
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 4412614

Joint Phase-Screen Estimation in Airborne
Multibaseline SAR Tomography

Data Processing
Pasquale Imperatore , Senior Member, IEEE, and Gianfranco Fornaro , Fellow, IEEE

Abstract— Airborne interferometric data is typically affected
by phase distortions originated from subwavelength residual
positioning uncertainties (phase screen) when acquired along
different tracks. Available methods estimate the phase screen
affecting stacks of multibaseline acquisitions, mainly by exploit-
ing single interfograms separately. A novel method for the joint
estimation of the multibaseline phase screens is proposed. The
results of the implemented phase calibration are analyzed via a
tomographic inversion, allowing to obtain a 3-D imaging estimat-
ing the vertical characteristics of the scene scattering. Specifically,
we processed the multibaseline, fully polarized P-band synthetic
aperture radar (SAR) data collected during the AfriSAR cam-
paign in July 2015 over the Lopé tropical forests in Gabon,
West Africa. Validation of the 3-D imaging results, supported
by reference LiDAR (NASA LVIS) data, allowed demonstrating
that the proposed joint estimation method overcomes the classical
disjoint estimation solutions.

Index Terms— Airborne, motion compensation, phase cal-
ibration, phase screen, SAR tomography, synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) tomography
(TomoSAR) is an important technique based on the

use of multibaseline (MB) SAR data to obtain information on
the 3-D structure and distribution of volumetric scatters [1],
[2], [3], [4]. The capabilities of the technique have been
demonstrated in the 3-D reconstruction of urban and forest
areas, in both spaceborne and airborne scenarios [5], [6], [7],
[8], [9], [10], [11], [12].

The monitoring of forest vertical structure is crucial in
the understanding of the dynamics of forest ecosystems, and
how they are affected by natural and anthropogenic processes.
Remarkably, biomes covering roughly 38% of Earth’s veg-
etated surface area, containing 81% of the estimated total
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terrestrial phytomass, exhibit biomass densities surpassing
the backscattering saturation limit, exceeding 100 tons/ha for
P-band (around 450 MHz) [13]. The saturation effect has been
largely investigated [14], thus motivating the introduction of
tomographic SAR approaches.

Multibaseline SAR systems with varying spatial resolutions
have demonstrated significant promise in the study of 3-D
forest structures. Nonetheless, the reflectivity interpretation in
terms of scattering phenomena from complex 3-D structures,
especially in the case of forest vertical structure, is still
in its infancy. In particular, the analysis of multichannel
signals for forest characterization is a complex task since
many factors (e.g., canopy structure, soil moisture and plant
water content, observation direction, topographic relief, mul-
tiple scattering, etc.) considerably affect the backscattering
properties represented in the different observations to be
combined.

With reference to the specific problem of MB 3-D SAR
focusing considered in this work, the presence of phase arti-
facts (commonly referred to as phase screens or phase errors)
is critical for TomoSAR reflectivity reconstruction, especially
in the airborne case [8], [15].

In recent years, airborne SAR systems have been employed
for monitoring and mapping biomass in forest regions at a
regional scale; P- and L-band sensors have been explored to
characterize the 3-D structure of terrain and vegetation [2],
[16], [17], [18]. Multipolarimetric P-band SAR tomography
for mapping ground topography has been investigated in [19]
by relying on the algebraic synthesis technique adopted
in [20].

Two main unavoidable sources causing phase artifacts can
be distinguished: residual track positioning uncertainties and
atmospheric propagation delay variations. If not properly com-
pensated for, these phase artifacts critically cause defocusing
and blurring in achieved tomographic profiles.

In the case of MB satellite data, atmospheric propaga-
tion delay effects might be relatively large, while baseline
uncertainties are not critical due to the stability of the plat-
form [6], [7], [21]. Conversely, airborne SAR systems are
highly affected by platform instabilities [8]. Motion errors
may even lead to defocusing if not properly accounted during
the SAR image formation process [22], [23]. In any case,
integrating Inertial Motion Units (IMUs) measurements with
autofocusing techniques can hardly lead to compensation
reaching the subwavelength scale accuracy [8]. Subwavelength
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inaccuracies in the sensor position during the data acquisitions
have a critical impact on the coherent processing of airborne
MB data [8], [9].

The focus of this work is on the phase compensation of
PHase Screen (PHS), originated from the instability of the
aircraft affecting the tomographic processing of airborne MB
data, for the application to 3-D imaging in forested areas.
Different approaches have been proposed in the literature to
cope with this problem. In [8], a widely used approach is
proposed for calibrating tomographic data. The strategy is in
this case based on the so-called double (target and sensor)
localization, where the sensor position errors are responsible
for the phase disturbances in the data stack. In this case, a geo-
metric space-variant model for the phase distortion is adopted.
Conversely, a pixel-by-pixel entropy minimization-based pro-
file reconstruction was investigated in [24] and [25]. In [25],
phase calibration is performed by optimizing the entropy of the
vertical profile with a zero phase derivative constraint, in order
to solve the problem of uncontrollable vertical shifts in the
tomographic focusing.

In this work, we propose an improvement to the method
developed in [8] for compensating phase distortion in MB
airborne SAR data. In [8], the estimation is carried out sepa-
rately for each interferogram (disjoint estimation) by modeling
the range variation of the phase distortion for each azimuth
platform position. Differently, our proposed approach performs
an optimization aimed at jointly estimating the corrections for
all the available passes [26]. The proposed method inherently
handles the presence of redundancy in the generation of the
interferogram stack from the MB SAR data, thereby ensuring
higher robustness.

The validity of the method is assessed by using a real MB
dataset acquired by a P-band SAR system over a tropical
forest in Gabon and reference NASA LVIS LiDAR data [27].
Furthermore, the results of the proposed method are compared
with those obtained with the classical disjoint approach.

The work is organized as follows. Section II introduces
the formulation of the problem, with emphasis on the PHS
estimation. The proposed method is discussed in Section III.
Experimental results are provided in Section IV. Section V
provides further discussions on the adopted assumptions and
choices. Finally, Section VI provides the conclusions.

II. PROBLEM FORMULATION

The problem formulation is organized in three differ-
ent parts: tomographic formulation for 3-D imaging in
the presence of phase errors, the network formulation for
the generation of the interferograms (observables), and the
space-variant PHS model.

A. Three-Dimensional TomoSAR Imaging in the Presence of
Phase Errors

Let us consider N single-look complex (SLC) SAR images
acquired at different times along distinct and nonuniformly
spaced tracks/orbits over the same target area. We indicate with
M the number of interferograms that are generated, for calibra-
tion purposes, from the N images, according to the adopted

Fig. 1. Airborne multibaseline tomographic SAR imaging system: geomet-
rical scheme. The azimuth axis is perpendicular to the sheet.

strategies. The SLC images are assumed coregistrated with
respect to a reference (primary) image and, for the airborne
case, motion compensated. It is also assumed that they are
compensated for the range-dependent phase component (ter-
rain topography compensation) at the data preprocessing stage.
The latter operation relies on the knowledge of an external
digital elevation model (DEM), but more important on the
accurate knowledge of the sensors’ positions at subwavelength
scale. DEM errors translate to a simple vertical shift of the
tomographic profile. Conversely, the inaccurate knowledge of
the sensors’ positions leads to disturbing phase terms (phase
artifacts) related to the inherent variation of the sensor–target
distance with respect to the nominal one. Such space-variant
phase artifacts, if not estimated and compensated, hamper the
well-focused 3-D tomographic reconstruction.

More formally, the MB complex-valued SAR data stack
corrupted by such phase artifacts can be described according
to the following discrete model (see Fig. 1) [25]:

u = a ⊙ H(s)γ (s) + w (1)

where u = [u1
xr , . . . , uN

xr ]
T

∈ CN is the SAR observable
data stack, ui

xr refers to the i th SLC image pixel, and x
and r being the subscripts denoting the azimuth and range
(discrete) pixel coordinates, respectively. The superscript T
denotes the transposition operation and ⊙ is the Hadamard
product. Moreover, the following notation has been adopted:

1) γ (s) = [γxr (s1), . . . , γxr (sK )]T
∈ CK is the complex

vector describing a sampled version of the (unknown)
complex reflectivity distribution along the cross-radial
direction at a prescribed range–azimuth location;

2) s = [s1, . . . , sK ] is the vector collecting the (discrete)
cross-radial positions sk, k = 1 . . . , K ;
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3) K is the relevant number of samples corresponding to
the discretization of the unknown distribution;

4) H(s) = [h(s1), . . . , h(sK )] is the N × K sensing matrix;
5) h(sk) = [exp(− j2πξ1sk), . . . , exp(− j2πξN sk)]

T is
commonly referred to as the steering vector, thus rep-
resenting the column vectors of H(s) containing the
interferometric phase information associated with a scat-
ter located at cross-range position sk ;

6) ξn = 2bn/(λr) is the (two-way) spatial frequency
associated to the nth and primary tracks;

7) bn is the perpendicular baseline (antenna position) of the
nth track relative to the primary track along the s-axis;

8) λ is the operative radar wavelength;
9) w ∈ CN is an additive noise term.
and finally, the vector

a =

[
e jχ1

xr , . . . , e jχ N
xr

]T
(2)

collects the unknown phase disturbing components.
According to the adopted model, the complex-valued

information associated with a pixel of the nth SLC
image, dn

xr , results from the coherent superposition of the
contributions from the scatters at different cross-radial (or
elevation) locations pertaining to that pixel

un
xr = e jχn

xr

K∑
k=1

γxr (sk)e− j2πξnsk (3)

where γxr : sk ∈ R → C is the target scattering distribution
along the elevation direction.

Equation (3) shows that, except for the disturbing phase
term e jχn

xr , the RHS describes an irregularly sampled discrete
Fourier transform of the scene (complex) reflectivity distri-
bution along the cross-radial direction. We stress that, in the
limit of the approximations made, (3) essentially states that the
MB SAR data and the scene complex reflectivity distribution
within each resolution cell constitute a Fourier pair [1], [5].

The TomoSAR problem to be addressed involves the recov-
ery of the target scattering function γxr (sk), utilizing the
complex observations un

xr with n ∈ (1, . . . , N ). It should then
be clear that each nth space-variant phase distribution χn

xr
(PHS) has to be preliminarily estimated and compensated
before proceeding with the proper tomographic reconstruction
of the 3-D radar reflectivity.

A key parameter in TomoSAR imaging is the vertical
resolution 1z, which can be approximately written as follows
(Rayleigh limit) [1], [5]:

1z ≃
2π

maxn
{

kn
z

}
− minn

{
kn

z

} (4)

wherein kn
z is the vertical (interferometric) wavenumber

referred to the primary image. According to the litera-
ture [1], [5], kn

z can be related to the nominal (orthogonal
component) baseline bn by means of the following:

kn
z =

2πξn

sin θ
=

4πbn

λr sin θ
=

2π

H n
2π

. (5)

In (5), θ is the radar look angle, H n
2π is the height of

ambiguity of the nth acquisition, and z = s sin θ being the

vertical coordinate, where s is the (continuous) cross-radial
coordinate. Note that, due to the topographic relief viewed by
SAR side-looking imaging system, θ is generally dependent
on both the azimuth and range coordinates, i.e., θ = θxr .
According to (5), such a dependence is also inherited by kn

z in
addition to the intrinsic dependence associated with ξn (due to
the line-of-sight dependence on the azimuth and range of the
orthogonal baseline bn). For the sake of notation simplicity,
spatial dependence on x and r of bn and kn

z (and consequently
of H n

2π ) has been understood.
A remark is now in order. The phase calibration problem

concerns the estimation (for any pixel) of the unknown vector
a in (2). Anyway, as a consequence of the fact that a constant
(n-independent) phase factor, variable with x and r , does
not affect the vertical focusing operation, phase calibration
is required for N − 1 acquisitions. In other words, the
unknowns of our problems are N − 1 phase differences
evaluated from the N phase components of (2) evaluated
with respect to a reference acquisition, typically the selected
primary acquisition. The estimation of the unknown phase
values can be conveniently addressed in the interferometric
framework, where generally different strategies for generating
the observable (known) interferometric phase values are com-
monly adopted. One possibility, referred to as Single-Master
(SM) interferometric pairing, involves the evaluations of the
observable interferometric phases with respect to the unique
primary image. In this case, the observable reflects the same
structure of the unknowns and measurement redundancy is
not exploited in the interferometric processing. The processing
involves the generation of large baseline interferograms which
are typically more critical in terms of decorrelation phenom-
ena. An alternative strategy to circumvent the problem is to
refer to a Multi-Master (MM) strategy [28], [29], in which only
small baseline interferograms are used. The unique reference
primary image involved in the data preprocessing stage is
sometimes referred to as super-primary, and typically, redun-
dancy is exploited according to different network topologies,
as discussed in Section II-B. To avoid the large baseline
interferograms, M is typically lower than the number of all
possible pairings, i.e., N (N − 1)/2, for instance between N
and 3N .

It is worth finally noting that (5), defined for the SM inter-
ferometric pairing, can be considered valid, mutatis mutandis,
also for the MM case.

B. Interferometric Network Formulation

In the formulation of the problem at hand, involving the
process of pairing acquisitions, a graph-based description
naturally arises for both the SM and MM cases. In the rigorous
methodological framework of the discrete calculus, the topo-
logical properties of a graph can be captured by differential
operators that are phrased as algebraic structures. We refer
to [30], [31], and [32] for graph–theoretic notions and discrete
calculus application to SAR interferometry, respectively. Some
basic aspects are briefly recalled in the following.

A graph G = (V; E) can be formally defined by two sets,
being V the set of vertices with cardinality N and E the set of
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edges with cardinality M . For our purposes, we specifically
refer to acyclic directed graphs [30], [31]. Furthermore, the
vector space RM is referred to as the edge space (e.g., repre-
senting the interferometric observation) and the vector space
RN is referred to as the vertex space (e.g., representing the
SLC acquisitions), with R denoting the field of real numbers.
In particular, the M × N incidence matrix 5 = [5mn] of an
oriented graph G specifies its edge–node connectivity relations.
Its entries are defined as follows [32]:

5mn =


−1, for if mth edge starts at nth node
+1, for if mth edge ends at nth node
0, for otherwise

(6)

with m = 1, . . . , M and n = 1, . . . , N . Note that, for a
connected graph, the column rank of 5 is N − 1. Therefore,
the right null space of the edge–node incidence matrix 5 is
spanned by the set of constant-valued vectors (5c = 0 with
c = [c, . . . , c] ∈ RN ).

Note that a graph is connected when there exists a path
(i.e., a set of edges) between every pair of vertices. The
minimum number of edges required to build a connected
graph is evidently M = N − 1. Typically, the interferogram
generation involves a (redundant) network (M > N − 1)
defined according to a small-baseline strategy [28].

The incidence matrix 5 generates an orthogonal decompo-
sition R(5)

⊕
N (5T) = RM , where R(5) is the column

space of 5, N (5T) denotes the kernel (or null space) of
the matrix 5T, and

⊕
denotes the direct sum operator. The

operator �, referred to as the cycle matrix, can also be
defined [32]. Remarkably, the topological operators 5, 5T,
and � provide the discrete counterparts of the classical gra-
dient (∇), divergence (∇·), and curl (∇×) operators of the
vector calculus for continuous space, respectively [32].

In particular, the vertex-to-edge problem to be inverted
is discussed. Given an arbitrary f ∈ RM , we consider the
following equation:

5 d = f (7)

where 5 is the discrete gradient defined in (6) and d ∈ RN .
The solution of (7) (if it exists) is called the potential of f.

From (7), we get

5T5 d = 5Tf (8)

where L = 5T5 is the (discrete) Laplacian operator. The
symmetric and positive semidefinite matrix L does not depend
on the orientation of G, it describes the connectivity of the
graph structure and represents the discrete counterpart of the
Laplacian in continuous domain (∇2). When the graph is
connected, the null- pace of L is the 1-D space spanned by a
constant vector. Hence, L has at least one zero eigenvalue and
it is therefore rank-deficient. More specifically, the multiplicity
of the zero eigenvalue of the Laplacian matrix corresponds to
the number of connected components in the graph [33]. For
a connected graph (as assumed hereinafter), the rank of the
L matrix is N − 1, i.e., equal to the number of unknowns of
PHS estimation problem.

The reduced incidence matrix, 50, formed by removing the
column corresponding to the reference node (i.e., a reference

acquisition for the MB case at hand), has a right null space
of dimension zero [30]. Subsequently, the reduced Laplacian
matrix L0 = 5T

0 50 has full rank. Therefore, from (8),
we obtain

d = 5
†
0 f (9)

where 5
†
0 is called the Moore–Penrose inverse (left pseudo

inverse) of 50. It is given in the form

5
†
0 =

(
5T

0 50
)−1

5T
0 . (10)

A weighted inversion can be also considered

d = 5
†
0,W f (11)

where W is the M-dimensional diagonal matrix of edge
weights, and the matrix 5

†
0,W is the weighted left pseudo

inverse of 50 expressed as follows:

5
†
0,W =

(
5T

0 W50
)−1

5T
0 W. (12)

The inversion procedure involving the incidence matrix can
also be obtained through singular value decomposition (SVD).
This approach is analogous to the commonly employed
method in Small Baseline Subset (SBAS) processing [28].

C. Space-Varying Phase Screen Model

The adopted PHS model is briefly described in this section.
The geometry of the airborne MB SAR imaging system is
shown in Fig. 1. Since the atmospheric perturbations are
limited for airborne systems, we only take into account inaccu-
racies in the antennas’ positions. Available IMUs are generally
able to measure trajectory deviations up to a few centimeters,
which is not adequate even at P-band. For a fixed azimuth
position, the phase contribution α pertaining to the generic
i th sensor trajectory uncertainty is given in the form [8]

α
(
δSn

x , θxr
)

= −
4π

λ
δSn

x · r̂(θxr ) (13)

where θxr is the previously defined look angle (or off-nadir
angle), r̂(θxr ) = [− sin θxr , cos θxr ]

T is the radial unit vector,
and δSn

x = [δSn
y , δSn

z ]
T is the azimuth-variant position error

vector of the nth platform, with δSn
y and δSn

z denoting its
ground range and height (i.e., horizontal and vertical) com-
ponents, respectively. It should be noted that unavoidable
unknown constant (i.e., invariant with respect to azimuth and
range) phase offsets have been understood and suppressed
in (13), as they do not affect the subsequent model-based
optimization. These phase offsets, typically present in tomo-
graphic analysis, must be estimated and compensated after the
estimation of residual trajectory deviations.

It should be noted that, for any generic acquisition pair
(p, q), we get

α
(
δSq

x , θxr
)
− α

(
δSp

x , θxr
)

= α
(
δSpq

x , θxr
)
. (14)

According to (14), the PHS affecting the interferometric
phase depends on the relative position error δSpq

x = δSq
x −δSp

x .
Noted that (6) uniquely defines the mapping em = (p, q) ∈

E = {e1, . . . , eM} → p, q ∈ V = {1, . . . , N }, with p ̸= q .
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Therefore, for each n ∈ {1, . . . , N }, the (unknown) space-
variant phase screen χn

xr = α(δSn
x , θxr ) uniquely impairing

the nth SAR acquisition has to be estimated and properly
compensated for, as discussed in the following.

III. PHASE-SCREEN ESTIMATION AND COMPENSATION

Regardless of the adopted interferometric pairing strategy,
i.e., SM or MM, the problem of estimating the unknown
PHSs can be addressed by either considering a disjoint or a
joint strategy, as discussed in the following. Obviously, if the
SM strategy is adopted, both the disjoint and joint estimation
directly provides the N − 1 phase unknowns required for the
phase calibration. Conversely, as discussed in Section II-B, for
the MM disjoint estimation case a further inversion procedure
is required to convert the (M) estimated phase errors to
the corresponding N − 1 phase unknowns required for the
calibration of the data stack u in (1).

A. Disjoint Phase-Screen Estimation

An estimation of the position errors δ Ŝpq
x can be achieved,

for each em = (p, q) (edge) of the M interferometric pairs of
the (graph) network, according to the following optimization
problem:

δ Ŝpq
x = argminδSpq

x

(
1 −

∣∣F(
δSpq

x

)∣∣) (15)

where the function F(δSpq
x ) is given in the form [8]

F
(
δSpq

x

)
=

1
R

R∑
r=1

cxr e j(φ̂ pq
xr −α(δSpq

x ,θxr)) (16)

wherein the function α is defined in (13), R is the number
of range pixels, φ̂ pq

xr denotes the observed interferometric
phase, and cxr is a suitable weighting function. As usual,
the subscripts x and r indicate the azimuth and range
(discrete) coordinates of the pixel, respectively. Note that
the objective function involved in (15) is insensitive to a
constant phase, thus overcoming the local minimum prob-
lem in the optimization, as highlighted in [8]. As a result,
x-dependent (r -independent) phase offsets must be estimated
after the optimization for each interferometric pair. The final
estimated phase screen is thus the combination of the esti-
mated xr -dependent phase function described by the model
in (13), depending on the estimated residual navigation errors,
and the x-dependent component subsequently estimated to
account for the phase offsets, including the constant one
suppressed in (13).

According to (15)–(16), the phase-screen estimation prob-
lem has been broken down into a series of M subproblems,
each for a different interferometric pair (i.e., a graph edge)
em = (p, q) ∈ E , to be solved independently. For an
arbitrary configuration (SM or MM), according to (11),
we obtain [

δyx , δzx
]

= 5
†
0,W [δux , δvx ] (17)

where 5
†
0,W is given by (12), and the azimuth-variant vectors

δyx = [δSn
y ] ∈ RN and δzx = [δSn

z ] ∈ RN collect the
horizontal and vertical components of platform position-error

vectors, respectively. Similarly, the azimuth-variant vectors
δux = [δSm

y ] ∈ RM and δvx = [δSm
z ] ∈ RM collect the

horizontal and vertical components of position-error vectors
associated with the inherent interferometric pairs (edges),
respectively. Moreover, the weights in W are defined accord-
ing to suitable indexes accounting for the variability in the
quality of the interferograms (e.g., average coherence of the
interferograms).

Some further remarks concerning the limitations inherent to
the description provided by the function

∣∣F(δSpq
x )

∣∣ are now
in order [see (15)–(16)].

First, the model in (13) assumes that the effective phase
center height is perfectly known, via θxr . However, in the
presence of a (space-variant) residual height, the phase can
be affected by a residual component, which may impair the
estimation of the unknown deviation δSpq

x in (15). To cope
with this problem, the double-localization method was pro-
posed in [8]. The residual height of the scatterers can be in
this case estimated pixel-by-pixel by using an approach similar
to the one used in the well-known PS method, involving the
canonical periodogram computed from the available (uncom-
pensated) multibaseline stack, see [8], [34]. The estimated
residual heights can then be used to update θxr in (13), and
subsequently solve (15) to compute (separately) the unknown
trajectory deviations. The procedure can be iterated up to a
suitable convergence.

Second, the model in (13) implicitly assumes that the
scattering is concentrated at a certain height. In the presence of
a distributed vertical scattering, such as the forest, θxr can be
no longer associated distinctively with the scatterer. A possible
approach to deal with this problem is to resort to an equivalent
(pointlike) scatterer concentrated at a certain altitude through
the so-called “phase linking,” which can be achieved through
“SqueeSAR” [35] or principal component analysis (CAESAR)
methods [36]. The location of the equivalent (pointlike) scat-
terer is commonly referred to as the phase center of the
extended target. Both methods, double localization and phase
linking, were, however, not implemented in this work for the
reasons explained in Section V.

B. Joint Phase-Screen Estimation

In order to perform a robust estimation of the trajectory
deviations, we consider the following joint estimation problem.
The idea involves defining a suitable joint cost function,
taking into account each interferometric pair (p, q) of the
redundant network (i.e., G) specified in the construction of
the interferometric stack. This cost function encompasses all
relative deviations in position compared to that of the primary,
δSn

x with n ∈ (1, . . . , N − 1), aiming at minimizing them
conjointly. Accordingly, in a general form, the estimation
problem can be stated mathematically in terms of the following
optimization problem:

δ Ŝ1
x , δ Ŝ2

x , . . . , δ ŜN−1
x

= argmin
δS1

x ,δS2
x ,...,δSN−1

x

(
1−J

(
δS1

x , δS2
x , . . . , δSN−1

x

))
(18)

where J is a suitable cost function.
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Fig. 2. Phase compensation workflow based on phase-screen (joint) estima-
tion method.

For our scopes, we specify J in the form

J
(
δS1

x , δS2
x , . . . , δSN−1

x

)
=

∑
(p,q)∈E

∣∣F(
δSpq

x

)∣∣ (19)

where E = {e1, . . . , eM} is the set of the graph edges em =

(p, q) (associated with the selected interferometric pairs), and
F is defined in (16). It should be emphasized that the objective
function in (18) has been purposely defined to be, similar to the
one pertinent to the disjoint approach, insensitive to constant
phase offsets, thus mitigating the mentioned local minimum
problem in the associated optimization. The solution of the
inherent nonlinear optimization problem can be obtained
through suitable numerical methods.

Note that, according to the above specification, the opti-
mization process involves all the suitably selected (M)
interferograms, which generally represents a subset of all
(N (N − 1)/2) the possible interferograms.

C. Phase Calibration and Tomography Processing

After obtaining model parameters through joint estima-
tion (18)–(19) or disjoint estimation (15)–(16) and (17), the
reconstructed PHS affecting the nth acquisition is obtained as
follows:

χn
xr = α

(
δ Ŝn

x , θxr

)
(20)

where δ Ŝn
x represents the estimation of the position deviation

of the nth acquisition with respect to the primary track.
Therefore, all the phase screens χn

xr with n ∈ (1, . . . , N − 1)

can be retrieved and suitably compensated (also see Fig. 2).
We highlight that, for each range line, x-dependent phase
offsets are estimated by means of a weighted average in the
complex domain. Accordingly, the final estimated phase screen
is thus, for both the disjoint and joint methods, the composition
of the estimated xr -dependent phase function described by the
model in (13) related to the residual navigation errors, and
the x-dependent phase offsets. Coherence information is also
suitably incorporated into the weighting strategy.

Once the PHS estimation has been achieved according to
the method presented in Section II, a proper phase calibration
(Fig. 2) is then performed by removing the retrieved phase

screens from the multibaseline SLC data stack, see (3). Subse-
quently, the distribution of the scene complex reflectivity along
cross-range direction at each range–azimuth location (xr )
can be properly reconstructed via 3-D coherent focusing
(multibaseline SAR tomography), as further discussed in the
following [22].

The general inversion problem underlying TomoSAR esti-
mation of γ can be addressed by adopting spectral estimation
methodologies [37]. Among the commonly used spectral esti-
mators, the conventional beamforming (BF) method is widely
used and specifically applied here. For a given set of steering
vectors, the power of spatial spectrum estimated by BF is given
in the form ∣∣γ̂ B F (sk)

∣∣2
=

h†(sk)R̂ddh(sk)

N 2 (21)

where N is the number of tracks, sk with k ∈ (1, . . . , K ) is
the cross-radial coordinate, γ̂ denotes the estimated reflectiv-
ity distribution along the cross-radial direction, h(sk) is the
steering vector defined in Section II-A, Rdd = ⟨dd†

⟩ is the
complex covariance matrix of the multibaseline SAR data,
R̂dd denotes the maximum-likelihood estimation of Rdd, the
crochets represent statistical average, and the superscript † is
the Hermitian conjugate operator. Notice that R̂dd can be
obtained, for a fixed pixel, over L looks using an estimation
window centered on that pixel [38]

R̂dd =

∑
dd†. (22)

Alternatively, tomographic inversion can be achieved by
using the Capon filter [38]. Although it permits typically better
performance in terms of cross-range resolution and sidelobe
suppression compared to Fourier BF (with which the Rayleigh
resolution is approximately achieved), Capon optimization
introduces biases in the radiometric reconstruction of the
(forest) volume scattering contributions [39].

In this work, we have used the classical BF in order to
better highlight the differences in the reconstructions achieved
by the different phase compensation methods.

IV. EXPERIMENTAL RESULTS

This section presents the results obtained by processing
real-airborne multibaseline SAR data with the aim of evalu-
ating the effectiveness of the proposed joint phase calibration
and compare it to the classical, disjoint method.

A. Study Area

In the framework of the AfriSAR campaign, four differ-
ent test sites (Lopé, Mondah, Rabi, and Mabounie) were
chosen for a fully polarimetric multibaseline SAR data acqui-
sition carried out by the Office National d’Etudes et de
Recherches Aérospatiales (ONERA) (July 2015) and the Ger-
man Aerospace Center (DLR) (February 2016) [27].

In particular, the inherent acquisitions over Lopé site are
specifically oriented to tomographic analyses and, therefore,
this site is selected for our investigation. Lopé site is located
near the geographical center of Gabon (north-east Africa)
within Lopé National Park, which is part of the World Heritage
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TABLE I
AIRBORNE SAR SYSTEM PARAMETERS

List of UNESCO. Lopé National Park is one of the largest
national parks in central Gabon, covering an area of roughly
5000 km2; thus, Lopé area is mainly characterized by pre-
dominantly hilly inland tropical forests. Despite the prevalent
rainforest terrain with trees ranging from 30 to 40 m, the
northern part of the scene is composed of the last remnants of
a grass savanna characterized by low vegetation [40].

As a result, the Lopé site constitutes an interesting study
area featuring substantial topography, with a DEM altitude
ranging from 0 to 600 m. Additionally, it shows structural
diversity, characterized by a mosaic of savannah and dense
primary forest, and a wide range of biomass, varying from
60 to 600 tons per hectare.

B. Airborne SAR Dataset

The SAR data stack used for the experiments carried out
in this article are obtained in the framework of the AfriSAR
campaign (July 2015) conducted in Gabon, West Africa. This
data was provided by the European Space Agency (ESA) under
science proposal (Project 69872).

We use AfriSAR data acquired by the SETHI airborne SAR
system developed by ONERA and onboard a Falcon 20 air-
craft. Specifically, we focus on the data collection acquired
by ONERA at P-band over the tropical forests in the Lopé
region (National Park in Gabon). The dataset collected over the
Lopé study area had baseline distribution specifically designed
for TomoSAR investigations. Furthermore, this dataset is
interesting due to the under-foliage penetration capabilities of
P-band wavelengths. The tomographic P-band dataset consists
of 12 fully polarimetric SLC data.

The main system parameters are listed in Table I. Further
details about the AfriSAR campaign can be found in [40].
Acquisition with acquisition number n = 6 is considered
the super-primary image. Moreover, the values of the param-
eter kn

z , defined in (5), are referred to the super-primary
acquisition and are represented as a function of the acquisition
number n in Fig. 3.

Fig. 3. kn
z [m−1

] referred to the (super-primary) acquisition (n = 6) is
represented as a function of the acquisition number n.

Fig. 4. σ 0 (dB) obtained via multitemporal averaging. The azimuth direction
is from bottom to top, the range direction is from left to right. The white lines
indicate the positions of the tomographic cuts presented in Section IV-D.

Moreover, the SAR dataset is given in terms of the backscat-
tering coefficient σ 0 [41], [42], [43]. In particular, in Fig. 4, the
backscattering coefficient σ 0 (dB) obtained via multitemporal
averaging is depicted in the range (−20, 0 dB). The azimuth
direction is from bottom to top, and the range direction is from
left to right.

C. Airborne LiDAR Dataset

Land Vegetation and Ice Sensor (LVIS) is a medium-altitude
imaging laser altimeter designed and developed at the
NASA [40]. LVIS data products include Level 1B (geolocated
waveforms) and 2B (elevation and height products). We used
the Level 2 product containing elevation (ground and canopy
top) and relative height (RH), which were derived from the
Level 1B products containing the geolocated laser return wave-
forms in HDF5 format. Specifically, to validate the TomoSAR
results, we used products provided at a 25 m resolution
data acquired by the LVIS instrument for the selected Lopé
forested site, collected during the 2016 NASA-ESA AfriSAR
campaign [44].

The height metrics RH25, RH50, RH75, RH90, RH95,
RH98, RH99, and RH100 were computed from the LiDAR
waveform, where RHX is defined as the height relative to the
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Fig. 5. LiDAR RH99 metric (in meters).

Fig. 6. Two exemplary network configurations. (a) SM configuration. (b) MM
configuration including distances of 1 (green), 2 (blu), and 3 (red).

ground (denoted as “RH”) at which there is the percentile
X% of the accumulated total waveform energy from the last
detectable return. For example, RH50 represents the height
below which there is 50% of the LiDAR return energy. RH98,
RH99, and RH100 can be used to represent the top canopy
height. The LVIS 25 × 25 m (0.0625 ha) spatial resolution
relative height metrics and bare Earth elevation grids were
generated from the footprint elevation and height metrics [45].
All LVIS gridded products are provided in the GeoTIFF
format. In particular, the representation of the metric R99 in
the SAR image domain is provided in Fig. 5.

D. PHS Estimation and TomoSAR Results

In this section, we present the results achieved by the clas-
sical (disjoint) and proposed (joint) phase calibration methods,
obtained by using different network configurations. Note that
both SM and MM observations can be described by suitably
specifying the sequence of all the edges in E .

In Fig. 6, by way of example for the simplified case
of 4 acquisitions, the SM configuration and the used MM

configurations, including pairing with distances of 1, 2, and 3,
are schematically depicted. Acquisitions are supposed to be
ordered according to the spatial baseline; pairing with dis-
tance 1 is hereafter also referred to as sequential pairing.

Numerical optimization was carried out by using the
well-known, efficient, and derivative-free Powell optimization
method. First, the PHSs reconstructed by using the different
estimation approaches and configurations are illustrated by
focusing on selected interferometric pairs (Figs. 7–9).

In Fig. 7, the obtained results specifically refer to the
acquisitions 5 and 6 of the multibaseline SAR data stack.
By direct inspection of Fig. 7(a), the effect of the airborne
instability on the interferometric phase (observable) can be
directly recognized. In particular, it becomes evident that
a slow, oscillating (disturbing) residual phase is presented
[see Fig. 7(a)]. The reconstructed PHSs achieved with the
classical (disjoint) estimation approach, for SM configura-
tion [corresponding to the network topology depicted in
Fig. 6a)] and for the MM configuration including sequen-
tial pairing, i.e., pairing with distance 1 [corresponding to
the network topology depicted in green in Fig. 6b)], are
depicted in Fig. 7(b) and (c), respectively. Finally, Fig. 7(d)
shows the PHS obtained with the proposed (joint) estimation
method for the MM configuration including pairs with dis-
tances 1, 2, and 3, whose topology is schematically represented
in Fig. 6(b).

By comparing the patterns in Fig. 7, it is then clear that
the proposed approach demonstrates a significant capability
in reconstructing the PHS, thereby estimating a more regular
pattern. As shown later, this enables a more accurate phase
calibration of the data stack, leading to higher quality recon-
structed tomographic profiles.

A remark is now in order. It should be noted that the PHSs
shown in Fig. 7(b) and (c), achieved via the disjoint estimation
algorithm, are obtained directly from the interferogram shown
in Fig. 7(a). This is a consequence of the fact that the
acquisition pair 5 and 6 (super-primary) belongs to both the
set of edges defined by the topologies associated with the SM
and MM with distance 1 configurations.

Furthermore, Fig. 8 shows the compensated interferometric
phase for the acquisition pair 5 and 6, obtained using (a) dis-
joint PHS estimation and SM configuration, and (b) the joint
PHS estimation and MM configuration. As can be seen from
Fig. 8, the joint estimation approach enables a more robust
phase screen reconstruction with a residual phase closer to
zero.

A different case, involving the acquisition pair 6 (super-
primary) and 8, is analyzed in Fig. 9. Note that in this case the
selected interferometric pair belongs to a set of edges defined
by the topologies associated with the SM configuration, but not
to the one associated with MM configuration with sequential
pairing. As a consequence, in the disjoint estimation processes,
while the PHS shown in Fig. 9(b) is directly estimated from the
interferogram shown in Fig. 9, the PHS shown in Fig. 9(c) is
achieved by combining the PHS between acquisitions 6 and 7
and the PHS between acquisitions 7 and 8.

Similar to the previous case represented in Fig. 7, the
PHS estimated by the joint approach shown in Fig. 9(d)
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Fig. 7. Results obtained for the pair of acquisitions 5 and 6. (a) Interferometric phase (observable), and the corresponding phase screens (PHSs) reconstructed
with the classical (disjoint) estimation approach, for (b) SM and (c) MM configurations, and with (d) proposed (joint) estimation approach for the MM
configuration.

exhibits a more regular pattern with respect to the other cases
corresponding to disjoint estimation.

The analysis of the performance of the different estimation
strategies is now assessed in terms of tomographic recon-
struction capabilities. In particular, Fig. 10 shows the P-band
tomograms obtained with the previously described BF estima-
tor. The RH99 and RH50 relative height metrics are shown
overplotted to the tomograms and considered as a reference.

Fig. 10(a) and (b) displays the tomographic profiles obtained
after the phase calibration operation utilizing disjoint esti-
mation with reference to SM configuration [Fig. 6(a)] and
MM sequential pairing configuration [see topology depicted in
green in Fig. 6(b)], respectively. Fig. 10(d) shows the profile
achieved by joint estimation with the MM network obtained
by pairing distances 1, 2, and 3 [see Fig. 6(b)]. It is rather
evident how the proposed joint estimation provides a focusing

characterized by a reduced level of sidelobes and generally a
higher contrast, especially noticeable in the left region of the
plots corresponding to the near range highlighted by the yellow
box in Fig. 10. As for the disjoint estimation, the sidelobe
reduction achieved by the MM sequential pairing in Fig.10(b)
is in fact higher than that of the SM case reported in Fig.10(a).
Moreover, considering the near range, the sidelobe reduction
for the joint approach in Fig.10(d) is even better than the
disjoint estimation. Finally, the red level corresponding to the
concentration of the scattering on the ground in the vegetation-
free area, such as that corresponding to the yellow box at near
range, is much more evident in Fig. 10(d) than in (b) (disjoint
estimation).

At this point, one might wonder what happens when,
similar to the joint estimation, an MM disjoint estimation
is used with a network describing a paring with a higher
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Fig. 8. Compensated interferometric phase for the pair of acquisitions 5 and 6 obtained with: (a) classical (disjoint) and SM configuration and (b) proposed
(joint) estimation approach and MM configuration.

Fig. 9. Results obtained for the pair of acquisitions 6 and 8 (a) interferometric phase (observable) and corresponding phase screens (PHSs) reconstructed
with the classical (disjoint) estimation approach, for (b) SM and (c) MM configurations, and with (d) proposed (joint) estimation approach for the MM
configuration.

degree of connectivity. In Fig. 10(c), we show the case of a
disjoint estimation with an MM configuration characterized by

distances 1, 2, and 3 [Fig. 6(b)], i.e., the same configura-
tion used for the generation of the joint estimation results
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Fig. 10. Vertical (normalized) tomographic profile (−75, 75 m) along the range direction, corresponding to the horizontal white line in Fig. 4, obtained with
phase calibration based on the classical (disjoint) and proposed (joint), with SM and MM configurations. The reference RH99 and RH50 metrics are overplotted
(white lines) to the tomograms. (a) Disjoint estimation: SM configuration. (b) Disjoint estimation: MM configuration including pairs with distance 1 (sequential
paring). (c) Disjoint estimation: MM configuration including pairs with distances 1 (sequential pairing) and 2 (i.e., a redundant interferogram network). (d) Joint
estimation: MM configuration including pairs with distances 1 (sequential pairing), 2, and 3 (i.e., a redundant interferogram network).

of Fig. 10(d). In this case, it is evident—the strong reduc-
tion of performance of the phase calibration operation. This
performance loss is due to the fact that the disjoint nonlinear
optimization in (16) for an overcomplete set of interfero-
metric combinations results in baseline error estimates that
are mutually inconsistent. The estimated vectors δux and δvx

move outside the range of the linear operator 50 in (9), and
therefore, the recovery of the individual δSn via (9) fails.
In contrast, the joint estimation according to (19) directly
recovers the individual δSn without applying (9) at all. This
result clearly demonstrates the relevance of the joint PHS
estimation approach, which is the sole solution among those
analyzed in this work that is able to cope with increased
redundancy of the input MM data stack, associated with a
higher degree of connectivity of the selected MM network.

Finally, to complete the analysis, in Fig. 11 the tomo-
graphic profiles along the azimuth direction are depicted,

including those obtained with the disjoint estimation with (a)
SM configuration, (b) MM configuration, and (c) the joint
estimation with MM configuration. These results confirm that
the approach based on joint estimation achieves a tomographic
profile characterized by reduced sidelobe levels, and generally
much higher quality compared to those pertinent to the disjoint
estimation. The comparison between the different vertical pro-
files of Fig. 11 highlights the presence of vertical shifts, which
may vary among the different strategies. Such rigid shifts result
from the correlation between the estimated phase corrections
and the baseline distribution. It is rather evident that the MM
disjoint estimation with sequential pairing in Fig. 11(b) shows
larger vertical shifts. This is possibly due to the integration
operation of the estimated phase screens at the inversion stage
in (11). The SM configuration in Fig. 11(a), which avoids such
integration, seems less impaired by vertical shifts. Strategies
suggested in [25] could be however investigated to constrain
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Fig. 11. Vertical (normalized) tomographic profile (−75, 75 m) along the azimuth direction, corresponding to the vertical white line in Fig. 4, obtained
with phase calibration based on the classical (disjoint) and proposed (joint), with SM and MM configurations. The reference RH99 and RH50 metrics are
overplotted (white lines) to the tomograms. (a) Disjoint estimation: SM configuration. (b) Disjoint estimation: MM configuration including pairs with distance 1
(sequential paring). (c) Joint estimation: MM configuration including pairs with distances 1 (sequential pairing), 2, and 3 (i.e., a redundant interferogram
network).

the phase-screen solution to be orthogonal to the baseline
distribution, thus achieving a vertical lock.

V. FURTHER DISCUSSIONS

So far, in addition to the introduction and motivation of the
work, the proposed method for the phase calibration of MB
data has been described and its effectiveness on real SAR data
has been shown. Comments on the assumptions and choices
made in the implementation of the methodology are now in
order.

First, to enhance the robustness of the methods and
simultaneously achieve a well-balanced gridding, we primar-
ily performed a multilook operation on the interferograms,
implemented mainly along the azimuth direction. Second,
no constraints on the trajectory deviations to be retrieved have
been imposed during the inversion process. More precisely,
the solution to the problems in (15) and (18) has been
obtained without enforcing any continuity requirements along
the azimuth direction that would be associated with the typical
dynamic of residual deviations of the aircraft. This choice has
been dictated from the need to show the performance achieved
by both classical and proposed methods using unconstrained

optimization formulations. Obviously, possible limitations to
the class of achievable solutions, dictated by the dynamic of
the motion errors, can be integrated in both the proposed and
classical methods. It is also clear that increasing the num-
ber of looks along the azimuth direction inherently provides
smoother solutions.

Third, one might wonder the rationale behind opting for the
generation of vertical profiles through classical Fourier BF.
Indeed, advanced tomographic focusing methods such as
Capon or MUSIC could have been used to achieve enhanced
sidelobe suppression. Nonetheless, enhancements attained
through these methods come at the cost of introducing
radiometric distortions during the inversion process for esti-
mating the vertical scattering profile. Furthermore, in our
case, improvements in the data calibration process could
have been masked out in the final results. Regardless of the
implemented focusing method (BF or Capon), starting from a
more accurately calibrated product is undeniably an advantage
for enhancing the overall quality of the final vertical profiles.
Finally, we did not implement any double localization as
well as any phase triangulation procedure, as those proposed
in [8], [36]. As for the double-localization procedure, it should
be noted that it presumes the implementation of an iterative
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approach in which the processing here described constitutes
the first stage of the iteration, followed by a vertical peak
extraction in each (horizontal) pixel. From Fig. 10, it should
be clear that higher peak-to-sidelobe ratio levels, as those
achieved in Fig. 10(d), should be in any case beneficial also for
the application of the mentioned double-localization approach.
The choice to avoid the phase triangulation is conservative, and
related to the need of testing the estimation algorithm for data
directly associated to a distributed scattering corresponding to
a vegetated area.

VI. CONCLUSION

In this article, we have introduced a novel method for
phase-screen estimation and compensation in airborne multi-
baseline TomoSAR data processing.

Having a robust calibration procedure is crucial for ensuring
high-quality airborne tomographic results, given the challenges
associated with the lack of accuracy in current navigation
systems in guaranteeing sensor positions along all trajectories
within a small fraction of the wavelength.

We have proposed an innovative approach for the calibration
of multibaseline airbone SAR data stacks based on a joint
estimation of the phase screens induced by residual trajectory
deviations. The effectiveness of the proposed method has been
experimentally demonstrated by using P-band airborne SAR
data stacks acquired in the frame of the AfriSAR measurement
campaign. Future studies will also be dedicated to better
investigate the computational complexity of the presented
method and to develop an inherent computationally efficient
implementation by using parallel processing [46]. The frame-
work adopted in this study considers the joint processing of
multibaseline data. Phase screens are estimated by minimizing,
jointly, the residual phase on a set of interferograms. The
solution is amenable to an extension toward the optimization of
a cost function including indexes of quality of the tomographic
profiles, like contrast or entropy, which are also effective in the
presence of a distributed scattering corresponding to vegetated
areas.
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