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Abstract. We study the variations in two dimensional (2D) pointing
behaviour of a group of subjects by means of capturing their movement
traces in an automatic way with the Mimio device. Such traces can pro-
vide detailed insight in the variability of 2D pointing relevant for example
for the design of computer vision based gestural interaction. This study
provides experimental evidence that for medium large distances Fitts’
model, and Welfords and Shannons variants, continue to show a linear
relationship between movement time (MT) and the index of difficulty
(ID) with a high correlation for the ranges considered. The expected in-
creased sensitivity to changes in ID for these distances are confirmed.
Nearly all movements show three phases: a planning phase, a ballistic
phase and an adjustment phase. Finally, we show that the arrival time
at the target resembles a log-normal distribution.

1 Introduction

One of the challenges in Human-Computer Interaction is to let computers sup-
port activities that humans already perform in their daily life with the tools
and environment they are used to work with. The computer support to such
activities should ideally interfere as little as possible with the human activities
but nevertheless provide a real augmented reality.

However, in order to provide real-time and adequate support to the user, the
computing system needs to operate in a tightly coupled, continuous way with the
activities of the user and its environment. The increase of computing power, the
miniaturisation and the enormous developments in devices for data-acquisition
such as video cameras and related image analysis software have stimulated much
research and experimentation with computer vision based gestural interaction
techniques for human-computer interaction [3, 4].

Although computer vision based techniques potentially enable a direct and
continuous interaction between user and computer, the tight coupling requires
that the software is able to keep up with user’s movements. This is a challenging
enterprise in particular due to the variability of human behaviour even in simple
and repetitive tasks. However, systems that do not manage to keep up sufficiently
close or behave unpredictably may constrain the user’s activities and disturb or
even interrupt higher-level cognitive activities that are performed in parallel with
the pointing behaviour [2].
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One kind of application that has received considerable attention in the liter-
ature is that of finger tracking. Finger tracking is a computer vision technique
that allows a computer in combination with a video camera to follow finger
movements of users when they are working, for example, with a white board.
Used in combination with a projector, finger tracking can be used as part of an
augmented reality application for the white board. In such a setting the user
uses a mix of common physical and virtual devices such as pens and erasers for
the white board and projected virtual buttons for operations such as copy and
paste. A nice experimental example of such a device is the Magic Board [3, 10].

Experimental design of the Magic Board required an investigation of the
velocity of the natural pointing movements that people would perform when
using a white board. At the time of its design experiments were performed to
estimate such velocity using a video camera that captured the position of the
user’s finger with a frequency of 25 images per second. These data have been
analysed image per image in a non-automatised way [3].

There exist also well-known and useful models, such as Fitts’ law and its
many variants that provides us with movement times based on an index of diffi-
culty and an index of performance. However, such models typically provide only
mean movement times and for distances of at most 40 cm. which involve usually
smaller limb groups, such as fingers, wrist and forearm, than those involved in
2D pointing on a white board. These models have been mainly developed to
predict the time to position a cursor or to select a target employing devices such
as the mouse, a touch pad and numerous other devices that can be found in
traditional desk-top computers [9, 12, 1, 14]. A number of studies suggest that
movements that involve large limbs are more sensitive to changes in the index of
difficulty, i.e. the logarithm of the ratio of target amplitude to target width [9,
11].

Pointing in the context of a white board involves much larger distances over
which we expected the velocity to vary considerably during single movements.
In this paper we therefore revisit the finger pointing experiment for the white
board, but instead of a video camera we use the Mimio [7], a high-resolution
ultrasonic position capturing device that can be attached to a normal white
board and which can be used to register automatically and in real-time the
exact trajectory of a pen that is moved over the white board by the user. This
allows for a much more detailed analysis than was possible with a video camera.
We study the trajectories of adult subjects for simple pointing tasks on a white
board. We investigate to what extend Fitts’ model is appropriate for these larger
movements. We also investigate the maximal velocity of the pen in relation to the
distance from the target and the distribution of the time to reach the target for
various distances. Such distributions provide information about the variability
of the pointing behaviour, which is usually not completely random, but rather
well-approximated by stochastic distributions. Such distributions in their turn
are useful in stochastic models of combined user and system behaviour such as
discussed in some of our earlier work [5].
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In Sect. 2 we describe the design of the experiment and in Sect. 3 we anal-
yse the obtained data. Sect. 5 presents a summary of the main results and a
discussion.

2 The White Board Pointing Experiment

For the experiments we have asked 18 participants to perform a number of
pointing tasks on a white board with the Mimio device. In this section we provide
more details on the participants and the experimental set-up.

2.1 Participants

18 participants took part in the experiment (12 male and 6 female), aged between
17 and 54 years, with a mean average age of 40 years. They were students,
Researchers and Professors at University, and teachers at High School. All of
them were native Italian speakers with normal or adjusted to normal vision and
right-handed.

2.2 Apparatus

For the experiments a Mimio capture bar device [7] was used for the measurement
of positional data. The capture bar was positioned over a vertically mounted
white board of 1050 mm. high and 1400 mm. wide, positioned at 1200 mm. from
the floor, as illustrated in Fig. 1. It was connected through a Universal Serial
Bus (USB) port to a portable computer equipped with a Pentium III 850MHz
processor and 128 Mbytes of memory. x and y co-ordinates of the position of
the tip of a Mimio provided pen, held by the participant while sliding over
the board, were recorded in mm. and time-stamped at the computer. The pen
resembles conventional markers used for writing on white boards. The difference
is that in the Mimio pen the conventional marker is enclosed in a hard plastic
wrapper which is slightly larger than that of the marker pen it contains carrying
infrared and ultrasound transmitters. The device is ergonomically designed to
be held and used by a person as if it was a traditional marker with slightly
increased diameter. When the device is pushed against the board, as normally
happens when writing, a micro-switch is operated and two signals (infrared and
ultrasound) are generated that are sensed by the capture bar. When the device
is released from the board, the micro-switch stops the generation of the signals.
We have used the version of the pen that does not leave a ink-trace on the
board in order not to distract the participants with already drawn lines while
performing the experiment. The Mimio is able to determine the current position
of the device relative to the board by triangulation with a resolution of 0.35 mm.
and a frequency of 87 Hz.
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2.3 Stimuli

Two sets of stimuli were presented marked on the board by means of circles of
black ink. Both sets were formed by five circles with diameters measuring 20
mm. and 10 mm. respectively. We have opted for circles rather than squares,
such as in other 2D pointing experiments [14], because of their invariance of the
width to the angle of approach of the target. The targets were placed at the
following positions (measurements are from the bottom-left corner of the white
board): position 1 (150 mm. horizontal, 700 mm. vertical); position 2 (950 mm.,
700 mm.); Centre (600 mm., 450 mm.); position 3 (150 mm., 200 mm.); and
position 4 (950 mm., 200 mm.) - see Fig. 1 for illustration. The positions reflect
a reasonably representative set of pointing movements that are likely to occur
when using a normal white board.
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Fig. 1. Board with capture bar and position of stimuli (left) and trajectories of a single
subject (right)

2.4 Procedure

The design of the experiment was that of a fully-crossed, within subjects facto-
rial design with repeated measures. The participants were each provided with a
Mimio pen for a practise trial before the beginning of the experiment. The trial
was the same for all subjects and consisted of writing their name on the board.

The basic task of participants in the experiment was to connect two circles by
pointing to the first with the pen, pushing it slightly on the board and sliding it
to the second circle at a velocity that feels natural to the participant, according
to verbal instructions. The sliding of the pen over the board is needed for the
Mimio device to capture the trajectory. The five circles on the board gave 20
types of movement that a participant could be asked to perform. One response
for each type of movement was obtained during the experiment. The movement
types included both directions between the central circle and each of the four
corner circles and also those between the four corner circles in the horizontal,
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vertical, and diagonal planes as shown in Fig. 1 on the right where the trajecto-
ries corresponding the 20 movements of a single subject are drawn. Tasks were
presented in a random order for each participant.

Participants were instructed as follows in Italian:
“On the board in front of you five circles are marked. The outer circles

are numbered 1, 2, 3 and 4 (Experimenter demonstrates by pointing to each
position). The central circle is simply denoted by the letter ‘C’. Your task is to
connect to circles with the pen you are holding according to my instructions.
First I will tell you which circle to start at - I will say, for example, “From 1 ...”.
I will then tell you which circle you should move to - I will do this by giving you
the label of the circle, for example “... to C”. You should move your hand at a
speed that feels natural to you sliding the pen across the board. Try to get the
tip of the pen close to the centre of each target.”

3 Data Analysis

The experimental data collected following the process described in the previous
section were classified based on the distance of the two circles to be connected
and the width of the target circle. Consequently, we identified (i) long diagonal
movements (LD) from 1 to 4, from 2 to 3, and vice versa, (ii) middle diagonal
movements (MD) from 1 and 3 to C, and vice versa, (iii) short diagonal move-
ments (SD) from 2 and 4 to C, and vice versa, (iv) horizontal movements (HO)
from 1 to 2, from 3 to 4, and vice versa, (v) vertical movements (VE) from 1 to
3, from 2 to 4, and vice versa (see Fig. 1). The five classes were replicated for
the large and the small target respectively. This led to the identification of ten
classes consisting of 18 × 4 measurements each. It might have been reasonable
to split each class into two; one for each different direction of movement (i.e. left
to right and right to left or downward and upward). However, given the rather
small number of trials for each movement in this explorative study we decided
to keep the above mentioned classes and examine the results for indications for
the need for further refinement in future experiments.

3.1 Fitts’ law analysis of overall data

Our analysis started from a consideration of Fitts’ law [6] as one of the rare
quantitative tools available in user interface research and development.

The length of movements studied in this experimental setting exceeds that
usually considered in evaluating devices such as for example mice and tablets. As
a consequence, the participants in our experiments need to use different limbs and
muscles to perform the pointing tasks than in the usual Fitts’ law experiments
in the literature. The above observation justifies the potential for validating
Fitts’ formal relationship in the case of a white board equipped with a Mimio
device although the main objective of our work aims at finding performance
distributions and variations in pointing behaviour rather than the mean values
of human perceptual-motor performance.
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The usual form of Fitts’ law predicts that the time MT needed to point at a
target of width W at distance D is logarithmically related to the inverse of the
spatial relative error 2D

W
, that is:

MT = a + b log2

(

2D

W

)

(1)

where a and b are empirically determined constants [11].
There exist a number of well-known variations of Fitts’ law such as Welford’s

variation [17, 18]:

MT = a + b log2

(

D

W
+ 0.5

)

(2)

and Shannon’s original theorem [15]:

MT = a + b log2

(

D

W
+ 1

)

(3)

The logarithmic factor in the formulas, called the index of difficulty ID, de-
scribes the difficulty to achieve the pointing task [11]. The index of performance
IP , defined as IP = ID

(MT−a) , gives a measure of the information capacity of

the human motor system, analogous to channel capacity C in Shannon’s theo-
rem [15].

In our analysis we compared all above variants of Fitts’ law. Also, we used
the method described in [14] to compute the effective target size We in a two
dimensional space to replace W in the above equations. The effective target size
reflects the actual size of the target based on what the participants really did.
Equation (3) with W replaced by We is also used in the new standard for pointing
devices ISO9241-9 [13]. The use of We instead of W is believed to increase the
accuracy of the model in general.

The overall results obtained from our experiments for all pointing tasks of
all participants is given in Table 1. The table reports the results for the width
of the targets considered (20 mm. and 10 mm.), the effective width We and the
distance D. The index of difficulty ID, the mean movement time MT and the
index of performance (or throughput) IP have been calculated using We for
the three variants of Fitts’ law: Fitts (IDF , IPF ), Welford (IDW , IPW ) and
Shannon (IDS , IPS). The last column in Table 1 gives the mean velocity for
each combination of target and distance.

The results for Welfords variant are presented graphically in Fig. 2 together
with a first order fit of the data to the logarithmic component of Welfords variant,
the correlation coefficient of 0.98, the regression coefficient of 0.675 s/bit and
its regression constant of -1.658 s. The results for Fitts’ law and Shannon’s
variant are very similar with correlation coefficient 0.98 and 0.99 resp., regression
coefficient 0.667 s/bit and 0.682 s/bit resp. and regression constant -2.274 s. and
-1.711 s. resp. All results show a linear relationship between movement time and
the index of difficulty with a high correlation as has also been observed in many
other Fitts’ law studies involving finger, wrist and forearm muscles in computer



Analysis of Pointing Tasks on a White Board Extended Version 7

Table 1. Data from experiment with Mimio capture bar and pen

W We D Mov. IDeF IDeW IDeS MT IP ∗

eF IP ∗

eW IP ∗

eS Velocity
(mm) (mm) (mm) Type (Bits) (Bits) (Bits) (sec) (Bits/s) (Bits/s) (Bits/s) (cm/s)

20 17.98 430.1 SD 5.58 4.61 4.64 1.518 1.47 1.45 1.44 28.33
20 18.21 500.0 VE 5.77 4.81 4.83 1.615 1.48 1.47 1.45 30.96
20 18.27 514.9 MD 5.82 4.84 4.87 1.637 1.49 1.47 1.45 31.45
20 18.35 800.0 HO 6.45 5.46 5.48 1.954 1.53 1.51 1.50 40.94
20 19.12 943.4 LD 6.62 5.63 5.65 2.138 1.50 1.48 1.47 44.13
10 7.83 430.1 SD 6.78 5.79 5.81 2.160 1.53 1.52 1.50 19.91
10 8.25 500.0 VE 6.92 5.93 5.95 2.295 1.51 1.50 1.49 21.79
10 8.07 514.9 MD 6.99 6.01 6.02 2.384 1.50 1.49 1.47 21.60
10 8.28 800.0 HO 7.59 6.60 6.82 2.744 1.51 1.50 1.53 29.15
10 8.42 943.4 LD 7.81 6.81 6.82 3.097 1.45 1.43 1.42 30.46

Mean 2.152 1.50 1.49 1.47
StDev 0.501 0.02 0.03 0.03

( *) Calculated using IP = ID/(MT − a) where a is the regression constant.

input control [11, 12]. A difference with the results reported in [11] on Fitts results
for the tapping experiment involving distances of between 2 and 16 inches is the
regression coefficient (slope). In Fitts’ experiments the slope for the experiment
in which a stylus of 1 oz was used is 0.1089 s/bit and for the 1-lb stylus 0.1240
s/bit, which are both much lower than the regression coefficient found for the
white board experiment. So, the index of difficulty has more influence on the
movement time in the case of the white board than in the case of traditional
desktop computer interfaces such as mouse and joy-stick. This is also in line
with an hypothesis made in earlier research by Langolf et al. [9] in which it was
found that IP decreased as the limb changed from the finger to the wrist to the
forearm, i.e. involving increasingly larger limbs.

The mean velocity presented in Table 1 is much lower than the maximum
velocity reported in [3]. In their experiments a maximum velocity of 200 cm/s
has been observed in pointing tasks where participants were asked to start from
one extreme of the white board, i.e. covering approximately 120 cm., and put a
mark with a pen on the other extreme in a fast way. This shows, as expected,
that the mean movement time and distance is not a satisfactory predictor of
the maximal velocity that may occur in pointing movements over medium large
distances.

In order to get better insight in the variation of the velocity during pointing
tasks on the white board we analyse the obtained trajectories in the following
sections.

3.2 Convergence patterns

According to Jagacinski et al. [8] researchers have postulated in the past two
classes of models that attempt to explain the movement processes underlying
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Fig. 2. Welford’s variant of Fitts’ law in the case of aggregate data (left) and consid-
ering only the ballistic and planning phases (right)

the relationship between target width and distance. One class postulates that
the movement is composed of a sequence of discrete sub-movements of uniform
duration and uniform relative accuracy as found by Crossman et al. [8]. The
other class argues for the existence of two basic structural components; an ini-
tial impulse or ballistic component and a sequence of finer adjustments when
approaching the target such as proposed by Welford [18]. Welford suggested
based on this ideas that Fitts’ index of difficulty should be reformulated into two
terms in which the first term corresponds to an open-loop initial approach to
the target, and the second term to a visually feedback controlled final alignment
with the target. However, in experiments performed by Jagacinski et al. [8] with
movements performed with a joystick between targets projected on a display
of 38 cm by 28 cm the data collected were insufficient to establish conclusively
whether the first sub-movement was regulated by an open- or closed-loop con-
trol. MacKenzie reports however that experiments have shown that movements
that take less than 200 ms are ballistic and those with a duration over 200 ms
are controlled by visual feedback [11] at page 118. This result has been obtained
in the context of traditional Fitts’ law experiments, so for amplitudes of at most
40 cm.

Fig. 3 shows some examples of the velocity (top) and of the distance (bottom)
profiles computed from trajectory and time-stamp data for different subjects and
trials. From the graphs on the left, three phases are clearly identifiable during a
movement:

– an initial planning phase characterised by a low velocity profile followed by

– a ballistic phase characterised by a high increase and subsequent decrease of
the velocity profile followed by

– an adjustment phase characterised by a low velocity.

The graphs on the right show different examples of the velocity and distance
profiles which have only two phases: a ballistic phase and an adjustment phase.
In other words, in many trajectories the planning phase is not visible. The most
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likely explanation for this difference is the set-up of the experiment. In fact, par-
ticipants have a view of the starting and target candidate circles for a trajectory
on the board before they start operating the marker. That way, they might build
a mental image of the board in advance and work on that image directly during
the performance; that is, the planning phase is implicitly performed and the per-
formance starts with the ballistic movement. Control over the position and size
of the target is put in place at the end of the ballistic phase when adjustment is
necessary. This requires a refresh of the mental image and the focusing on the
image of the target. Consequently, the behaviour of participants doesn’t show
significant qualitative variations once the performance is started. It is interesting
to note that each participant always adopts the same behaviour across multiple
tasks (i.e. the presence/absence of the planning phase is invariant with respect
to tasks for a subject). Apparently, a learning effect from previous knowledge
of the position of the targets in the board is not appreciated. This may be due
to the small number of tasks each subject is asked to perform together with
the focusing on the current task only. However, two different strategies of op-
eration are clearly revealed at this stage of our analysis. Further experiments
are needed to study this phenomenon in a more controlled way. However, all
subjects showed a trajectory with a ballistic phase followed by an adjustment
phase when approaching the target.

If we correct the obtained data for the planning phase, i.e. we leave out the
part of the trajectory that clearly concerns the planning phase, we obtain an
even better fit of Welford’s variant presented in Fig. 2 (right). By this we do not
mean that the planning phase is irrelevant, in fact, we think that it would be
better to consider this phase explicitly and investigate its influence on the total
time to reach the target. The literature on Fitts’ experiments on this point is
not very explicit. In McKenzie (page 117) [11] it is reported that in studies in
which subjects were responding to a stimulus light and then tapping a target on
the left or right the IP was calculated after factoring out reaction time. In that
study planning time is not mentioned. This is maybe due to the experimental
setting in which the subjects know in advance exactly where the two targets are
located and therefore the planning time is likely to be inexistent or very much
reduced. In any case, an explicit capturing of reaction time and planning time
during the experiments is useful in order to obtain homogeneous and therefore
better to compare sets of trajectories. Moreover, the different phases can then
be studied separately and their contribution to the total time can be studied.

A further observation shown in Fig. 3 is that the velocity of the movement
varies considerably as a function of the distance to the target. Moreover, veloci-
ties of more than 2 to 3 times as high as that of the average velocities based on
Fitts’ model can be observed. We discuss issues related to velocity in more detail
in Section 3.4. In the next section we first look in more detail to the different
phases of the pointing movements.
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3.3 Distance Covered and Time Spent in the Movement Phases

The bar charts on the left of Fig. 4 show the mean percentage of the distance
covered within the three distinguished phases of a movement, and the bar charts
on the right show the mean percentage of time spent in those phases, for each
of the indicated trials.

It is evident that almost all of the distance was covered within the ballistic
phase, while in the planning and the adjustment phases the distance covered is
negligible. This occurred uniformly across all trials with minimal variations.

Considering the time spent to perform a complete movement, the variation
across phases changes significantly. While the ballistic phase keeps taking most
of the time, both planning and adjustment phases cannot be neglected.
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Fig. 3. Velocity (top) and distance (bottom) sample profiles with planning (left) and
without planning (right) phases

Fig. 5 gives the same information as Fig. 4 averaged over the complete set of
trials for each of the target sizes. The figures show that the variation across target
sizes of the percentage covered both in distance and in time during the planning
phase is minimal. On the contrary, the adjustment phase duration depends on
the size of the target both for distance and time: the bigger the target the shorter
is the duration of the adjustment.
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Fig. 4. Percent distribution of movements in distance (left) and time (right) per test
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3.4 Observed Maximal Velocity

Fig. 6 shows the average distance covered and the variation in the velocity split
out for the different distances for the larger target. From this figure we can
observe that for larger distances higher velocities are reached.

Table 2 shows the maximal velocities that have been observed for each dis-
tance and each target width. It also shows the mean of the maximal velocities
reached by the participants and the standard deviation. The highest velocity
of 196.69 cm/s has been reached for the target of 20 mm. and the horizontal
movement of 80 cm in a movement from point (1) to point (2) on the board.
This is slightly less than the maximal velocity reported in [3] which was 200
cm/s. The latter however was obtained for a larger distance (120 cm.) and no
clear target size. It can also be observed from this table that the highest mean

maximal velocity is reached for the long diagonal and that this mean velocity
decreases with the distance, with a minor exception for the short diagonal and
the vertical movements for the small target.

Interestingly, from the same table we can also observe that the maximum
velocity reached is not only depending on the distance that needs to be covered
but also on the target size. Apparently, the ballistic movement is performed more
cautiously and slower if a smaller target needs to be reached.
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Fig. 6. Distance covered (left) and Velocity (right) related to time for target of 20 mm.

3.5 Variability of Arrival Times

Fitts’ law studies typically do not address the distribution or variability of move-
ment times but are aiming at the development of a valid model for the prediction
of average movement times for different indices of difficulty and performance. Al-
though Fitts’ law has many important applications, there are situations in which
the variability of the movement times is an important factor, such as in the case
of direct interaction via computer vision techniques. It is well-known that hu-
man behaviour is quite variable, even in case of simple tasks, however, it is not
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Target Movement Max Velocity Mean Velocity St. Dev.
(mm.) Type (cm/s) (cm/s)

20 Long diagonal 178.47 95.29 33.12
20 Horizontal 196.69 91.41 30.80
20 Mid diagonal 162.69 79.18 31.01
20 Vertical 149.58 76.18 30.84
20 Short diagonal 171.07 69.56 26.99
10 Long diagonal 109.66 67.35 18.81
10 Horizontal 102.66 67.16 19.27
10 Mid diagonal 99.94 54.25 17.66
10 Vertical 95.68 48.95 15.11
10 Short diagonal 92.79 49.22 14.85

Table 2. Maximal observed velocity for each type of movement

completely random. Swain and Goodman [16], among others, observed for ex-
ample that reaction times are rather well described by log-normal probability
distributions. These are similar to normal distributions but skewed somewhat to
the faster end of the distribution.

In Fig. 7 the distribution of the arrival times for the two sizes of the tar-
get and the various types of movements are shown. On the horizontal axes the
arrival time (in seconds) is shown. The vertical axes shows the percentage of
trajectories that reached the target by that time in a stacked way. The numbers
have been obtained by grouping the trajectories in slots of 0.25 seconds each.
All trajectories have been renormalised by removing potential planning phases
from the trajectories. Fig. 8 shows non-stacked distributions for the long diagonal
trajectories for the small and the big target as an example.

It can be observed that the distributions are indeed skewed to the faster part
of the distribution and resembles somewhat a log-normal distribution. However,
in a number of cases a second, lower, peak can be observed toward the slower part
of the distribution. This could be explained by the fact that movements of the
same length, but in different directions have been grouped together. For example,
moving from left to right might be much easier (and thus faster) for most people
than moving from right to left. A further factor is that the number of movements
considered in this study has been relatively limited. Further experimentation is
needed to find out whether these distributions will be reproduced and would fit
more closely to a log-normal distribution as these first data are suggesting.

4 Lessons learned

This first investigative experiment has been extremely useful for obtaining insight
in how the experimental setting can be improved to further validate the obtained
results.

We plan to implement the following improvements in further experiments:
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Fig. 7. Distribution of arrival time for small (left) and big (right) target for the different
types of movement
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Fig. 8. Distribution of arrival time for small target, long diagonal (SLD) and big target,
long diagonal (BLD)

– The results show that the direction of movement may have an influence on
the regression coefficient given the slightly bimodal shape of the probability
distribution in Fig. 7. We therefore plan to extend the data set and split the
classes of movements depending on the direction of the movement.

– The size of the people and their arm length may be relevant to the move-
ments. We plan to collect these data.

– For a number of subjects the planning phase was not captured. This may be
due to the fact that some people adopt a strategy in which they memorize
the position of the targets on the board and therefore don’t need time to
plan the ballistic phase of the movement. We therefore plan to automatise
the appearance of the starting points and targets on the white board by
using a projector connected to the same computing device that captures
the Mimio trajectories and synchronise projection and capturing. This way
the subject is required to put the pen on an appearing (randomized) source
which triggers (again randomized) the projection of a target to which the
subject has to move the pen.

– We also will let the subject stand or start from a specific indicated place in
front of the white board such that required movements are similar.
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– The Mimio device has shown to be able to capture in an automatic and
very detailed way the trajectories of the movements. The data obtained this
way are much more accurate then when using e.g. video cameras as reported
in [3]. Moreover, the data can be stored and processed automatically with no
laborious hand-counting of frames. This allows for dealing with a much larger
number of subjects and samples which are likely to improve the accuracy of
the results.

– Maybe one of the most interesting aspects of the use of the Mimio device
for this kind of experiments is that it allows a detailed study of the different
phases of medium and large movements. We plan to exploit this opportunity
further in following experiments.

5 Discussion

We have studied the pointing behaviour of adults performing simple pointing
tasks on a white board. Such tasks involve movements over larger distances, and
thus involving different limbs and body muscles than are usually considered in
Fitts’ law studies.

Although the study was limited in its set-up for what concerns the number of
participants, and the number of trials that they were asked to perform, the use
of an ultrasonic high-resolution movement capturing device provided interesting
and detailed data on the structure of the movements and the variation of the
velocity over each trajectory.

Our results show a linear relationship between movement time and the index
of difficulty with a high correlation as in most Fitts’ law studies for traditional
pointing and tapping tasks. The main difference is that the regression coefficient
was found to be much higher for pointing movements on the white board than
in traditional Fitts’ law experiments. This is in line with earlier findings that
movements involving larger limbs are more sensitive to the index of difficulty.

Furthermore, the obtained trajectories showed a clear number of phases in
the structure of the movements. An initial planning phase, followed by a ballistic
phase and an adjustment phase could be distinguished, although in some trajec-
tories the planning phase was missing. This last aspect is most likely due to the
way the experiments have been set-up. We plan to conduct further experiments
in order to control this aspect as well as other aspects that seem relevant for the
results, such as arm-length (reach), person’s length and direction of movement.

The ballistic phase of the movements showed that velocities were reached that
were significantly higher than the average velocity derived from the measured
distance and movement times. Moreover, the velocity is clearly influenced by the
size of the target. Furthermore, the data seems to suggest that the arrival times
for each combination of distance and target follow a log-normal distribution.
Further experimentation is needed to investigate this hypothesis in more detail.

For what concerns the design of vision based tracking techniques, the re-
sults of the experiments show that the velocity of the pointing movement varies
considerably. Such knowledge could be used for improvement of the adaptive
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tracking techniques. For example, it could be investigated whether the initial
part of the ballistic movement could be used to predict with a good accuracy in
which direction and where the movement is heading. Such knowledge could be
used both for speeding up the tracking performance, but also lead to techniques
that are less likely to loose track of the finger or that are more likely to be able
to recover from loosing track. This way, vision based tracking could be made
more accurate and robust.

Although limited in scope and number of participants, the current experiment
shows nevertheless a number of interesting phenomena that would be worth
to investigate further within the context of a larger experiment which we are
currently carrying out.
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