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[ARY A new class of algorithms for the computation of

bilinear forms has been recently intreduced Bwﬂe These

algorithms approximate the result with an arbitrarily small

error and their use may reduce the multiplicative complexity

of some problems. This is the case of n x n matrix multiplication
for which an approximate algorithm of complexity O(nl°8:1000y . o
been found. A comparison between approximate and exact
algorithms has to take into account the complexity-stability
relations.

In this paper some complexity measures for matrix multiplica-
tion algorithms are discussed and the exact and approximate
algorithms are evaluated. Multiplicative complexity is shown
to remain a valid comparison teﬁﬁ and the cost of approximation

appears to be only a logarithmic factor.
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1. INTRODUCTION AND PRELIMINARIRES
Consider the problem of eompu%ing the bilinear forms

T

& ﬁh K (hﬁ‘lp ® 0 e @}
X n-vector, y m-vector, A, 3{&§§%§ n x m matrices.

in [,3] those algorithms yielding an exact solution to this

problem were called EC-algorithms (Bxactly Computing).

A bilinear EC algorithm is identified by three matrices

U&%uirg . VE%vjr% , wefm 1 (3=1,...n53=1,.00mh=1, .. 00, 7m0, .00 t)
satisfying the condition

t
§iiwirv°rwhr = aé?>@
T=1 .

The bilinear forms are computed by the formula

+ 1 m
T
x Ay = 2:: WEP€EZj&iTXéXE:TVjTYj§ (B=1,...p)
=1 i=l J=1

and ¥ is the number of non scalar multiplications.
APA-algorithms (Arbitrary Precision Approximating) were

introduced to take advantage of the circumstance that the

complexity may be reduced by allowing the result to be affected

by an arbitrarily small error. A bilinear APA-algorithm

is identified by three matrices U(s),V(e),W(e) satisfying the

condition
]

|

S v (Om () = al) o) (be1,.inp)
r=1

(n
i
and Eh(@) are null matrices. If the entries of U,V,W are powers

where Eh(é§ﬁ£e >(€}} is & matrix of continuous functions of ¢
of & the Ehié} are polynomials in & .
REMARK: In [ 4 ] en APA-algorithm for n X n matrix multiplication

with multiplicative complexity O(n>°' °°

) is presented.
In[51itis shown that the existence of APA-algorithms
requiring t° multiplications implies the existence of EC-algo-
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rithme requiring t°'(1l+d) multiplications; 4 is the degree of the
polynomial cerrections Eh{z}@

Matrix multiplication (in the following is a special

case of the problem of computing bilinear forms. Morecver

the three-way array m,zgagh%a8$0@iateﬁ to a x* x x° problem
is the gq-th tensorial powe?ﬁwf the three-way array associated
to the k x k problem | 5 |. This fact supports the well known
technique to derive a general n x n algorithm from & k x k
algorithm by recursive partitioning [%3}@ ks a matter of
fact the recursive application of the same algorithm is
equivalent to use a bilinear algorithm identified by matrices
U(Q),V(Q),w(q} which are the g-th tensorial powers of U,V,W.

In gsection 2 some complexity measures to evaluate general
MM algorithms by taking into account numerical stability are
discussed. This allows to compare the efficiency of EC-algo-
rithms and APA-algorithms. An alternative technique to
perform MM using APA-algorithms is also considered, Logarithms are %o
base 2 throughout this paper, unless otherwise indicated.
2. COMPLEXITY MEASURES POR MATRIX MULTIPLICATION ALGORITHMS

Some complexity measures for general n¥n MM algorithms
are discussed in this section. All of these measuresg are
defined as the order of infinity of functions of n. & few of
such measures are well known from the literature, the remaining
have been recently introduced or are natural generalizations

of known measures.

Multiplicative complexity M(n) [R ],

This is defined as the erder of non scalar multiplications
required to calculate the product.
Operation complexity OP(n) [87].

This is the order of arithmetic operations required to
calculate the product. If the algorithm makes use of recursiwe
partitioning, OP(n) can be proved to be of the mame order of H{n).
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Pixed Precision eomplexity FP(n).

Sometimes it is required to compare algorithms with different
numerical stabilities. In this case it is useful to take into
account the cost of calculating the result with a given accuracy.
We define the Pixed Precision complexity as follows:

FP(n) = OP(n) m(bln,s,))
where m(x) is the complexity of integer multiplication with x
digits and b(n,s) the number of digits required in the arithme-
tic operations to obtain a relative error e<2™®, 1n (9]

o

it is shown that m(x)=0(x log x log log x). The relative error
of a general MN

algorithm using b digits in the arithmetic can
be written in the form

< p=p/¥(n) +¥(n)

& <
where w(n) and W(n) are functions depending on the algorithm;
hence b(n,s)=w(n)(s+y¥(n)) and

FP(n)=0(0P(n) m(w (n) (Y (n)+1))).

REMARE: Pixed Precision complexity is the most natural measure
to estimate the real bit operation complexity of a MM
algorithm.

Asymptotical complexity AC(n) [2].

Anotherway to compare algorithms while taking into account
the numerical stability consists in evaluating the order of
bit operations needed to compute the product with infinite
precision. In order to achieve this result themeasures of two

algorithms a and b must have the following property

A@&(m) im OPa{m) m(ba(n,ﬁ>)
&@b§n§ . . GPb(n§ m(bb(n,s§§
This can be obtained by defining

AC(n) = Lim 0P(n) m{b(n,s))
&> 00 m ﬁ}
Under some regularity hypotheses for m(x) it is proved that

AC(n) = OP(n)w(m), [2].
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3. COMPLEXITY OF EGmALGORK%HMS CONTRUCTED BY RECURSIVE PARTITIONING
Congider an EC-algorithm for k x k I
cations and let Mml@gk%, It is well known that & general

[ requiring ¢ mml%ipﬁim

algorithm can be contructed by applying the technique of
recursive partitioning [8,!0] and
0P(n) = 0(M(n)) = 0(a™).
On the other hand the relative error can be proved to be
O(nx 2“b) 1e0c w(n)=1, Y(n)= ylog n . This yields
FP(n) = O(n" m(log n)),

AC(n) = 0(n™).

4, COMPLEXITY OF APA-ALGORIT

Consider an Arbitraery Precision Approximating algorithm
for k x k MM with multiplicative complexity ts let %ml@gk%@
The accuracy of the result depends on the number of digits
used in the arithmetic and on the choice of ¢ o

There are two sources of errors when using APA-algorithms
namely the error produced by floating point arithmetic and
the error dus to the algorithm itself. Assuming that U(&),
V(s),W(¢) are matrices of powers of ¢ let S?be the highest
infinite in U(s),¥(:),W(c) end £° the lowest infinitesimal
in the correction matrices E (E} when ¢ » 0., The erder of the
error due to arl%hmetic is O(E 2 b}

algorithm is Q{f )+ The best choice for ¢
-be A& -

and the srroyr of the

and the overall error becomes 0(2

In order to obtain a general n x n algorithm the APA-algorithm

is used recursively glogkﬁi times, thus obtaining an operation

complexity GP(n}wQ(n@ Ve
In the general algorithm the highest infinite order in the

resulting matrices U,V,¥ becomes gylmgkn &m§&%®W@ﬁﬁ infinite-

gimal in the correction remains Ed » Then the oversll errer is
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@(mxgmﬁgf/{@”‘flﬁgkn)E - @igab/w(n) % W{ﬁ)) with W{ﬂ}mﬁiﬁ.@g nY,

W(n)=0(1log n),

.1
the term n kés inte account the growth of errors net depending

on £ . Hence the Pixed Precision complexity of APA-algorithms

becomes

PP(n) = @(ngm(},@»gznﬂ,
and the Asymptotic complexity

AC(n) = O(nﬁlag n) [:!i] °

5, COMPLEXITY OPF BCiAALGORITHMS DERIVED FPROM APA-ALGORITHMS

As shown in | 5 | it is possible %o’derive EC-algorithms from
APA-algorithms. Namely if the entries of the correction matrices
Eh(&} are polynomials in & with highest degree d, the resulting

ECD-elgorithm (Bxactly Computing Derived) has a multiplicative
complexity (1+d)t, where t is the multiplicative complexity
of the APA-algorithm.

Consider an APA-algorithm & for k x k MM requiring %
multiplicakionsy if & is applied recursively lﬁgkn@tim@@ a
general APA-algorithm results,and the entries of the eerrection matr
have highest degree a.lagknoo This implies that an ECD-algorithm

with multivlicative complexity
1@gkt
@én@} = N (1+4 l@ganE

can be derived.
Then there exists a segquence of general algorithms with
complexities
0P(n) = @(ﬁﬁ %%(n@})
#p(n) = 0(nP **(%) n(10g n))
AG(n) = 0(n P *4(ma)y

where § (n,) = log (1+4 1@gkn0§/’10g n, may be arbitrarily small

ice;




Another approach to construction of general EC-algoritims

produces & better result; this approach is based onm the same

technique of {5 ﬁ o Let {&lyﬁ%9@@9&§$1d be the solution eof
the Vandermonde system:
(1 1 ... 1 “"&17 1
21 f2 00 £34 | |%2 ¢
d d d
h&1 €y oo i&+i _éé%lw ] ®_~

where d= @ iﬁgk » Since the entries of the correction matrices
are polynomials in ¢ of degrees <3 and the terme of degree O are

equal to 0, we have

o~
a+1 %1 2. .
Nﬁ = 1, S wiﬁﬁ%}m@ (h=l,2,000m )y
dml ' i=1
and
%ﬁl ol xﬁiﬁ +E_(&))y = X@% / (h=l,2 m@}
e S A S A S AP 4 PR aE

The n x n APA-algorithm has to be executed a E@gkm +1 times

with different values of ¢ and the results have to be linearly
combined. This kind of algerithm is called RCC

xactly Cemputing
Gorrected).

The multiplicative complexity is then @(m$ leg n)e.

The best cholce for the values of § is gy= 1 (i=1425000d41)
since it minimizes the number of digits needed to represent

the gi@ﬁ and the dorresponding values of ® are easgily computableg

~

441 det i~
% o= (0¥ (D, [6] .

Using ECG-algorithms the error due to the approximation

namely

disappears and the error due to floating point arithmetic has

the form
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& =

@

Mgmgﬁ gw%}

Prom ¢= O(log n) it follows
o = ﬁigw% %f@l@gkm log log )

i.es win)= 0(1),
W(n)= O0(logn log log n).
The Pixed Precision complexity becomes
PP(n)= @{méglﬁg nm(leg n log log n))
and the Asymptotic complexity
AC(n)= @Qm@mﬁg n)

6., CONCLUSION

Table I displays a comparison of the complexity measures

for the different types of algorithms.

Note that the main perameter to evaluste Matrix Multiplication
algorithms remains the number of non scaler multiplications.
The overhead due to numerical instability using approximate
algorithms consists of logarithmic factors. Moreover
APA-a]lgorithms appear to be less complex than the corresponding
BCD and ECC algorithmsa.
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EC

APA

ECD

EC

C

TABLE I
op ‘PP AC
ol o &
O(n ) 0(n m(log n)) 0(n)
B
O(n@) 0(n m(l@ggn>} Q{nﬁlﬁg n)
£, . £
o(nP*E) 0(n?*€ m(10g n)) o(af *%)
o( P B P
n log n) O(n log n m(log n log log n)) 0(n log n)
Table I, Complexities of MM algorithms. The best known value

for«is 2.7951[#]Jand for P is log,,1000 = 2.7799..{1].
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