On the Robustness to Adversarial Examples of
Neural ODE Image Classifiers

Roberto Caldelli
CNIT, Florence, Italy
roberto.caldelli @unifi.it

Fabio Carrara
ISTI CNR, Pisa, Italy
fabio.carrara@isti.cnr.it

Abstract—The vulnerability of deep neural networks to adver-
sarial attacks currently represents one of the most challenging
open problems in the deep learning field. The NeurIPS 2018
work that obtained the best paper award proposed a new
paradigm for defining deep neural networks with continuous
internal activations. In this kind of networks, dubbed Neural
ODE Networks, a continuous hidden state can be defined via
parametric ordinary differential equations, and its dynamics can
be adjusted to build representations for a given task, such as
image classification. In this paper, we analyze the robustness
of image classifiers implemented as ODE Nets to adversarial
attacks and compare it to standard deep models. We show that
Neural ODE are natively more robust to adversarial attacks with
respect to state-of-the-art residual networks, and some of their
intrinsic properties, such as adaptive computation cost, open
new directions to further increase the robustness of deep-learned
models. Moreover, thanks to the continuity of the hidden state,
we are able to follow the perturbation injected by manipulated
inputs and pinpoint the part of the internal dynamics that is
most responsible for the misclassification.

I. INTRODUCTION

In a broad set of perceptual tasks, state-of-the-art deep-
learned models are usually comprised of a set of discrete trans-
formations, known as layers, whose parameters are optimized
in an end-to-end fashion via gradient-based methods. Thanks
to the hierarchical architecture, the modelling stage is divided
among a series of transformations each extracting features
from its input and providing higher-level abstractions down-
stream. When trained with enough data, their ability to model
complex mappings is remarkable and produced new state-of-
the-art results in multiple fields, such as automatic guided vehi-
cles, speech recognition, text classification, anomaly detection,
decision making and even human-like face/people generation
in images and videos.

However, the success of deep-learnt models is accompanied
by a major downside, that is the vulnerability to adversarial
examples — maliciously manipulated inputs that appear legit
but fool the model to produce a wrong output [1], [2], [3]. Due
to the complexity of data and models (often required to learn
complex input-output mapping,) adversarial examples can be
usually found for most of neural-network-based models in
efficient ways [4], [5], [6], and despite studies in this field [7],

Preprint submitted to WIFS‘2019.
Final version to appear on IEEE.

Fabrizio Falchi
ISTI CNR, Pisa, Italy
fabrizio.falchi @isti.cnr.it

Giuseppe Amato
ISTI CNR, Pisa, Italy
giuseppe.amato @isti.cnr.it

[8], a universal approach to produce adversarial-robust deep
models is still missing.

A complementary way pursued by the research community
to solve the adversarial problem is the investigation of the
effects of adversarial examples on trained models [9], [10].
The characterization of these effects often gives enough insight
to detect and distinguish adversarial examples from authentic
inputs and thus led to several proposals in adversarial detec-
tion [11], [12], [13], [14], [15].

In this paper, our goal is to get insights into a novel recently
proposed deep-learning architecture based on ordinary differ-
ential equations (ODEs) — the Neural ODE Network [16] —
when undergone adversarial attacks. Differently from standard
neural networks, ODE-defined networks are not comprised
of a set of discrete transformations, but instead define their
processing pipeline as a continuous transformation of the
input towards the output whose derivative is parameterized
and trainable with standard gradient-descent methods. The
continuous transformation is computed by an adaptive ODE
solver which gives the model additional useful properties,
such as reversibility, O(1)-memory cost, sample-wise adaptive
computation, and a trade-off between computational speed and
accuracy tunable at inference time. This novel formulation
(and all the benefits that derive from it) makes ODE nets an
interesting and promising new tool in the deep learning field:
thanks to their generality, they can potentially replace current
models (e.g. residual networks in image processing) and
enable new models in novel applications such as continuous-
time modelling.

However, Neural ODE networks are still differentiable mod-
els, and thus, the same adversarial attacks used in standard
neural networks are implementable and applicable. This allows
us to apply the same efficient adversarial samples crafting
algorithm used in standard neural networks and study the
robustness of ODE nets to adversarial attacks in the context
of image classification.

The main contributions of the present work are the following:

« we analyzed the behavior of ODE Nets against adversarial
examples (that we believe it has not been tested yet)
in the context of image classification; we compared
three architectures — a standard residual network and
two ODE-based models — in terms of robustness to
adversarial attacks on the MNIST and CIFAR-10 datasets;

o we studied how the robustness to adversarial attacks
varies with specific properties of ODE networks, such
as the precision-cost trade-off offered by adaptive ODE
solvers via a tunable tolerance parameter; our findings
showed that lowering the solver precision leads to a
substantial decrease in the attack success rate while
degrading only marginally the classification performance;

o thanks to the peculiarity of ODE Nets (i.e. their conti-
nuity), we observed and measured the effect of attacks
on the evolution of the internal state of the network
as the adversarial perturbation propagates through the
continuous input-output mapping.

After this introductory section, the paper is organized as
follows: Section II presents some related work, Section III
briefly describes the working of ODE-Nets, while Section IV
describes the whole operation context in terms of tested
networks and attacks. Section V provides details on the
experimental set—upl, Section VI discusses achieved results,
and Section VII draws main conclusions proposing, at the
same time, some possible future directions.

II. RELATED WORK

Adversarial examples represent one of the major challenges
applicability and technological transfer of deep learning-based
techniques. Thus, after the seminal work of Szegedy et
al. [2] exploring adversarial examples for convolutional neural
networks, the research community focused on this problem
publishing several analyses [4], [9], [17] and organizing public
challenges [18] about this phenomenon.

Several works provided efficient crafting algorithms for
adversarial examples including the Fast Gradient Sign Method
(FGSM) [4], Projected Gradient Descend (PGD) [19], and the
one proposed by Carlini and Wagner [6]. Kurakin et al. [7] and
Athalye et al. [20] showed that adversarial attacks to computer
vision systems are possible and effective also in the physical
world using respectively 2D or 3D objects with malicious
textures.

Defensive actions against adversarial attacks have also
been proposed. In this regard, the literature can be roughly
divided in robustness improvement and adversarial detec-
tion techniques. The former aims at changing the model to
be more robust and include techniques such as adversarial
training [21] and model distillation [8]. The latter aims at
detecting adversarial examples and thus discarding malicious
predictions. Detection methods include statistical tests on the
inputs [10], [11], adversarial perturbation removal [22], and
auxiliary detection models [12], [13], [23].

Due to its peculiarity, ODE nets may differ from standard
deep neural networks in their interaction with adversarial
examples. To the best of our knowledge, we are the first
analyzing the robustness of ODE nets to adversarial attacks.

ICode and resources to reproduce the experiments presented here are
available at https://github.com/fabiocarrara/neural-ode-features

III. NEURAL ODE NETWORKS: BACKGROUND

In this section, we provide the reader with a brief description
of ODE Nets and their properties; for a full detailed descrip-
tion, see [16].

We refer as ODE Net to a parametric model including
an ODE block — a computation block defined a parametric
ordinary differential equation (ODE) whose solution provides
the output result. Let hg the block’s input coinciding with the
initial state at time t; of the following initial-state ODE

dggt) = f(h(t)a t, 0)
h(tg) = hg

The function f, parameterized by 6, defines the continuous
dynamic of the state h(¢). In the context we are interested
in (image classification), f is often implemented as a small
convolutional neural network. The output of the block is the
value h(t;) of the state at a time ¢; > ¢ that can be computed
by integrating the ODE

h(t:) = hito) + /tl dh(t) "

)

——=dt =h(ty) + f(h(t),t,0)dt.
to dt to

(2)

The above integral can be computed with standard ODE

solvers, such as Runge-Kutta or Multi-step methods [24].

Thus, the computation performed by the ODE block can be

formalized as a call to a generic ODE solver
h(tl) = Ol)ESOlVCI’(f7 h(to), to,t1, 9) . (3)

During the training phase, the gradients of the output h(¢;)
with respect to the input h(fy) and the parameter 6 can
be obtained using the adjoint sensitivity method [25]. This
consists of solving an additional ODE backward in time
and thus invoking again the ODE solver in the backward
pass. Once the gradient is obtained, standard gradient-based
optimization can be applied.

ODE Nets benefit from several properties derived by their
formulation or inherited from ODE solvers, including a)
reversibility, as the evolution can be computed in forward
or backward in time, b) O(1)-memory cost, as intermediate
states do not need to be stored when solving ODEs, c)
adaptive computation, as adaptive ODE solvers can adjust
the integration step size for each input, d) accuracy-efficiency
trade-off tunable at inference time, that can be controlled by
tuning the tolerance of adaptive ODE solvers.

IV. ROBUSTNESS OF ODE NETS

We are interested in implementing image classifiers with
ODE Nets and compare their robustness to adversarial attacks
with respect to standard neural networks. We tested a total of
three architectures: a standard residual network model (RES)
used as a baseline, a mixed model (MIX) comprised of some
residual layers and an ODE block, and an ODE-dominated
model (ODE-Only Net, OON) whose computation is mostly
comprised of a single ODE block. We train all models on
public datasets for image classification, perform adversarial
attacks on respective test sets, and measure the attack success
rate.

Residual Network (RES) x6
r 1
< Res Res Res Res Classifier
S |© Block Block Block Block 2
©—* o5 | [Avg.Pool+ [@©
E g; 3x3/2,64 3x3/2,K 3x3, K 3x3, K 10-d FC + [&)
3x3, 64 3x3, K 3x3, K 3x3, K Softmax
Mixed Residual-ODE Network (MIX)
° < Res Res ODE Block Classifier
o |© Block Block I
C—* o5 | Avg.Pool+ [®©
E | X 3x3/2,64 3x3/2,K 3x3, K 10-d FC +]
3x3, 64 3x3, K 3x3, K Softmax
ODE-Only Network (OON)
x ODE Block Classifier
Q i 1]
%4' < Avg.Pool + @
< L+ Ava. .
E |3 33, K ldrcs | ©
< 3x3, K Softmax

Fig. 1: Architectures of the tested models. Convolutional layers
are written in the format kernel width X kernel height [/
stride], n. filters; padding is always set to 1. For MNIST,
K = 64, and for CIFAR-10, K = 256.

A. Tested Architectures

In this section, we provide details about the tested architec-
tures (also depicted in Figure 1).

a) Residual Network (RES): this is the convolutional
residual neural network image classifier defined and used as
a baseline by Chen et al. [16] in their comparisons with
ODE-Nets. It is comprised of a 64-filter 3x3 convolutional
layer and 8 residual blocks. Each residual block follows the
standard formulation defined in [26], with the only difference
that Group Normalization [27] is used instead of batch nor-
malization. The sequence of layers comprising a residual block
is GN-ReLU-Conv-GN-ReL.U-Conv-GN where GN stands for
a Group Normalization with 32 groups, and Conv is a 3x3
convolutional layer. The first two blocks downsample their
input by a factor of 2 using a stride of 2 (also employed
in 1x1 convolutions in the shortcut connections), while the
subsequent blocks maintain the input dimensionality. The first
block employs 64-filters convolutions while subsequent blocks
employ K-filter convolutions where K varies with the specific
dataset. The final classification step is implemented with a
global average-pooling operation followed by a single fully-
connected layer with softmax activation.

b) Mixed ResNet-ODE Network (MIX): this is the ODE
Net architecture defined by Chen et al. [16]. The model
is comprised of the same first convolutional layer and the
first two residual blocks of the above-mentioned residual
network plus an ODE block. The ODE function f defining the
dynamics of the internal state is implemented by a residual
block defined as above, with the difference that the current
evolution time ¢ is also considered as input and concatenated
as a constant feature map to the inputs of the convolutions
in the block. The input and the output of the ODE block are
arbitrarily mapped respectively to time ¢ = 0 and ¢t = 1, i.e.

h(0) is the input coming from the residual blocks, and h(1)
the output of the ODE block. The output of the ODE block is
average-pooled and followed by a fully-connected layer with
softmax activation as in the residual net.

c) ODE-Only Network (OON): in the previously de-
scribed mixed architecture, it is not clear how the feature
extraction process is distributed among standard and ODE
blocks. To ensure that most of the image processing and
feature extraction process happens in the ODE block, we
define and test also an architecture mostly comprised of a
single ODE block. In this model, the input is fed to a minimal
pre-processing stage comprised of a single K-filter 4x4 con-
volutional layer with no activation function that linearly maps
the image in an adequate state space. The output of this step
is then fed to a single ODE block which is responsible for the
whole feature extraction chain. Finally, the same classification
stage as above-mentioned architectures follows.

B. Measuring the Robustness to Attacks

In this section, we describe the methodology used to per-
form attacks and measure the robustness of the trained models.
Among the available adversarial attacks, we consider the
untargeted Projected Gradient Descent (PGD) algorithm (also
known as Basic Iterative Method or iterative-FGSM) [7], [19],
a strong and widely-used gradient-based multi-step attack.
Starting from an original sample, the PGD algorithm itera-
tively searches for an adversarial sample by taking small steps
in the direction of the gradient of the loss function with respect
to the input. Let x a sample in the input space, £(x) the
classifier loss function, Vx/£(x) its gradient with respect to
the input, d(x1,x2) a distance function in the sample space, 7
the step size, and € the maximum magnitude of the adversarial
perturbation. Formally, PGD performs

0 _
Xadv — X,

xtgy = Proj_(x'5,} + nNorm(Vy L(x: 1)) . (4)

adv

Proj_(-) is a function that projects a sample X having a distance
d(%,x) > € on the L, ball centered on the original sample x
with radius € (common choices for d are the Ly or L, norms).
The Norm(-) function ensures the gradient has unitary norm:
it is implemented as sign(-) when using d = L., and as Lo
normalization (Norm(x) = ry;) When d = L is used.

We quantify the overall robustness to adversarial examples
of a classifier by measuring the success rate of the attack under
different configurations of the attack parameters. We consider
an attack successful if the PGD algorithm is able to find an
adversarial sample leading to a misclassification within the
available budget, i.e. without exceeding the maximum number
of iterations or the maximum perturbation norm ¢). For seek
of simplicity, we fixed some parameters dataset-wise (1 and
the maximum number of PGD iterations) while exploring
configurations of other parameters (i.e. € and d).

V. EXPERIMENTAL SETUP

The following experimental set-up has been considered to
evaluate the robustness to adversarial examples of the proposed
three kinds of neural networks.

TABLE 1. Performance (classification error % on MNIST
and CIFAR-10 test sets) and complexity (number of trainable
parameters) of the tested architectures: ResNet (RES), Mixed
(MIX), and ODE-Only Net (OON). For architectures with
ODE blocks, we show how the classification error varies with
the ODE solver tolerance 7.

MNIST CIFAR-10
T RES MIX OON RES MIX OON
10— 0.4% 0.5% 0.5% 7.3% 7.8% 9.1%
103 0.5% 0.5% 7.8% 9.2%
10—2 0.5% 0.6% 7.9% 9.3%
10—t 0.5% 0.8% 7.9% 10.6%
109 0.5% 1.2% 7.9% 11.3%
10t 0.5% 1.5% 7.8% 11.5%
params 0.60M 022M 0.08M 792M 2.02M 1.20M

A. Datasets

We trained the models under analysis on two standard
low-resolution image classification datasets: MNIST [28] and
CIFAR-10 [29]. MNIST consists of 60,000 28x28 grayscale
images of hand-written digits subdivided in train (50,000) and
test (10,000) sets; it is the de facto standard baseline for novel
machine learning algorithms and is the only dataset used in
most research concerning ODE nets.

In addition to MNIST, we extended our analysis using also
CIFAR-10 — a 10-class image classification dataset comprised
of 60,000 32x32 RGB images of common objects subdivided
in train (50,000) and test (10,000) sets.

B. Training Details

The number of filters K of convolutional networks in
internal blocks is set to 64 for MNIST and 256 for CIFAR-10.
For all models, we adopted the following hyperparameters and
training procedures: dropout with 0.5 drop probability applied
before the fully-connected classifier, the SGD optimizer with
momentum of 0.9, weight decay of 10~%, batch size of 128,
and learning rate of 0.1 reduced by a factor 10 every time
the error plateaus. For models containing an ODE block, we
adopted the Dormand-Prince variant of the fifth-order Runge—
Kutta ODE solver [30] in which the step size is adaptive and
can controlled by a tolerance parameter 7 (set to 10~2 in our
experiments during the training phase). The specific value of 7
indicates the maximum absolute and relative error (estimated
using the difference between the fourth-order and the fifth-
order solution) accepted when performing a step of integration;
if the step error is higher than 7, the integration step is rejected
and the step size decreased.

All the models obtained a classification performance com-
parable with current state of the art on those datasets. In
Table I, we report the classification error (as percentage of
misclassification) and the model complexity (as the number
of trainable parameters in convolutions and fully-connected
layers) for each model and dataset. For models with ODE
blocks, Table I also shows how the classification performance
changes with the tolerance of the ODE solver. A higher

value of 7 corresponds to a lower precision of the integration
carried out by the ODE solver. We observed that this loss in
precision has only marginal effects on the overall accuracy
of the classifier (the worst degradation happens for the ODE-
Only Network, that exhibit a 1-2% drop in accuracy) and also
slightly decreases the computational cost of the forward pass.

C. Adversarial Attack Details

We employed the Foolbox toolkit [31] to perform adversar-
ial attacks on PyTorch models. We attacked each model with
iterative PGD using the test sets as source of original samples
to perturb. We discarded from the analysis the images that are
naturally misclassified by the models. For MNIST, we fixed
the step size 7 = 0.05 and performed attacks with maximum
perturbation € = 0.05, 0.1, and 0.3; concerning the measure of
the perturbation magnitude, we experimented with d = Lo and
L. The same considerations apply for CIFAR-10, with the
difference that we lowered the maximum perturbation allowed
(and thus the step size) in order to capture the diversities, in
terms of robustness, among the models. Thus, for CIFAR-
10 we set n = 0.01 and ¢ = 0.01, 0.03, and 0.05 (attacks
with higher values of ¢ always yield an adversarial example
in all models). In all experiments, we set the maximum number
of PGD iterations to 10; if an adversarial is found before
the last iteration, we early stop the attack as soon as the
misclassification happens.

VI. RESULTS

Tables II and III report the attack success rate respectively
on the MNIST and CIFAR-10 datasets for all the models and
configuration tested.

In our experiments, ODE-based models (MIX and OON)
consistently have a lower or equal attack success rate with
respect to standard residual networks in the same attack
context. This is particularly true for the ODE-only model when
attacked with smaller perturbations: the attack success rate is
roughly halved with respect to RES or MIX.

In both OON and MIX models, lowering the constraints
on integration precision (i.e. increasing the solver tolerance)
results in a decreasing probability of attack success. Increasing
the solver tolerance 7 to 1 decreases the attack success
rate by roughly 40% in the best cases while increasing the
classification error at most by roughly 2% in the worst case.
For ease of comparison, we report in Table IV the classification
error and attack success rate of the best configurations — the
ones obtaining the best trade-off between the two quantities
— for different values of 7. This phenomenon is probably
due to the fact that allowing greater approximations in the
feature extraction and classification process results in blurring
the decision boundaries and thus attenuating the effects of
malicious perturbations during the ODE integration.

To explore this hypothesis, we analyzed the continuous
internal states of the ODE-Only Net when classifying a pristine
or perturbed image. Specifically, let h(t) the trajectory of
the continuous internal state caused by a pristine sample and
h,4, () the one caused by the same but adversarially perturbed

TABLE II: Attack success rate on MNIST test set of iterative
PGD (step size n = 0.05) applied to the tested architectures:
ResNet (RES), Mixed (MIX), and ODE-Only Net (OON). ¢
indicates the maximum perturbation allowed and d the distance
used to measure the perturbation magnitude.

e=.05d= Lo e=.1,d=1Lo e=.3,d=1Lo
tol RES MIX OON RES MIX OON RES MIX OON
10—4 52 51 .27 99 98 .87 1. 1. 1.
10-3 51 .19 98 .75 1 .99
10—2 50 .09 98 .57 1. .94
101 44 .08 95 .54 1. .92
100 35 .06 91 46 1 .96

e=.05d=Loo e=.1,d= Lo e=.3,d= Lo
tol RES MIX OON RES MIX OON RES MIX OON
10—4 04 04 02 32 .31 .12 1. 1. .96
10-3 04 .02 31 .08 1. .87
10—2 .03 .01 30 .04 99 .66
10—t .03 .01 24 .05 98 .64
10° .02 .02 A7 .04 95 .65

TABLE III: Attack success rate on CIFAR-10 test set of
iterative PGD (step size n = 0.01) applied to the tested
architectures: ResNet (RES), Mixed (MIX), and ODE Net
(OON). ¢ indicates the maximum perturbation allowed and
d the distance used to measure the perturbation magnitude.

e=.01,d= Lo e=.03,d= Lo e=.05,d=1Ls>

tof RES MIX OON RES MIX OON RES MIX OON
10—4 97 96 .96 1. 1 1. 1. 1. 1.
10—3 96 .95 1. 1. 1. 1
10—2 95 .86 1. 1. 1. 1
10—1 95 .61 1 .98 1. 1
100 87 .52 1 .96 1. 1

e=.01,d= Lo e=.03,d= L e=.05,d= Lo

RES MIX OON RES MIX OON

10—4 81 .79 .73 1. 1 1. 1. 1 1.
10-3 79 .68 1. 1. 1. 1.
102 77 .50 1. .98 1. 1.
10-1 .76 35 1 .89 1 .99
100 .62 28 1 .81 1 .97

sample. In Figure 2, we reported the difference Ah(t) (see
Equation (5)) between those two trajectories measured as the
L distance between each point in time

Ah(t) = [h(t) = haa (1) 2 (5)

and averaged over all the samples in the test set. Each line
is computed using adversarial examples crafted with the same
tolerance T used when measuring Ah(¢). We can confirm that
increasing values of 7 causes the adversarial perturbation to
be attenuated during the evolution of the internal state, even if
the adversarial attack is performed setting a higher tolerance.

VII. CONCLUSIONS

In this paper, we presented an analysis of the robustness
to adversarial examples of ODE-Nets — a recently intro-
duced neural network architecture with continuous hidden

TABLE IV: Best configurations in terms of the trade-off
between classification error and attack success rate.

Model Tolerance of ODE Solver (1)
104 10-3 102 101 10°
Classification Error (MNIST)
RES .004 - - - -
MIX .005 .005 .005 .005 .005
OON .005 .005 .006 .008 .012
Attack Success Rate (MNIST, ¢ = .1, d = L»)
RES .99 — — — —
MIX .98 .98 .98 .95 91
OON .87 .75 57 .54 .46
Classification Error (CIFAR-10)
RES .073 — — — —
MIX .078 .078 .079 .079 .079
OON .091 .092 .093 .106 113
Attack Success Rate (CIFAR-10, € = .01, d = L)
RES .81 - - - -
MIX .79 .79 77 .76 .62
OON .73 .68 .50 .35 .28

states defined by ordinary differential equations. We compared
three architectures (a residual, an ODE-based, and a mixed
architecture) using the MNIST and CIFAR-10 datasets and
observed that ODE-Nets provide superior robustness against
PGD — a strong multi-step adversarial attack. Furthermore, by
investigating the evolution of the internal states of ODE-nets in
response to pristine and corresponding adversarial examples,
we observed that the error tolerance parameter of the ODE
solver does not substantially affect classification performances
with respect to pristine samples while it significantly improve
the robustness to adversarial examples: the higher the toler-
ance, the higher the resilience to adversarial inputs.

As future work, we plan to extend our analysis to higher-
resolution and/or larger-scale datasets and to additional state-
of-the-art adversarial attacks, such as Carlini and Wagner [6].
In addition, the presented findings open new interesting re-
search directions in the field: as an example and possible future
work, a novel detection method for adversarial examples could
rely on the analysis of the outputs (or internal states) of ODE
nets evaluated with multiple values of the tolerance parameter.

ACKNOWLEDGMENTS

This work was partially supported by the ADA project,
funded by Regione Toscana (CUP CIPE D55F17000290009),
by the AI4EU EC-H2020 project (Contract n. 825619) and by
the SMARTACCS project, funded by Fondazione CR Firenze
(Contract n. 2018.0896). The authors gratefully acknowledge
the support of NVIDIA Corporation with the donation of the
Titan Xp and Tesla K40 GPUs used for this research.

REFERENCES

[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢é, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387-402.

(a) MNIST - ¢ = .05, d = L, (b) CIFAR-10 - £ = .01, d = Lo

70 50
T T
R —4.0 — —4.0

N 60 10730 40 10730
— 10— — 10—
\; 50 ——— 1072.0 _; 20 — 1072.0
—?3 c— 1071.0 —% PR 1071.0
< 40 <
| — 10%9 / I 1000
= e L = — 100
= %0 =

20 10 =

10 0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t

Fig. 2: Discrepancy of internal representations of the OON model caused by successful adversarial attacks. The y-axis shows
the mean Lo distance Ah(t) between pristine and attacked image representations during its continuous trajectory (time/depth
is in the x-axis) for different values of the tolerance 7 of the adaptive ODE solver.

[2] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. J. [16] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural

Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” ordinary differential equations,” in Advances in Neural Information
in ICLR, 2014. [Online]. Available: http://arxiv.org/abs/1312.6199 Processing Systems, 2018, pp. 6572-6583.

[3] M. Barni, M. C. Stamm, and B. Tondi, “Adversarial multimedia foren- [17] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
sics: Overview and challenges ahead,” in 2018 26th European Signal A. Swami, “The limitations of deep learning in adversarial settings,”
Processing Conference (EUSIPCO), Sep. 2018, pp. 962-966. in Security and Privacy (EuroS&P), 2016 IEEE European Symposium

[4] 1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and on. IEEE, 2016, pp. 372-387.
harnessing adversarial examples,” in /CLR, 2015. [Online]. Available: [18] A. Kurakin, L. J. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang,
http://arxiv.org/abs/1412.6572 T. .Pang, J. Zhu, X. Hu, C. Xie, J. Wang, Z. Zhang, Z. Ren,. A. L.

[5] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple Yuille, S. Huang, Y. Zhao, Y. Zhao, Z. Han, J. Long, Y. Berdibekov,
and accurate method to fool deep neural networks,” in Proceedings of the T. Akiba, S. Tokui, and M. Abe, “Adversarial attacks and defences
IEEE Conference on Computer Vision and Pattern Recognition, 2016, competition,” CoRR, vol. abs/1804.00097, 2018. [Online]. Available:
pp. 2574-2582. http://arxiv.org/abs/1804.00097

[19] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural : . . s
networks,” in 2017 IEEE Symposium on Security and Privacy (SP). deep learning models resistant to adversarial attacks,” in /CLR, 2018.
IEEE, 2017, pp. 39-57. [Online]. Available: https://openreview.net/forum?id=rJzIBfZAb

[71 A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples [20] A. Athal'ye, L. Engstror_n, A. Ilyas, and K. Kwok, “Synthesizing robust
in the physical world.” in ICLR Workshops, 2017. [Online]. Available: adversarial examples,” in ICML, 2018, pp. 284-293. . .
https://openreview.net/forum?id=HJGU3Rodl (21] iA Kurak1n, L J'l E}oc{dfel}mz,Rangof,7 Ber())gli)', Ad\:rsglrlill maﬁhlne

[8] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation /7?2$§Viea\i/ ni(t:/afgr’um}?? d=1§lm AiT 4K x. [Online]. Available: htps:
as a defense to adversarial perturbations against deep neural networks,” pe! T e , € P p
in IEEE Symposium on Security and Privacy, SP 2016, 2016, pp [22] X. Li and F. Li, “Adversarial examples detection in deep networks with

. eSO s ; : > EE convolutional filter statistics.” in /CCV, 2017, pp. 5775-5783.

582-597. [Online]. Available: hitps://doi.org/10.1109/SP.2016.41 [23] F. Carrara, R. Becarelli, R. Caldelli, F. Falchi, and G. Amato, “Adver-

[9] P. Tabacof and E. Valle, “Exploring the space of adversarial images,”

sarial examples detection in features distance spaces,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018.

E. Hairer, S. P. Ngrsett, and G. Wanner, Solving ordinary differential
equations. 1, Nonstiff problems. Springer-Vlg, 1991.

L. S. Pontryagin, Mathematical theory of optimal processes. Routledge,

in 2016 International Joint Conference on Neural Networks (IJCNN).

IEEE, 2016, pp. 426-433. [24]
[10] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. D. McDaniel,

“On the (statistical) detection of adversarial examples,” CoRR, vol. [25]

abs/1702.06280, 2017. [Online]. Available: http://arxiv.org/abs/1702. 2018.
06280 [26] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual

[11] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting networks,” in European conference on computer vision. Springer, 2016,
adversarial samples from artifacts,” CoRR, vol. abs/1703.00410, 2017. pp. 630-645.

[Online]. Available: http://arxiv.org/abs/1703.00410 [27]1 Y. Wu and K. He, “Group normalization,” in Proceedings of the

[12] Z. Gong, W. Wang, and W. Ku, “Adversarial and clean data are European Conference on Computer Vision (ECCV), 2018, pp. 3—19.
not twins,” CoRR, vol. abs/1704.04960, 2017. [Online]. Available: [28] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
http://arxiv.org/abs/1704.04960 learning applied to document recognition,” Proceedings of the IEEE,

[13] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On vol. 86, no. 11, pp. 2278-2324, 1998.
detecting adversarial perturbations,” in /CLR, 2017. [Online]. Available: [29] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
https://openreview.net/forum?id=SJzCSf9xg tiny images,” Citeseer, Tech. Rep., 2009.

[14] F. Carrara, F. Falchi, R. Caldelli, G. Amato, and R. Becarelli, “Adver- [30] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta
sarial image detection in deep neural networks,” Multimedia Tools and formulae,” Journal of computational and applied mathematics, vol. 6,
Applications, vol. 78, no. 3, pp. 2815-2835, 2019. no. 1, pp. 19-26, 1980.

[15] R. Caldelli, R. Becarelli, F. Carrara, F. Falchi, and G. Amato, “Exploiting ~ [31] J. Rauber, W. Brendel, and M. Bethge, “Foolbox v0.8.0: A
CNN layer activations to improve adversarial image classification,” in python toolbox to benchmark the robustness of machine learning
2019 IEEE International Conference on Image Processing (ICIP), Sep. models,” CoRR, vol. abs/1707.04131, 2017. [Online]. Available:

2019, pp. 2289-2293. http://arxiv.org/abs/1707.04131

