted RC can be assessed by inducing the formation of an
electron-hole couple by a short light flash and monitoring the time
of the charge recombination reaction by following the absorbance
at 865 nm (detailed mechanism reported in SI Appendix, section
S3b). Fig. 2 shows the time decay of the charge-separated state
induced by light flash: blue dots are the recovery of the dimer
signal from the excited state after a saturating flash in RCs recon-
stituted in giant vesicles. From the initial absorbance: △A865(0) =
2.21 ± 0.03 milli absorbance (mAU), the actual RC amount in the
RC@GUVs preparation can be determined which corresponds
to ∼10% of the protein initially loaded in the w/o droplets. The
bi-exponential fitting of the recorded trace (blue line) reveals
that the fast charge-recombination from D+QA

-• (Af) accounts
for about 71% of the overall signal, while the slow recombination
from D+QAQB

-• (As) contributes in a minor way (29%), showing
that under these experimental conditions the QB-site is only
occupied partially (Table 1, first row). The orientation of the
RCs population in GUV membrane can be assessed by using the
water soluble cytochrome c2

30, the physiological electron-donor
to the photo-oxidized dimer. In fact, both the reduced (cyt2+)
and the oxidized (cyt3+) forms of the cytochrome are unable
to cross the membrane. Therefore, the reduced cyt2+ added
in excess externally to pre-formed RC@GUVs reacts only with
the oxidized dimers exposed to the outer solution. The electron
donation from the reduced cytochrome to the oxidized dimer: D+

+ cyt2+→D + cyt3+ occurs very fast in the μs time scale preventing
the charge recombination reaction. The dimers reduced by the
cyt2+ will not contribute to the absorbance recorded at 865 nm.
On an average, if the RCs reconstituted in the GUVs dispose
across the lipid bilayer in random orientation, only half of the
dimers faces toward the bulk solution. Under this condition, a
saturating flash of light will generate the full population of D+,
but the signal will appear halved since the dimers oriented toward
the bulk are re-reduced on a very fast time scale by cyt2+. The
other extreme possibilities, i.e. fully oriented RCs with the dimer
facing the GUVs core, or fully oriented with the dimer facing
the external aqueous solution, will give the full signal △A865(0) in
presence of cyt2+ or the complete absence of signal respectively
(Fig. 2, inset). The actual ratio of the D+ absorbance change in
the presence (△A865(0)cyt) and in the absence (△A865(0)) of cyt2+

gives the fraction of RCs oriented in the bilayer with the dimer
exposed to the outer solution. Hence, fully oriented RCs will have
the ratio △A865(0)cyt/△A865(0) value equal to 0 when all RCs are
oriented with the dimer outwards. The ratio assumes value 1 when
all RCs are oriented with the dimer facing the GUVs water core.
All other intermediate possibilities will have a ratio value ranging
from 0 to 1.

Figure 2 (green points) shows the recovery of D in
RC@GUVs in the presence of externally added cyt2+. A small
signal △A865(0)cyt 0.21 ± 0.01 mAU is recorded, accounting for
9.5±0.6% of the △A865(0) value recorded in the absence of cyt2+

(Table 1, second row). This clearly indicates that the vast majority

of photoactive proteins in RC@GUVs prepared by the droplet
transfer method, 90±1%, are uniformly oriented and expose
the dimer to the outer aqueous phase. Notably, this result also
demonstrates that the large majority of vesicles prepared by the
droplet transfer method are unilamellar, as reported elsewhere55.
In fact, if RC was embedded in any internal lipid structure, as the
internal membranes of multi-lamellar vesicles, it would not react
with cyt2+ and therefore it would count as oppositely oriented.

As a further experimental test to check RC functionality, a
suitable amount of decylubiquinone (dQ) was then added in order
to oxidize all cyt2+ molecules, as a result of the RC photocycle
(SI Appendix, Fig. S2c). In fact, dQ is an ubiquinone analogous
that binds to the RC QB-site and accepts electrons as well56.
When added to RC@GUVs suspension, it is expected that dQ
will insert into the lipid membrane, diffuses and binds to RC QB-
site. RC@GUVs were illuminated with repeated light pulses until
the exhaustion of cyt2+, which is converted to cyt3+ while dQ is
reduced to decylhydroubiquinone dQH2. Thus, having removed
all the exogenous electron donors, the charge recombination
signal reappeared. As shown in Fig. 2 (red points) and Table 1
(third row), the measured △A0 value, in the presence of dQ (1.94
± 0.03 mAU), is close to the original 2.21 ± 0.03 mAU value,
demonstrating unequivocally the biochemical activity and the
high orientation of RCs in GUVs. As expected, the slow pathway
for charge recombination (ks = 1.86 ± 0.06 s-1) now becomes more
relevant (55%), due to the presence of dQ in the QB-site.

RC converts light energy into a pH gradient across the GUVs
membrane. The spontaneously achieved high-orientation of RCs
in the bilayer of the GUVs having roughly 90% of the dimer
facing the aqueous bulk and, consequently, ∼90% of the QB-
site facing the vesicle lumen, can be exploited to efficiently build
a light-driven pH gradient across the GUVs membrane. Under
continuous actinic illumination, and thanks to the electron-hole
couple formation, the electrons will flow from the external donor
(cyt2+) to the acceptor (dQ in the QB-site) that will uptake
protons from the vesicle aqueous core to form the quinol dQH2.
Ultimately, this compounds accumulates in the bilayer. The net
result of the photocycle is an intravesicle alkalinization that can
be revealed using the pH-sensitive probe pyranine. Pyranine-
containing RC@GUVs, prepared with low buffer capacity, were
hence added with excess of dQ, a small amount of cyt2+, and an
excess of ferrocyanide acting as secondary electron donor. Under
continuous irradiation, the pathway shown in Fig. 3 is established.
The net stoichiometry of the main process is the oxidation of two
ferrocyanide to ferricyanide, and the reduction of dQ to dQH2,

removing two protons per dQ molecule from the vesicle lumen.
Continuous red-light irradiation of pyranine-containing

RC@GUVs (SI Appendix, Fig. S9) generated an increase
of pyranine fluorescence over the whole vesicle population,
shown in Fig. 4a for two different RC concentrations in the
final suspension: 10 and 20 nM respectively. As can be seen, by
doubling the RC concentration in the preparation, this amplifies
the pH rate by a factor of 2.11±0.02.

The incipient proton gradient across the membrane of in-
dividual RC@GUVs was visualized by directly illuminating the
vesicles in a microscopy slide well and imaging them with confocal
microscopy. Figure 4b reports a series of fluorescence micro-
graphs referring to pyranine-containing RC@GUVs at increasing
irradiation time. Pyranine fluorescence increases over time as ex-
pected and the fluorescence intensity obtained by image analysis
was converted to pH units via a calibration curve (SI Appendix,
Fig. S10). The internal pH linearly increases in time, as shown in
Fig. 4c, with a slope of 0.061 pH unit min-1, equivalent to one pH
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unit in 16.4 min. The average rate of pH increase was converted
in the rate of translocated proton per RC by a physico-chemical
model that takes into account the GUV size, the RC density,
and chemical composition of the vesicle lumen. According to
some simplifying assumptions (detailed in SI Appendix, sections
S5c,e) the observed pH increase corresponds to a calculated
RC turnover rate of about 1.0 ± 0.1 protons min-1 per protein,
equivalent to 2.5 × 106 protons min-1 per GUV. This value is
our best estimate of RC function in GUVs in current experimen-
tal conditions and corresponds about 10% of the maximal RC
turnover rate calculated from the photon flux density delivered
to the microscope well (SI Appendix, section S5e). Moreover, it
contributes for a proton motive force of ca. 3.6 mV min-1 (△pH
min-1 × 59mV). In order to test the robustness of the RC@GUV,
the same sample was irradiated in a fluorimetric cuvette for 30min
immediately after the preparation and later on 24h (stored in the
dark at room temperature) by showing a comparable increase in
the fluorescence of the encapsulated pyranine (SI Appendix, Fig.
S11). These experiments show that GUVs retain the encapsulated
pyranine and, at the same time, that the RC activity is largely (ca
80%) maintained (see SI Appendix, section S3c).

Moreover, based on the developed kinetic model (SI Ap-
pendix, section S5b), a statistical estimation of the pH change
over time in the entire GUVs population was obtained taking into
account the vesicle polydispersity in size and in RC content. As
the GUV size distribution is experimentally known (SI Appendix,
Fig. S13), by assuming a random distribution for the RC surface
concentration, it is possible to derive the bivariate density func-
tion PVes(D, CRC) that estimates the probability PVes(D, CRC) dD
dCRC to find a GUV with diameter in the [D, D+dD[ range and
RC concentration in the [CRC, CRC+dCRC[ interval (SI Appendix,
Fig. S14). According to this model, the calculated displacements
of the pH time course, weighted by the density probability PVes(D,
CRC) for the whole vesicle population, are reported as green
band (1-60 μm) in Fig. 4d. The shown large diversity in GUV
performances depends much more on the vesicles size dispersion
than on the random distribution of the RC proteins in the lipid
membrane. In fact the red band, that refers to vesicles with a
restricted size range (15-30 μm), exhibits a more uniform behavior
(Fig. 4b and Fig S16) which is much closer to those of the GUVs
monitored experimentally. The comparison with the experimen-
tal data is good enough to validate the theoretical approach,
although a statistical analysis on a larger vesicle population would
be necessary. Since the number of RCs per GUV scales with
the vesicle surface, whereas the variations of the proton concen-
tration scales with the GUV volume, the model predicts small
RC@GUVs generate a pH gradient faster than large ones (SI
Appendix, Fig S15). It is also possible to estimate theoretically
the behavior of the smaller RC@GUVs with diameters <12.5 μm
range that represent the 27% of the entire population and remove
intra-vesicle protons from 2 to 4 times faster than the average
(SI Appendix, Fig. S15), resulting in a theoretical pH increase
rate up to 0.106 pH units min-1. This suggests that RC@GUV
with optimized size in the range between 10-15μm would perform
more efficiently and uniformly than those shown in this first
report. Microfluidics fabrication could be used to produce almost
completely monodispersed vesicle samples.

Conclusions
By employing the droplet transfer method, we have shown here
the construction of an artificial cell model, based on bacterial
RC, capable of transducing light into chemical energy. The re-
constitution of RCs in the GUV membrane results in a uniform
orientation (90±1%) with the dimer of the photo- enzyme facing
the outer aqueous solution. This orientation reproduces the dis-
position of the proteins in the natural photosynthetic membrane
allowing the establishment of a light induced pH change as in

photosynthetic bacteria in this bio-mimetic system. Furthermore,
these synthetic protocells show an RC surface density comparable
to the in vivo intra-cytoplasmic membranes52. The measured
proton translocation rate, 1.0 ± 0.1 protons min-1 per RC, gen-
erates chemical energy in the form of a pH gradient that can
be eventually converted in chemical work. However, more in-
depth analyses are required in order to investigate how vesicle
size, membrane lipid compositions, trace amounts of residual
detergent can affect the RC reconstitution, the RC@GUVs yield,
the membrane permeability and the RC photoactivity, paving the
way to future optimisations.

Accordingly to the presented methodology, other membrane
proteins could be reconstituted in GUVs57, i.e. ATP-synthase,
which would transduce the RC-generated proton gradient to ATP
synthesis. A preliminary analysis suggests that the topological fea-
tures of ATP-synthase would allow its reconstitution in the desired
orientation in RC-containing lipid vesicles, so that ATP can be
produced within the GUVs lumen. This sharply contrasts with
the usual reconstitution procedures of photosynthetic protein
complexes58-60 or artificial photosynthetic systems61 where ATP
is produced outside the vesicles. The presented study represents
a step forward in the aim of assembling artificial cells capable of
autonomously generating chemical energy.

Methods
Purification of reaction centre. Photosynthetic reaction centre (RC) was
purified from the a- protobacterium R. sphaeroides (R-26 strain) according
to a reported protocol49, obtaining an aqueous solution of RC micelles
stabilized by lauryldimethylamine N-oxide (LDAO) (0.03% w/v =1.3 mM) in
20 mM Tris-HCl (pH 8.0), 1 mM EDTA. RC-AE conjugate was prepared, in the
same buffer, but in the presence of Triton X-100 (0.03% w/v = 0.48 mM) as
described in SI Appendix, section S2b.

Preparation of giant vesicles. RC reconstitution in giant unilamellar
vesicles (GUVs) was carried out by droplet transfer method39, which consists
in transforming micrometre-sized lipid-stabilized water-in-oil (w/o) droplets
in GUVs. The method employs the following three solutions: (a) the organic
phase, consisting in 0.5 mM POPC/POPG 9/1 mol/mol dissolved in mineral
oil; (b) the inner solution (I-solution), consisting in a freshly prepared RC-
containing mixture (10 μM RC or AE-RC; 0.003% detergent; 5 mM Tris-HCl
buffer pH 7.4 or 10μM Tris-HCl buffer pH∼7.0; 200 mM sucrose); (c) the outer
solution (O-solution) consisting in a freshly prepared 5 mM Tris-HCl buffer
pH 7.4 or 10 μM Tris-HCl buffer pH∼7.0, 200 mM glucose. GUVs are collected
after 10 min centrifugation at 2500 rpm at room temperature (more details
in SI Appendix, section S2d) and washed twice before being used. Note that
the overall LDAO:lipid molar ratio is 1:170.

Charge recombination experiments. The RC@GUVs sample was diluted
1:8 with O-solution and placed in a 1 cm squared quartz fluorescence cuvette.
GUVs were irradiated by xenon lamp flashes (∼100 μs) placed orthogonal
with respect to the measuring beam. The absorbance decay at 865 nm
(△A865), which mirrors the charge recombination in RC, was followed in time
(for about 2 s). Data were collected onto a digital oscilloscope (Tektronics
TDS-3200), andmultiple traces (n = 64, delay time 2 s) were averaged to reach
a sufficiently high signal-to-noise ratio. The concentration of the photoactive
protein was estimated using Δε865 = 112,000 M-1 cm-1 (Ref. S4 in S.I.)

Orientation assay. Reduced cytochrome c2 (cyt
2+, 5 μM) – freshly pre-

pared by reduction of cyt3+ with ascorbate and purified by gel filtration
chromatography on Sephadex G-25 – was added to RC@GUVs, and charge
recombination was measured as indicated above. The fraction of oriented RC
is obtained by comparing the initial amplitude of the charge recombination
absorbance decay recorded in the presence ΔA865(0)cyt and in the absence
ΔA865(0) of cytochrome. Control experiments are described in SI Appendix,
section S3e.

Generation of proton gradient in RC@GUVs. Pyranine-containing
RC@GUVs were prepared by including 10 μM pyranine in a modified I-
solution (10 μMTris-HCl, pH 7.0 and 200mM sucrose). Potassium ferrocyanide
(10 mM), cyt3+ (5 μM), and decylubiquinone dQ (60 μM) were added to
vesicles in order to allow the establishment of the photocycle (Fig. 3), Contin-
uous light illumination was accomplished with a Schott KL 1500 illuminator
equipped with a 150 W lamp by using an optical light guide (1 inch in
diameter) for irradiating of the sample. Experiments were carried out by
reading the increase of pyranine green fluorescence (i) as collective GUVs
signal (by using a spectrofluorimeter), or (ii) as individual GUVs (by using a
confocal microscope), further details in SI Appendix, section S2i.
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