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Abstract: Air quality monitoring is a very important aspect of providing safe indoor conditions,
and carbon dioxide (CO2) is one of the pollutants that most affects people’s health. An automatic
system able to accurately forecast CO2 concentration can prevent a sudden rise in CO2 levels through
appropriate control of heating, ventilation and air-conditioning (HVAC) systems, avoiding energy
waste and ensuring people’s comfort. There are several works in the literature dedicated to air quality
assessment and control of HVAC systems; the performance maximisation of such systems is typically
achieved using a significant amount of data collected over a long period of time (even months) to
train the algorithm. This can be costly and may not respond to a real scenario where the habits of the
house occupants or the environment conditions may change over time. To address this problem, an
adaptive hardware–software platform was developed, following the IoT paradigm, with a high level
of accuracy in forecasting CO2 trends by analysing only a limited window of recent data. The system
was tested considering a real case study in a residential room used for smart working and physical
exercise; the parameters analysed were the occupants’ physical activity, temperature, humidity and
CO2 in the room. Three deep-learning algorithms were evaluated, and the best result was obtained
with the Long Short-Term Memory network, which features a Root Mean Square Error of about
10 ppm with a training period of 10 days.

Keywords: indoor air quality; carbon dioxide; HVAC system; deep learning; forecasting

1. Introduction

Indoor air quality (IAQ) monitoring has been continuously investigated, as higher
levels of pollutants have often been found indoors than outdoors [1,2]. Various parameters
present in environments, such as particulate matter (PM) and carbon dioxide (CO2), have
been analyzed. In particular, indoor CO2 accumulation as a contributing factor to bad
indoor air has been the focus of many discussions on building ventilation and IAQ [3].
Prolonged exposure to high CO2 concentrations in indoor spaces has harmful effects on
human health; in fact, it can cause headache, fatigue, drowsiness, nausea, memory loss,
sleep-cycle disorders, etc. [4,5]. For CO2 concentrations exceeding 700 ppm, symptoms of
sick building syndrome (SBS) have been observed; while, for values exceeding 1000 ppm,
inhibition of cognitive performance in school children has been reported. Further dysfunc-
tion was recorded for ppm values between 1000 and 5000. This led to the identification of
thresholds of indoor CO2 concentrations reflecting good (CO2 < 1000 ppm), moderate (CO2
between 1000 and 1500 ppm) and poor (CO2 > 1500 ppm) IAQ. Indoor CO2 concentrations
and associated health risks have become increasingly important due to the growing amount
of time spent indoors since COVID-19, with the spread of teleworking and smart working.
In fact, these work modalities are leading more and more people to use their homes as their
working environment; therefore, monitoring of air quality parameters has become essential,
in order to be able to detect suboptimal conditions for the individual’s health and to be able
to appropriately activate ventilation systems. In these contexts, in addition to the sources of
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CO2 production inherent in the home environment (cooking, heating systems, etc.), the rate
of CO2 generation by building occupants becomes relevant. It varies with the individual
characteristics of occupants (gender, age, weight, body composition, fitness level, etc.),
which influence energy expenditure and the ratio of O2 consumed to CO2 produced [6].
In addition to CO2, bioeffluents from human occupants are also the cause of indoor air
problems; however, in this paper, we will focus only on the analysis of CO2 widely used to
characterize IAQ conditions in buildings and the adequacy of outdoor air ventilation.

Another effect of the pandemic has been to encourage the performing of physical
activity at home, especially among adults [7]. This simultaneously leads to an increase in
the amount of CO2 produced indoors and the need for a high amount of Oxygen for those
who exercise. Therefore, it is important for CO2 monitoring systems to be able to recognize
the trend of increasing pollutants early enough to activate ventilation systems and maintain
the condition of optimal air quality without having heat loss. Manual ventilation control
often fails to eliminate concentration peaks; on the other hand, an automatic system capable
of accurately predicting CO2 levels can prevent its sudden rise and appropriately drive the
ventilation system, avoiding wasted energy and ensuring people’s comfort.

In recent years, several studies on indoor CO2, which have achieved high levels
of CO2 prediction accuracy through various artificial-intelligence techniques, have been
published. They analyse various environmental parameters such as temperature, CO2 and
humidity through statistical models and machine-learning approaches, including Artificial
Neural Networks (ANNs), Linear Regression (LR) models and Decision-Tree (DT)-based
models [8,9]. Such works do not perform a forecast of CO2 concentration in a future time
window, and few works are found in the literature with this purpose [10–15]. In these
works, performance maximization is typically achieved using a significant amount of
data collected over many days or months for algorithm training. This, besides being very
costly, may not respect a real-world scenario where the habits of the home occupants or the
conditions of the environment may change over time. The Kallio research [14] monitored
five days’ historical data to forecast the CO2 concentrations of two days in the following
week and achieved good performance with an ANN, but the data was limited to nine
hours per day with a resolution of one hour. Therefore, since CO2 concentrations can
change significantly over the course of an hour, the data set is not accurate enough to
drive an adaptive ventilation system. To achieve this, it is relevant that the control system
has as input for training a time window of updated data. Segala et al. [15] addressed
this problem by developing a store CO2 prediction by a Deep-Learning (DL) system (a
Convolution Neural Network) which updates over time and considers a limited amount of
data for training. Such a system analyzes temperature, CO2 and humidity data and obtains
a prediction error of around 15 ppm after using a week of data for training the model and
about 10 ppm after 30 days. To the best of our knowledge, no work in the literature has
dealt with developing something similar in the domestic context. In such an environment,
higher performance can be achieved by adding an accurate assessment of the occupants’
physical activity level to the monitoring of environmental signals. Activity level can be
assessed in several ways using environmental (e.g., 3D vision camera, Passive InfraRed
sensor, etc.) or wearable (e.g., accelerometers, gyroscopes, etc.) sensors. The former type of
sensors is non-obtrusive to individuals, but requires the ad-hoc design of all monitoring
rooms; this can be costly and complex. In contrast, through wearable devices, a more
cost-effective solution can be achieved, at the expense of a higher level of invasiveness;
however, this problem has been reduced in recent years, due to the spread of increasingly
miniaturized and easy-to-use sensor devices (e.g., smartwatches, smartphones, sensorized
t-shirts, etc.).

In the present work, a CO2 forecasting system for a home environment is presented
which monitors the temperature, humidity, CO2 and physical activity of the users by means
of ubiquitous sensors, which can detect data in real time. The design and testing of the
system was carried out by considering a real-world case study in a household inhabited by
a family, in which members perform smart working and exercise activities in a dedicated



Sensors 2023, 23, 5139 3 of 17

environment. Three Deep-Learning algorithms were identified for CO2 concentration
assessment which allow high accuracy values (about 10 ppm maximum error) with a
10-day training and without the room-specific details, such as dimensions and volume.
Preliminary tests were carried out considering only one room in the house occupied by
one user at a time. The system can be replicated in several rooms and take into account
the presence of all family members in the room. A methodological and performance
comparison with other recent publications is given in Table 1.

Table 1. Comparison of works on CO2 forecasting in a future window.

Related Work Learning
Dataset Size Method Input

Parameters Adaptive
Future

Forecasting
Window

RMSE

Khazaei et al. [10]
About
seven
days

Multi Layer
Perceptron

CO2,
humidity,
temperature

No 1 min 17 ppm

Kallio et al. [14] One year

Ridge regression,
Decision Tree,
Random Forest,
Multi Layer
Perceptron

CO2,
humidity,
temperature,
PIR

No 15 min 12–13 ppm

Segala et al. [15] Thirty days 1D-Convolution
Neural Network

CO2,
humidity,
temperature

Yes 15 min 15 ppm

Presented Work Ten days

1D-Convolution
Neural Network,
Recurrent Neural
Network,
Long Short-Term
Memory

CO2,
humidity,
temperature,
wearable
accelerometer

Yes 15 min 10-11 ppm

The paper is structured as follows. Section 2 reports an overview of the hardware
architecture and algorithmic framework for CO2 forecasting. Performance results of the
algorithms are described in Section 3. Finally, Section 4 shows both our conclusions and
discussions of some ideas for future work.

2. Materials and Methods
2.1. Hardware Architecture

The architecture of the proposed system consists of the following parts:

• Wireless air quality sensor capable of acquiring the following environmental param-
eters: particulate matter (PM 1, PM 2.5, PM 10), CO2, VOC, atmospheric pressure,
temperature, humidity;

• Sensorized T-shirt to monitor torso movements, breathing and heart rate;
• Embedded Personal Computer (PC) for data collection and processing.

The air quality sensor is the UPAI3-CPVTHA model manufactured by Upsens [16] and
shown in Figure 1. It is equipped with 4 LEDs signaling the quality of 4 selected parameters
and uses the MQTT protocol and WiFi connection to send data. The CO2 sensor has a
resolution of 1 ppm and an accuracy of ±5% [17]. It also integrates pressure, humidity
and temperature (in the range −10 ◦C to 50 ◦C) compensation to keep the measurement
within the stated accuracy. The time interval of data acquisition and transmission can be
set according to design requirements.
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Figure 1. UPAI3-CPVTHA air quality sensor produced by Upsens.

The Wearable Wellness System (WWS) T-shirt, manufactured by Smartex [18], inte-
grates a piezoresistive sensor for breathing-rate assessment and two textile electrodes for
heart-rate measurement. These sensors are connected to an electronic board (dimensions
51 mm × 62 mm × 14 mm, weighting about 50 g) placed in a properly made housing in
the garment, at the level of the torso, as shown in Figure 2. In addition to addressing data
acquisition and transmission, the board integrates a triaxial, DC-coupled accelerometer
sensor suitable for the analysis of torso movements. The garment uses Bluetooth wireless
protocol in a range of up to 10 m, and multisensory information is sampled at 25 Hz, a
frequency adequate to assess an individual’s postures and activity level. The battery life, in
streaming mode, is approximately 8 h.

Figure 2. WWS sensorized t-shirt produced by Smartex.

Although the two sensor systems acquire numerous parameters, in order to reduce the
computational cost, it was decided to analyse the best performing signals, described in the
literature, for the analysis of CO2 trends over time. Specifically with regard to the air quality
analysis system, CO2, temperature and humidity were taken into consideration. While,
for the t-shirt, only the activity level was calculated through the analysis of accelerometer
signals using an algorithm developed for a similar accelerometer system [19]. It calculates
the motion activity level with an accuracy of about 96% through posture detection and gait
velocity analysis..

The data of interest were stored and processed through the Lenovo ThinkStation i5
embedded PC with 8GB RAM, which features enough computational capacity to analyze
the data in real time, including using advanced artificial-intelligence software. The PC is
equipped with both Bluetooth and Wifi wireless connections, so it is able to communicate with
the two systems (directly with the wearable T-shirt, via cloud, with the air quality sensor).

The scheme of the hardware architecture is shown in Figure 3.
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Figure 3. Hardware architecture overview.

2.2. Data Acquisition

The experimental study was conducted in a room of approximately 18 square metres
by a height of 3 m, equipped with a hot/cold air conditioner, located inside a residential
house, in a small village (Borgagne in the province of Lecce, Italy). The acquisition was
carried out for about 15 days (from 2 March 2023 to 17 March 2023). The room has a
workstation equipped with a PC for smart working and a treadmill and weight bench for
performing physical activities. The room is equipped with (a) a window facing outdoors,
made of aluminium with a high degree of thermal insulation, measuring 280 cm × 150 cm,
and (b) an interior wooden door, not perfectly insulated, measuring 250 cm × 120 cm.
Inside the room, at a height of about 1.5 m from the ground, the air quality analysis sensor
described in paragraph “Hardware Architecture” was installed. The sensor was properly
positioned away from windows or air vents that could affect the measurement of the parameters
of interest.

For data acquisition, 3 people (2 women and 1 man) in good physical health, and aged
between 31 and 42 were involved. Each participant in the acquisition campaign performed
normal daily activities by occupying the room on alternate days so that there was only one
occupant in the room at a time.

Data was recorded for 15 consecutive days for 24 h as follows:

• Ten days for an average of about 8 h per day for smart working;
• Twelve days for an average of about 2 h per day for physical activity;
• The remainder of the recording covered the room under non-inhabited conditions.

The door and window were almost always closed. Only the window was opened
for a duration of about 10 min when the CO2 levels in the room were unsafe for the
occupant’s health.

Participants were asked to read and sign the consent and wear the WWS smart T-
shirt to record their activity level. The air quality sensor was active 24 h a day for all
days, and the cadence of data acquisition and sending to the cloud platform was set to
1 min in order to have a more detailed analysis of the temporal trend of the parameters of
interest. Meanwhile, the accelerometer data, coming from the T-shirt, was sent directly to
the PC described in the “Hardware architecture” section in streaming mode. Subsequently,
the activity level was calculated every 5 s using a software implemented in the Python
programming language for a similiar accelerometer device [20]. This software is also
involved in (a) reading the data from the environmental sensors, and (b) aligning the time
and processing all parameters of interest appropriately.
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2.3. Methodology

Since the latest algorithmic frameworks, based on deep-learning architectures, can
be deployed on low-cost commercial hardware architectures (even those not integrating
GPUs), in our proposed approach three DL architectures were considered for performance
comparison on the forecasting model: (1) a one-dimensional Convolutional Neural Network
(1D-CNN) [21], (2) Long Short-Term Memory (LSTM) [22] and (3) a Recurrent Neural
Network (RNN) [23]. Each of the 1D-CNN, LSTM and RNN models often show good
performance on multivariate time-series data [24–27].

As a type of CNN, the 1D-CNN has the basic characteristics of CNN and is suitable for
the time-series processing of sensor data. By using convolution processes, it can automati-
cally evaluate and extract features from a single spatial dimension, thereby discovering
intricate patterns in the data. A schematic representation of this type of architecture, cus-
tomized with respect to the type of input/output data considered in this work, is depicted
in Figure 4. A significant advantage of 1D-CNN over widely used neural networks is that
it learns features of a signal by considering local information instead of the whole signal in
each network layer, decreasing computational load required and thus favouring their use
even on processing devices with limited power (i.e., embedded platforms) [28]. To process
one-dimensional data, 1D-CNN employs one-dimensional convolution layers, pooling
layers, dropout layers and activation functions. In addition, to configure the network,
the following hyper-parameters are used: the filter size, the subsampling factor of each
layer and the number of neurons in each layer. Information on the tuning of previously
introduced parameters will be detailed in the following section.

Figure 4. A typical representation of 1D-CNN for CO2 forecasting using as input temperature,
humidity, CO2 and activity level.

On the other hand, RNNs (Figure 5) are the best algorithms for dealing with time
series [29], because they analyse the input data sequence iteratively and explicitly describe
the sequence of the input data. In fact, RNNs loop over the input data sequence, keeping
an internal model of the information they are processing, built from past information and
constantly updated as new information arrives, unlike other neural network architectures
that process the input data at once (i.e., CNN). Another added value is that RNNs often need
fewer layers to complete a task than other neural network architectures because of their
recurring nature. Although, from a theoretical point of view, RNN is able to handle such
long-term dependency problems, the weighting matrix will continue to multiply repeatedly
with the previous output, in accordance with the length of the time interval (and, in this case,
the data to be referred to will be at a greater temporal distance). The vanishing gradient
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and exploding gradient problem [30] will result from this. Consequently, it is preferable to
use, in some contexts, LSTM networks to address this issue and make improvements.

Figure 5. RNN representation through logic blocks. The bottom is the input state; middle, the hidden
state; top, the output state. U, V, W are the weights of the network.

LSTM is an evolution of the RNN architecture which started to be used in the mid-
2000s in applications such as stock-market forecasting [31] and speech recognition [32].
More recently, LSTM was used for COVID-19 pandemic new-cases prediction [33,34]. LSTM
network is composed of a series of cells, each of which consists of a cell state and input,
forget and output gates which make use of several activation functions (generally, sigmoid
and tanh). Specifically, with the “forget gate”, the architecture decides which information
should be kept and which should be discarded, whereas in the “input gate”, it updates the
cell state. In the “output gate”, LSTM decides what the next hidden state should be and,
finally, with “cell state”, it acts as a highway that transports relative information along the
sequence chain. The main distinction between an LSTM cell and a conventional RNN cell
is that an LSTM cell has a memory unit which has long-term memory capabilities. A forget
gate, which can selectively forget information that is no longer relevant, is used to do this.
In Figure 6, the structure of LSTM is reported.

Figure 6. A typical representation of LSTM architecture. The new memory Ct and the output at time
t (the predicted value of CO2) will be generated by updating the internal memory Ct−1 according
to the current input at time t (temperature, humidity, CO2 and activity level) and the previous CO2

output value at time t − 1.
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2.4. Neural-Network Architectures

Following the same approach as [15], the model was updated over time using a
sliding window to avoid the inclusion of old data which could degrade the accuracy of the
forecasts. This work, however, unlike [15], also considers activity level as an input variable
for networks to improve prediction accuracy.

The considered neural network architectures were designed using TensorFlow (version
2.11.0), and Python (version 3.7.9). 1D-CNN architecture consists of the following layers:

• Input layer: each sample includes the values of the input variables (CO2, temperature,
humidity and activity level) for each minute of acquisition. The input values are
normalised before loading the neural network. In particular, the input values are
scaled so that they lie in the range given on the training set, in our case between zero
and one [35]. The scaling is given by the following equation:

Xscaled =
(X − min)

(max − min)

where minimum and maximum values are related to the x-value to be normalised.
• One-dimensional Convolutional layer: It is used for the analysis and extraction of

features along the temporal axis of the inputs. To extract non-linear feature patterns
from the data, the standard rectified linear activation function (i.e., ReLU) is employed.

• Max Pooling layer: Its purpose is to learn the most useful information from the feature
vectors by subsampling the output matrix from the previous layer.

• Flatten layer: The input matrix is reshaped to produce a one-dimensional feature
vector to generate predictions from the output layer.

• Output layer: The output of this fully connected linear layer is a single neuron to
forecast the CO2 value for the next minute.

RNN architecture is composed in the aftermentioned layers:

• Input layer: like CNN.
• Three RNN layers: After the input layer, those three layers are present to improve the

performance of our model and provide reasonable results compared to conventional
neural-network models.

• Three Dropout layers: A dropout layer was added after each RNN layer in order to
improve the forecast accuracy and compensate overfitting.

• Output layer: as for CNN.

Finally, LSTM has the following layers:

• Input layer: like the two previous architectures .
• Three LSTM layers: as described for RNN, these three layers increase performance in

CO2 forecasting.
• Three Dropout layers: As with the RNN, a dropout layer was added after each LSTM

layer to enhance forecast values.
• Output layer: like the two previous architectures.

To obtain the optimal parameters for each DL architecture, a random search technique [36]
was used. This solution does not require the gradient of the problem to be optimized, but
instead defines a search space of hyperparameter values and randomly samples points
in that domain. Neural networks use this technique for hyperparameter optimization.
Table 2 shows the ranges of the considered parameters for each architecture while Table 3
contains the selected parameters for each architecture and Figure 7 shows the structure
for each architecture, in particular, (a) 1D-CNN, (b) RNN and (c) LSTM. In particular,
for 1D-CNN, Conv1D output (None, 1, 128) means that it has 128 hidden layers, while
dense output (None, 20) indicates that it has 20 hidden layers, and so on for the other
architectures considered.
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Table 2. Range of parameters used for each architecture.

Model Parameters

1D-CNN

hidden_layer_conv1d = [16, 32, 64, 128, 256],
hidden_layer_dense = [10, 20, 30, 40, 50, 60],
number_epochs = [20, 30, 40, 50, 60, 70, 80, 90],
batch_size = [4, 8, 16, 32, 64, 128],
dropout = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05]

RNN

hidden_layer_simple_rnn = [10, 20, 30, 40, 50, 60],
hidden_layer_simple_rnn_1 = [10, 20, 30, 40, 50, 60],
hidden_layer_simple_rnn_2 = [10, 20, 30, 40, 50, 60],
number_epochs = [20, 30, 40, 50, 60, 70, 80, 90, 100],
batch_size = [4, 8, 16, 32, 64],
dropout = [0.1, 0.2, 0.3, 0.4, 0.5]
dropout_1 = [0.1, 0.2, 0.3, 0.4, 0.5]
dropout_2 = [0.1, 0.2, 0.3, 0.4, 0.5]

LSTM

hidden_layer_lstm = [10, 20, 30, 40, 50, 60],
hidden_layer_lstm_1 = [10, 20, 30, 40, 50, 60],
hidden_layer_lstm_2 = [10, 20, 30, 40, 50, 60],
number_epochs = [20, 30, 40, 50, 60, 70, 80],
batch_size = [4, 8, 16, 32, 64],
dropout = [0.1, 0.2, 0.3, 0.4, 0.5]
dropout_1 = [0.1, 0.2, 0.3, 0.4, 0.5]
dropout_2 = [0.1, 0.2, 0.3, 0.4, 0.5]

Table 3. Parameters used for each architecture.

Model Parameters

1D-CNN
optimizer = adam [37], loss_function = mean squared error,
epochs = 80, batch_size = 128, hidden_layer_conv1d = 128,
hidden_layer_dense = 20, dropout = 0.005

RNN

optimizer = adam [37], loss_function = mean squared error
epochs = 80, batch_size = 4, hidden_layer_simple_rnn = 10,
hidden_layer_simple_rnn_1 = 10, hidden_layer_simple_rnn_2 = 20,
dropout = 0.1, dropout_1 = 0.3, dropout_2 = 0.3

LSTM

optimizer = adam [37], loss_function = mean squared error,
epochs = 50, batch_size = 8, hidden_layer_lstm = 60,
hidden_layer_lstm_1 = 60, hidden_layer_lstm_2 = 30, dropout = 0.1,
dropout_1 = 0.5, dropout_2 = 0.1
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Figure 7. The designed architectures for considered neural networks: (a) 1D-CNN, (b) RNN, and
(c) LSTM.

3. Results and Discussion

To validate the proposed approach, a series of tests was executed to verify the accuracy
of the CO2 value forecast. Our experiments were run on an embedded PC with an Intel
Core i5 processor and 8 GB RAM. The performances of the proposed architectures were
estimated using the root mean square error (RMSE) as metric, defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − yi) (1)

where yi is the real CO2, yi is the predicted CO2 and N is the number of minutes to forecast.
In addition, to demonstrate the goodness of the proposed approach, the normalised RMSE
(NRMSE), obtained by means of the following expression, was also adopted as a metric:

NRMSE =
RMSE

max(y)− min(y)
(2)

Preliminary tests were conducted to assess the amount of data to be used to train the
analyzed models, to guarantee the accuracy of the predictions while preserving acceptable
training times. To achieve this, the configuration described in Section 2.2 was considered,
in particular, a room was used, with a person inside who may or may not have been
physically active.

Figures 8–10 show the obtained results for these preliminary tests demonstrating
the goodness of the proposed approach. In particular, in the figures, the RMSE and
the training time varying with the days of acquisition with and without the Activity
Levels obtained, respectively, for 1D-CNN (Figure 8a,b), RNN (Figure 9a,b) and LSTM
(Figure 10a,b) are reported. Firstly, it can be seen that the accuracy of the prediction clearly
improves with 7 days of acquisition for training with the RMSE dropping from around
50 ppm to around 18 ppm indicating that, increasing the number of days of observation,
the analysed networks are able to learn the considered features. The best results, in terms
of forecast accuracy, are obtained after 10 days of acquisition with an RMSE value of about
10 ppm, which guarantees an excellent accuracy for the regulation of HVAC systems. It can
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also be seen from the figures that for all the analyzed networks, and especially for 1D-CNN
and LSTM, considering more than 10 days of acquisition did not produce any significant
improvement in terms of RMSE, while training time tended to increase exponentially.
Therefore, it can be deduced that 10 days of acquisition is a good compromise between
prediction accuracy and training time, especially from the point of view of experimentation
on low-cost embedded platforms with reduced computational processing capacity. It is
evident from the graphs that activity levels provide a significant increase in performance
in terms of RMSE (e.g., for LSTM 10.31 ppm vs. 21.18 without Activity Level) without
affecting training time. Moreover, as described in [20], the computational load of the
wearable system’s processing software is low, guaranteeing real-time operation, even on
low-cost computing platforms.

Figure 8. RMSE (a) and training time (b) for 1D-CNN varying the days of acquisition with and
without the Activity Levels.

Figure 9. RMSE (a) and training time (b) for RNN varying the days of acquisition with and without
the Activity Levels.

Figure 10. RMSE (a) and training time (b) for LSTM varying the days of acquisition with and without
the Activity Levels.

To extract more information from the described approach, the obtained results were
analysed at a more granular level. In particular, Table 4 shows RMSE and NRMSE during
periods when the room was disabled versus periods of work versus periods of physical
activity for the three investigated architectures.
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Table 4. RMSE and NRMSE at varying degrees of ambiental situation for analyzed architectures.

Uninhabited Room Work Physical Activity
RMSE NRMSE RMSE NRMSE RMSE NRMSE

1D-CNN 5.89 0.90 6.87 1.39 10.42 0.06
RNN 12.25 1.48 15.56 3.89 15.87 0.09
LSTM 4.85 0.80 5.38 1.34 10.31 0.06

In order to confirm the effectiveness of the methodology with the inclusion of the
Activity Levels, the trend of the CO2 concentration forecasting for 15 min with and without
Activity Level for the aforementioned three neural networks was analyzed. In particular,
the 15-min forecast for 1D-CNN with and without Activity Level obtained an RMSE
of 10.42 ppm and 21.34 ppm, respectively, while for RNN RMSE was 15.87 ppm and
25.45 ppm, respectively, and, finally, for LSTM, RMSE forecast was 10.31 ppm vs. 21.18 ppm,
respectively. For brevity, only the trend of LSTM was plotted in Figures 11 and 12. Finally,
the trend of the CO2 concentration forecasting for a longer time (120 min) for the three
analysed networks (Figures 13–15) is shown, demonstrating the forecast accuracy. For
the sake of brevity, the prediction plots are only presented with Activity Levels. Finally,
Table 5 presents RMSEs for each neural network both with and without Activity Levels for
a 120-min time prediction.

Figure 11. CO2-concentration forecasting results for 15 min with Activity Levels for LSTM.

Figure 12. CO2-concentration forecasting results for 15 min without Activity Levels for LSTM.
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Figure 13. CO2-concentration forecasting results for 120 min with Activity Levels for 1D-CNN.

Figure 14. CO2-concentration forecasting results for 120 min with Activity Levels for RNN.

Figure 15. CO2-concentration forecasting results for 120 min with Activity Levels for LSTM.

In conclusion, as can be seen from the trends in Figure 13–15 and also from Table 5,
LSTM has a better prediction accuracy than the 1D-CNN network, while RNN performs
the worst. Analysing the training times, 1D-CNN is the one that requires less time than
the other two neural networks considered, but the LSTM network’s training times are also
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acceptable and compatible with running on low-cost computing platforms. For this reason,
the LSTM network was chosen for the present work.

Table 5. RMSE for CO2 concentration forecasting for 120 min with and without Activity Levels.

Model RMSE [ppm]
with Activity Level without Activity Level

1D-CNN 5.17 9.78
RNN 13.23 18.54
LSTM 3.50 7.86

In addition, a series of tests was carried out in order to verify the importance of the
various inputs. The results are shown in Table 6. As can be seen, the error committed is
greater when removing both Temperature and Humidity, while when removing only one
input at a time, the error committed is similar whether removing only Temperature or
only Humidity.

Table 6. RMSE for varying inputs for analyzed architectures.

Model RMSE (ppm)
without Temperature without Umidity without Temperature and Umidity

1D-CNN 24.08 23.61 28.36
RNN 28.07 27.68 32.73
LSTM 24.43 23.54 27.84

Finally, the performance of the proposed solution varying the participants in the test
were considered. In particular, the periods in which the various users were engaged in
physical activity were analyzed, and RMSE was calculated vs the users and considered
networks. The results are shown in Figure 16 and, as can be seen, the results are similar for
user 1 and 3 and slightly higher on average for user 2, who was subjected to more intense
physical activity than the other users.

Figure 16. RMSE vs engaged users for the different considered networks.

4. Conclusions

This paper presents a software–hardware framework for the evaluation of CO2-
concentration trends in a residential environment suitable for driving an automatic HVAC
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control system. High CO2 concentrations can cause problems for the health and comfort
level of occupants and this phenomenon has become more acute in recent years, in which
the development of houses with high thermal insulation has brought significant improve-
ments in terms of energy savings, but has hindered a natural exchange of air with the
outside environment. This can lead to a significant and rapid growth in the amount of CO2
in the home and, therefore, a continuous assessment of air quality is necessary in order to
provide timely and efficient intervention. To achieve this, it is important that the system
acts in an adaptive way, considering a reduced historical time window, which is useful for
accurate knowledge of recent environmental conditions, and is able to predict CO2 trends
with high accuracy in anticipation. Furthermore, the use of limited datasets could allow the
implementation of the proposed approach on low-cost embedded platforms, supporting a
wider deployment.

The developed system uses low-cost and minimally invasive environmental and wear-
able sensors. Both sensors are equipped with wireless communication which enables
remote, real-time processing and allows monitoring of environmental parameters (temper-
ature, humidity, CO2) and physical activity. The latter parameter analysis was verified to
improve prediction accuracy appreciably, at the cost of an increase in system complexity
from a hardware point of view. The data were analysed by testing three DL algorithms
(1D-CNN, RNN, LSTM), and the best result was obtained with the LSTM network, which
features a low RMSE value (about 10 ppm) compatible with HVAC systems with a training
period of 10 days, which is shorter than other works in the literature.

The system was tested in a real-world environment, however, considering a single
room used for smart working and exercising. Future developments include the monitoring
of more than one room occupied by multiple people at the same time. Moreover, a less
invasive t-shirt system using, for example, a smartwatch with Wifi communication, will be
developed and tested for activity assessment.
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