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Abstract. This work presents a software package for the in-
terpolation of climatological variables, such as temperature
and precipitation, using kriging techniques. The purposes of
the paper are (1) to present a geostatistical software that is
easy to use and easy to plug in to a hydrological model;
(2) to provide a practical example of an accurately designed
software from the perspective of reproducible research; and
(3) to demonstrate the goodness of the results of the software
and so have a reliable alternative to other, more traditional
tools. A total of 11 types of theoretical semivariograms and
four types of kriging were implemented and gathered into
Object Modeling System-compliant components. The pack-
age provides real-time optimization for semivariogram and
kriging parameters. The software was tested using a year’s
worth of hourly temperature readings and a rain storm event
(11 h) recorded in 2008 and retrieved from 97 meteorological
stations in the Isarco River basin, Italy. For both the variables,
good interpolation results were obtained and then compared
to the results from the R package gstat.

1 Introduction

Meteorological forcing data such as rainfall, temperature,
and solar radiation are the dominant controlling factors for
the hydrological cycle, energy balance, and ecosystem pro-
cesses (Ly et al., 2013). These data, in addition to being im-
portant themselves, are the natural input to distributed and
semi-distributed hydrological models. Their quality and pre-
cision affect the accuracy of results (Xu and Singh, 1998;

Stooksbury et al., 1999; Balme et al., 2006; Abera et al.,
2017). In fact, all the surface water models require a re-
liable precipitation dataset that is complete both in space
and in time. Quite often, however, datasets of hydrolog-
ical variables suffer from errors and missing data; there-
fore, filling the gaps in time series by estimating the miss-
ing values is a common approach to solving this problem
(Eischeid et al., 2000; Saghafian and Bondarabadi, 2008;
Di Piazza et al., 2011; Adhikary et al., 2015). Several algo-
rithms for the spatial interpolation of meteorological data are
available in the literature: Thiessen polygons (e.g., Thiessen,
1911; WMO, 1994), inverse distance methods (Ly et al.,
2013), interpolation with splines (e.g., Mitášová and Mitáš,
1993; Hutchinson, 1995), kriging (e.g., Krige, 1951; Math-
eron, 1981; Goovaerts, 1997), and other types of interpola-
tion (e.g., Robeson, 1992; Li and Heap, 2011, and references
therein). Their performances have been assessed by several
authors, among others Tabios and Salas (1985) and Jarvis and
Stuart (2001), who have concluded that kriging is one of the
best techniques for the spatial interpolation of climatologi-
cal variables. More specifically, Creutin and Obled (1982)
and Tabios and Salas (1985) demonstrated that for monthly
rainfall and storm totals kriging is preferable to other rain-
fall interpolation methods. Goovaerts (2000), Lloyd (2005),
Basistha et al. (2008), and Ly et al. (2011) confirmed these
results.

Generally, kriging can be applied to a wide range of
datasets (e.g., Stahl et al., 2006; Phillips et al., 1992), and
allows for the estimation of the variance of interpolated quan-
tities (e.g., Li and Heap, 2011). The interpolation can be im-
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proved with the use of auxiliary variables, such as terrain-
related parameters (e.g., relief, slope, and aspect), as inves-
tigated in Attorre et al. (2007). Not surprisingly, Carrera-
Hernández and Gaskin (2007) found that the use of elevation
as a secondary variable improves temperature prediction.

However, kriging can be computationally more demand-
ing than other interpolation techniques. To overcome this
problem, most applications that implement kriging interpola-
tors use either long time series with long time steps, such as
daily, (Verfaillie et al., 2006; Buytaert et al., 2006), monthly,
or yearly time steps (Hevesi et al., 1992; Goovaerts, 2000;
Boer et al., 2001; Todini, 2001), or short time series with
shorter time steps (such as rainfall events) (e.g., Haberlandt,
2007). Having tools that implement efficient computations
could help to extend the interpolation method to real-time
processes.

Based on these premises, we set ourselves two objectives
with this work. The first was to provide an efficient and pre-
cise tool for spatial estimations and interpolation of environ-
mental quantities. The second was to make use of an imple-
menting strategy that favors the usability of the software, its
maintenance, its inspection, and its extension and, hopefully,
makes scientific work easier. This second goal comes un-
der the contemporary efforts to promote open science (e.g.,
https://www.fosteropenscience.eu/, last access: 7 June 2018).
However, in order to maintain the right focus, we will not
discuss the open-science aspects and philosophy directly in
this paper; rather we will present the kriging software and its
design.

The Spatial Interpolation Kriging package (version 0.9.8)
(GEOframe-SIK, henceforth simply SIK) is presented here.
It is a package that makes estimates of any spatially dis-
tributed environmental data at hourly steps (or sub-hourly
when it is reasonable). SIK is designed according to the Ob-
ject Modeling System v3 (OMS3) framework (David et al.,
2013); as such it is compatible with the GEOframe-NewAGE
system (Formetta et al., 2014; Bancheri, 2017). As a conse-
quence, the package can be integrated with other GEOframe-
NewAGE components and connected to them at run time to
form a variety of modeling solutions (MSs). In this work, the
SIK package is presented as four components:

1. The first is used for the production of the experimental
semivariograms.

2. The second is used for the production of the theoretical
semivariograms.

3. The third is used for the kriging interpolation.

4. The last is used for an automatic and easy jackknife re-
sampling to assess the error of estimates.

SIK inherits some previous code used, for instance, in
Formetta et al. (2014) and Abera et al. (2017). In particu-
lar Abera et al. (2017) assessed the effects of interpolation of
precipitation on long-term mean annual runoff.

To make the code more flexible, easily extensible, and
maintainable, SIK was completely refactored and a system-
atic use of design patterns (DPs) (Gamma, 1994; Freeman
et al., 2004) was introduced.

Several geostatistical tools have been made available to the
scientific community. Among them, PyKrige (https://github.
com/bsmurphy/PyKrige, last access: 7 June 2018), SAGA
GIS kriging (www.saga-gis.org, last access: 7 June 2018),
GRASS (grass.osgeo.org, last access: 7 June 2018), Surf-
pack (https://dakota.sandia.gov/content/surfpack, last access:
7 June 2018), R gstat (www.cran.r-project.org, last access:
7 June 2018) and the High Performance Geostatistics Li-
brary (HPGL) (https://www.github.com/hpgl, last access:
7 June 2018). However, only some of these can be consid-
ered alternatives to SIK, i.e., the ones that are open source,
comprehensively documented, and actively developed.

– Dakota (Surfpack). C++ software with flexible in-
terface that provides optimization algorithms, uncer-
tainty quantification, parameter estimation, and sensi-
tivity analysis for supporting computational models and
simulators (Adams et al., 2009).

– PyKrige. Python package that performs 2-D and 3-D or-
dinary and universal kriging computation with flexible
design for custom variogram implementation (Murphy,
2014).

– gstat. R package (computational core coded in C) that
supports block kriging, simple, ordinary, and universal
(co)kriging, and many other features (Pebesma, 2004),
(Gräler et al., 2016). It is historically the leading soft-
ware in this field.

While GIS-based tools, such as QGIS and GRASS
(v.kriging) kriging, are easily included into scripts leverag-
ing GIS capabilities, they are not easily included into com-
plicated MSs.

As well as being open source, SIK is the only Java-based
and component-based software of those mentioned above.
Moreover, it implements a quick way to plug in to hydro-
logical models and automatic calibration algorithms. We de-
cided to compare the performances of SIK and R gstat since
the latter is one of the most widely used tools in the scientific
community.

The present paper is organized as follows. First, some
preliminary information on kriging interpolation is given in
Sect. 2. Then the structure of the package and the informat-
ics are presented in Sect. 3. Section 4 describes the study area
and the experimental setup. The results of the application of
the SIK package to temperature and rainfall datasets are dis-
cussed in Sect. 5. Finally, a comparison of results with the
interpolation of both datasets obtained with R gstat is pre-
sented in Sect. 6.
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2 Algorithms required for kriging

Kriging is a group of geostatistical techniques used to in-
terpolate the value of random fields based on spatial auto-
correlation of measured data (Isaaks and Srivastava, 1989;
Goovaerts, 1997; Kitanidis, 1997). The theory is briefly sum-
marized in Appendix A.

Three main variants of kriging can be distinguished
(Goovaerts, 1997):

– simple kriging (SK), which considers the mean to be
known and constant throughout the study area;

– ordinary kriging (OK), which accounts for local fluctu-
ations of the mean, limiting the stationarity to the local
neighborhood (in this case the mean is unknown);

– kriging with a trend model (here detrended kriging,
DK), which considers that the local mean varies within
the local neighborhood.

The trend can be, for example, a linear regression model
between the investigated variables and an auxiliary variable,
such as elevation or slope. According to the procedure shown
in Goovaerts (1997), DK is performed as follows: (i) the
trend is subtracted from the original data and OK of the resid-
uals performed, and (ii) the final interpolated values are the
sum of the interpolated values and the previously estimated
trend.

Variants of OK and DK are local ordinary kriging (LOK)
and local detrended kriging (LDK), respectively. In this case
the estimate is only influenced by the measurements belong-
ing to a neighborhood, which are usually defined either in
a maximum searching radius or as a set number of stations
which are closer to the interpolation point. In the LDK case,
the trend is estimated locally too, and therefore it can take
local trend variations into account.

The SIK package implements both OK and DK since local
mean may vary significantly over the study area and the SIK
assumption about the mean could be too strict (Goovaerts,
1997).

The workflow of the main algorithm for solving an inter-
polation problem with kriging can be summarized in the fol-
lowing steps:

1. get the data from gauges,

2. build the empirical semivariogram,

3. fit a theoretical model to the semivariogram,

4. use the theoretical model for solving the kriging system,

5. produce continuous surface maps or pointwise time se-
ries of the quantity desired in any point of the domain,

6. calculate estimation errors.

The last step underlines that we are interested not only in
estimating a variable (temperature, rainfall intensity, or other
scalars) but also in evaluating the errors of our estimate. In
addition to the spatial variable estimate, kriging also returns
a variance of the estimate. However, Goovaerts (1997) states
that the standard deviation cannot be used as a direct measure
of estimation precision since the kriging variance is only a
ranking index of data geometry (and size) and not a measure
of the local spread of errors (Deutsch and Journel, 1992).

Therefore, to estimate the errors produced by kriging
interpolations, we chose the leave-one-out (LOO) cross-
validation technique (Efron, 1982; Isaaks and Srivastava,
1989; Martin and Simpson, 2003; Aidoo et al., 2015). LOO
cross validation consists of removing one data point at a time
and performing the interpolation for the location of the re-
moved point by using the remaining stations. The approach
is repeated until every sample has been, in turn, removed
and estimates are calculated for each point. This procedure
is straightforward but cumbersome if performed manually.
Therefore, a special module (component) was programmed
and implemented to do it. LOO estimates errors just over the
location where measures are available and, eventually, these
errors can be interpolated themselves to obtain an error esti-
mation at any point of the spatial domain.

3 Design, deployment, and use cases of the SIK
package

On the basis of the analysis of the mathematical problems
and of the use cases delineated in the previous section, the
design of the software was organized into four OMS3 com-
ponents, the logic of which is explained below.

3.1 Overall design of the SIK components

The component-based environmental modeling framework
OMS3 (David et al., 2013) was chosen for the development
of the SIK code. Components are self-contained building
blocks, modules, or units of code (e.g., Argent, 2004; Van It-
tersum et al., 2008). Each component implements a single
modeling concept and the components can be joined together
to obtain an MS that can accomplish a complicated task. The
OMS user does not need extensive knowledge of OMS li-
braries. As its authors state in David et al. (2013), “there are
no interfaces to implement, no classes to extend, no poly-
morphic methods to override and no framework-specific data
types to use”. In addition, when the workflow allows it, com-
ponents are run in parallel without any special effort by the
computer programmer (this property is often called “implicit
parallelism”).

In addition to minimizing couplings, the advantage of
building within a modular software framework is the pro-
duction of a code that is more flexible and easier to maintain
and be inspected by third parties. Multiple algorithms can be
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implemented within the same component or in various com-
ponents and inserted in the MS as alternatives. Thus, inside
the same chain of tools, different candidate solutions to the
same hydrological problem can be compared. More details
on OMS3 can be found in David et al. (2013), Formetta et al.
(2014), and Bancheri (2017). It is clear that the adoption of
such a framework as the basis for our programs has an impact
on the software design. However, the initial implementation
of kriging, used in Formetta et al. (2014) and in Abera et al.
(2017), was designed to group all the tasks into a single com-
ponent. In this case we thought it useful to split it into four
components: the first is SIK-EV, related to the production of
experimental variogram from data; the second is SIK-TV, re-
lated to the selection and parameter estimation of the theoret-
ical variogram; the third is SIK-K, for the solution and map-
ping of the kriging system; and the fourth is SIK-LOO, to
manage the error estimation. SIK-LOO does not work alone
to produce its results, it uses the other three components to
generate the spatial estimates of errors.

Figure 1 shows the MS for the interpolation and validation
process in OMS. Each component is represented by a rect-
angle with rounded corners containing the name of the com-
ponent itself and its inputs and outputs. Arrows represent the
connections between components. This representation is also
used in the subsequent sections. The inputs for SIK-EV are
the time series of the measured variables and the geometry
of the measuring stations, in shapefile format with the spa-
tial coordinates. The outputs are the experimental variogram
values and the distance vector.

The distance vector, the name, and the parameters for the
theoretical semivariogram models (sill, nugget, and range),
are the inputs of SIK-TV. Particle swarm optimization (PSO)
(Eberhart and Kennedy, 1995) is the component that opti-
mizes the theoretical model parameters. Further inputs for
the calibrator are the objective function to be optimized and
other internal parameters, such as the number of iterations
and the tolerance. PSO can be connected to the SIK-K com-
ponent (blue dashed arrow) or to the SIK-LOO component
(red dashed arrow). Inputs for SIK-K are the shapefiles with
the coordinates of the measuring stations and the interpola-
tion points, the measurement data, the DEM, and the opti-
mized parameters of the semivariogram model. Final outputs
are either time series or maps of interpolated values, which
can be visualized directly in a GIS system.

Using the alternative connection, PSO can be connected
to SIK-LOO, which implements the iterative procedure nec-
essary to estimate errors of interpolation. Given n spatially
distributed measures, n− 1 measures are used for the inter-
polation, while the remaining one is used for comparison to
produce the error estimate. The operation is repeated n times,
each time excluding a different gauged location, to obtain a
set of n estimated errors. Because our package needs to deal
with time-varying fields, the operation is repeated for each
time step, when measures are available, and the site error is
actually a temporal mean over a period.

3.2 Internal class design characteristics

Each of the four OMS3 components presented in the previ-
ous section can contain alternative solutions. For example, in
SIK-TV the software design allows for multiple theoretical
variogram models, while in the SIK-K component the four
types of kriging listed in Sect. 2 were implemented.

In principle, we could have implemented a single com-
ponent for every single type of variogram and kriging but
this would have exploded the number of software modules
to maintain. However, to “close the code to modification and
keep it open to extensions” (Martin, 2002) and to maintain
the code abstract enough to avoid code disruption at any ad-
dition (“program to an interfaces”; e.g., Gamma, 1994), we
adopted the use of DPs (Gamma, 1994). This was a further
enhancement with respect to the previous version of the SIK
package.

In general, DP implement rules that allow us, for instance,
to separate code parts that are going to vary from those that
are going to remain the same. The adoption of these DPs,
once their rationale is understood, makes the code easier to
be read and maintained. While largely known among pro-
grammers, DPs are not widely known in the scientific com-
munity, which has remained largely impervious to these tech-
niques, and just a few examples of good practice can be found
in the scientific literature (Gardner and Manduchi, 2002; Do-
natelli and Rizzoli, 2008; Rouson et al., 2011).

The various theoretical semivariogram models or kriging
types to be chosen at run time were encapsulated by using
the Simple Factory class (Freeman et al., 2004). In this way,
adding a new type of variogram to, or deleting an obsolete
one from, the SIK-TV is straightforward and requires few
changes, which are confined to just a class.

Figure 2 shows the implementation of the Simple Factory
class for the choice of the theoretical semivariogram model.
The concrete classes, “Bessel” and “Spline”, implement the
same interface, “Model”. Simple Factory (named Simple-
ModelFactory in the Figure) generates objects of a concrete
class from given information (i.e., a string containing the
name of the chosen model). The component SIK-TV (named
TheoreticalVariogram in the Figure) class uses the pattern to
obtain the object of the concrete class.

The dependency inversion principle, according to which
high-level modules should not depend on low-level modules,
(Eckel, 2003), was also strictly respected in all the program-
ming. The dependencies of the classes are not demanded by
the concrete subclasses but only by the abstract classes and
interfaces, (Ellis et al., 2007). Thus any changes in a concrete
(sub)class do not affect the overall structure of the program
and remain limited to it.

3.3 Use cases

Figure 3 exemplifies how to plug in the SIK package to the
hydrological model GEOframe-NewAGE. The MS presented
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Figure 1. Flow chart of interpolation and validation process represented with the relative OMS components.

Figure 2. Implementation of the Java Simple Factory for the choice of the theoretical variogram model in the component SIK-TV.

allows one to estimate the relevant variables of the hydrolog-
ical budget: after the spatial interpolation of precipitation, it
is possible to simulate the components of the energy bud-
get, shortwave and longwave radiations, the snow processes
of accumulation and melting, and the potential evapotranspi-
ration. These are then used as inputs for the rainfall–runoff
model, embedded reservoirs model, (Bancheri, 2017), which
provides discharge and actual evapotranspiration. Thanks to
the MS, it is possible, for example, to test the impact of the
type of kriging used on the rainfall–runoff model outputs or
to perform a validation of the SIK package using remotely
sensed data, e.g., MODIS data product (Turk and Miller,
2005; Hall et al., 2006; Abera et al., 2017). Further informa-
tion about this MS solution is presented in Bancheri (2017).

A second MS is presented in Fig. 4. This MS interpolates
temperature maps, which are the inputs for the shortwave
and longwave radiation components and for the Shymansky–

Or evapotranspiration (SO-ET) component, built after Schy-
manski and Or (2017). Inputs of the SO-ET component are
the maps of interpolated temperature, the shortwave and
longwave radiation maps, and the DEM. Outputs are the ET
maps and leaf temperature. Obviously, it is possible to use
SO-ET instead of potential ET in Fig. 3. In that case, two sets
of kriging act concurrently to give maps of temperature and
rainfall. Another different scheme (not shown) is obtained
when the parameters of the radiation decomposition model
(Formetta et al., 2013, 2016), i.e., those parameters which
are used to determine the attenuation of radiation due to the
atmosphere, are set to be spatially varying. In this case a fur-
ther (third) kriging set is run.

Figures 3 and 4 are just two examples of MSs, point-
wise and raster, that can be obtained by plugging in the SIK
package to the other components available in GEOframe-
NewAGE. The flexibility of the package allows one to also
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Figure 3. Flow chart of the connection of SIK to a GEOframe-NewAGE configuration as used in Bancheri (2017). It allows the determination
of the main elements of the water budget of a catchment.

use it as a stand alone, opening up the possibility of using it
with other MSs involving other softwares.

3.4 SIK development as an RRS tool

Here, we delineate the practices implemented in building the
SIK package for making it a reproducible research system
(RRS) (e.g. Formetta et al., 2014).

Although the initial code (let us call it v0.1) was already
available from a control version system under a GPL v3
license (www.gnu.org/licenses/gpl-3.0.en.html, last access:
7 June 2018), the repository was owned by the original au-
thor. A non-personal repository was judged to be better suited
to host a collaborative work. Therefore, for SIK and its com-
panion tools the collective GEOframe organization reposi-
tory was created under GitHub (www.github.com, last ac-
cess: 7 June 2018), using Git (www.git-scm.com, last access:
7 June 2018), and can be found at the following link: www.
github.com/geoframecomponents (last access: 7 June 2018).

Code v0.1 did not include a building tool. These tools can
be considered a modern evolution of the UNIX “make” (e.g.,
www.gnu.org/software/make/, last access: 7 June 2018) and
take care of gathering the various concurring libraries and
linking them to form the final executable file. In our case, the
possible choices for Java projects include Apache Ant (http:
//ant.apache.org, last access: 7 June 2018), Maven (www.
maven.apache.org, last access: 7 June 2018), and Gradle
(www.gradle.org, last access: 7 June 2018). All of these pro-

vide ways to solve the software dependencies. Both Maven
and Gradle can download and update the remote resources
needed. Our final choice was Gradle since it uses a more
concise syntax, thanks to the use of the Groovy language
(www.groovy-lang.org, last access: 7 June 2018), compared
to the XML (www.w3.org/XML, last access: 7 June 2018)
used by Maven. Using building tools also allows abstraction
from the use of integrated development environments (IDEs).
In the current Java market there are at least three major IDEs
for managing large projects: NetBeans (https://netbeans.org/,
last access: 7 June 2018), Eclipse (www.eclipse.org, last ac-
cess: 7 June 2018), and IntelliJ (www.jetbrains.com, last ac-
cess: 7 June 2018). All of them support both Gradle and
Maven, and Ant and can import a Gradle or Maven (or Ant)
project seamlessly. These tools are widely used by program-
mers, but rarely by scientists, who are increasingly struggling
with the difficulties of maintaining their own code. With
these tools, researchers could master others’ codes more eas-
ily, especially if they are open source. Therefore, we think
that adopting a proper building tool is useful in promoting
collaborative work and open science.

Another important step in the management of the code was
the implementation of a continuous integration system (https:
//jenkins.io/, last access: 7 June 2018).

It ensures the building and testing of the source code at
each commit, forcing the good practice of preparing tests for
each software module developed.
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Figure 4. Flow chart of the connection of SIK to the SO-ET component. In this MS, the maps of the temperature and input of SO-ET are
interpolated.

Continuous integration (Meyer, 2014) is the practice of
merging all developer working copies to a shared mainline
several times a day. Unit tests (Beck, 2003) are built with the
code and run each time the merging is performed. The contin-
uous integration service automatically builds the executable
codes, checks if the tests are performed correctly, and returns
a positive answer if all is carried out properly. Eventually,
major code commits are tagged with release numbers, under
the GPL v3 license. For this purposes, we chose to use Travis
CI (https://travis-ci.org, last access: 7 June 2018), which uses
GitHub as a web-based Git repository hosting service, and is
a good choice for a continuous integration service.

Since GitHub is a repository and not an archival system,
we decided to use Zenodo (www.zenodo.org, last access:
7 June 2018) to provide our products with a Digital Object
Identifier (DOI) and then we put the entire project, as used
to obtain the results presented in this work, on Open Sci-
ence Framework (www.osf.io, last access: 7 June 2018). The
assignment of the DOI allows researcher peers to retrieve ex-
actly that code in the foreseeable future. This could be impor-
tant when reconstructing which software version was used in

a paper and, perhaps, it could make life easier within research
groups.

4 Testing and simulations setup

4.1 Study area and data description

To test the performances of the modeling solutions presented
in Figs. 3 and 1, we used the SIK components to interpolate
temperature and rainfall data from 97 stations located in the
Isarco River valley, Italy, shown in Fig. 5 and detailed in the
Supplement. The Isarco River is a left tributary of the Adige
River, in the Trentino-Alto Adige region, northern Italy.

The catchment area is about 4200 km2 and the altitude
ranges from 210 to 3400 m a.s.l. The river length is about
95 km and the discharge is about 78 m3 s−1 yearly average at
its confluence with the Adige River near Bolzano. The geo-
logical and geomorphological conditions of the valley are ho-
mogeneous and represented by the very thick Palaeozoic se-
ries of the “Complesso Vulcanico Atesino”. The formation is
deeply affected by the effects of Quaternary glacial and post-
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Figure 5. Geo-location of study area and position of meteorological stations.

glacial erosion. The cross section of the Isarco Valley along
the Bolzano–Ponte Gardena stretch is characterized by very
steep and rugged slopes. Climate is typically alpine, charac-
terized by dry winters, snow and glacier melt in spring, and
humid summers and autumns. The land is mainly used for
agriculture in the upper part, while in the lower part of the
basin, the narrow valley is mainly occupied by civil infras-
tructures.

Data used for the testing were provided by Provincia Au-
tonoma di Bolzano (local government), and collected into the
Adige database (http://abouthydrology.blogspot.it/2016/09/
the-adige-database-or-database-newage.html, last access:
7 June 2018) during the CLIMAWARE and GLOBAQUA
projects. The DEM of the study area was downloaded
from the U.S. Geological Survey EarthExplorer (https://
earthexplorer.usgs.gov, last access: 7 June 2018) and it has
100 m× 100 m cell size.

4.2 Simulation setup

In the available dataset (2003–2013) we identified the year
with the smallest number of missing data, which was 2008,
and then we used it to test the SIK components.

A quality check was made to eliminate any outliers. Also,
the spatial distribution of the no value was analyzed in or-
der to assess the number of bins of distances in which to
compute the semivariance. In fact, to reduce the number of

points in the experimental semivariogram, the pairs of loca-
tions are grouped based on their distance from one another.
This grouping process is known as binning. For each time
step, we found that about 10 % of stations were not recording
data. Therefore, since the mean number of active stations for
each time step was 70–80, we decided to use eight bins. This
choice was also supported by a visual inspection of the shape
of the experimental semivariance, which confirmed that by
using eight bins the number of stations involved were neither
too low nor too high.

In order to assess the goodness of SIK performances, two
applications were performed:

– an interpolation of 1 year of hourly temperature data;

– an interpolation of a rainfall event, also at hourly time
steps.

First, the analysis of the semivariance was performed and
experimental semivariograms were fitted using all 11 theo-
retical models. The model that gave the best fitting was then
used for the interpolation of the temperature and rainfall vari-
ables using the four types of kriging. Kriging performances
were assessed using the LOO cross validation. The two local
cases (LOK and LDK) were performed using a fixed number
of closer stations. In particular, we decided to use 10 stations
for the temperature case since it was a good compromise be-
tween the distance among the stations and the mean number
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of recording stations for each time step. Regarding the local
interpolation of precipitation, the number of closer stations
was five, given the prevalently convective nature of summer
precipitation and the lower number of active gauge stations
for each time step. Finally, results obtained from the inter-
polation of the temperature dataset were compared to the re-
sults obtained with R gstat, in order to assess the differences
between the two packages, their easiness of use, and their
performances.

5 Simulations results

5.1 Application of SIK to a temperature dataset

The first application of SIK components was carried out us-
ing the temperature dataset. The hourly experimental semi-
variograms were computed and then fitted using the 11 avail-
able theoretical models.

Figure 6 shows the results of the fitting of the experimental
semivariogram for a single time step on 15 June 2008. The
black dots represent the experimental semivariance, while
each colored curve represents a different optimized theoret-
ical model. The Y and X axes show the values of the semi-
variance γ (h) and the distances in meters, respectively.

Table 1 reports the main indexes of goodness of
fit (GOFs), namely NSE, RMSE, R2, and PBIAS (see
Appendix B for a list of abbreviations), computed
between the experimental semivariogram and the 11
theoretical semivariogram models. The aforementioned
GOFs are defined in Appendix C and were obtained
using the R package hydroGOF (https://cran.r-project.
org/web/packages/hydroGOF/hydroGOF.pdf, last access:
7 June 2018), which computes the GOFs between mea-
sured and simulated values (in this case experimental semi-
variance and theoretical semivariance). All the semivari-
ogram models gave satisfactory results, with large values
of NSE (0.72 : 0.92) and R2 (0.73 : 0.92) and low values of
RMSE (2.14 ◦C : 3.99 ◦C) and PBIAS (−3.80 % :−7.90 %),
confirming the accuracy of the calibration procedure.

In order to asses the goodness of the interpolation, we per-
formed the LOO cross validation using the optimized hourly
values of sill, nugget, and range for the Bessel model, which
is one of the best semivariograms according to the previous
results.

Figure 7 shows the results for the four types of kriging in
terms of NSE. Each point represents the averaged monthly
NSE over the 97 meteorological stations. The two local cases
were performed using the 10 closest stations to the interpo-
lation point.

For both the OK and LOK cases the performances were
very poor (NSE< 0.5), indicating that mean temperature
might have been a better predictor than the interpolation.

A strong trend between temperature and elevation (R2
∼

0.9) was detected during the quality check phase (which was

Table 1. Performance results of semivariogram models used.

Semivariogram NSE RMSE R2 PBIAS

Bessel 0.92 2.14 0.92 −0.20
Circular 0.88 2.59 0.88 0.0
Exponential 0.92 2.10 0.92 −3.80
Gaussian 0.90 2.39 0.91 0.35
Hole 0.77 3.61 0.81 7.90
Linear 0.91 2.28 0.91 0.0
Logarithmic 0.92 2.17 0.92 0.0
Pentaspherical 0.91 2.29 0.91 0.0
Periodic 0.90 2.18 0.92 0.0
Power 0.72 3.99 0.73 −3.70
Spherical 0.91 2.28 0.91 0.0

expected). Therefore, interpolation results obtained using the
DK and the LDK present optimal higher values of the GOF
(maximum NSE of 0.93) compared to the OK and LOK
cases.

The spatialization of temperature was performed for each
pixel of the DEM, applying the LDK and the Bessel semi-
variogram model. Figure 8 shows the maps obtained for two
different dates in 2008, one in winter (15 February 2008
12:00 CET) and one in summer (15 June 2008 12:00 CET).
The bubble plots of the RMSE obtained between the mea-
sured and the interpolated values have been overlapped onto
the maps. The size of a bubble represents the magnitude of
the error: the largest error for the interpolation of Febru-
ary 2008 (RMSE= 4.1 ◦C) corresponds to station ID 90534
(Z = 1385 m a.s.l.), while the largest error for the June 2008
interpolation (RMSE= 3.2 ◦C) corresponds to station ID
90266 (Z = 490 m a.s.l.).

5.2 Application of SIK to a rainfall dataset

The application to a rainfall dataset was made at event scale;
specifically, a rainfall event of 11 h between the 29 and
30 June 2008. The event was chosen because it was the
longest and most intense recorded by the highest number of
stations for 2008.

Figure 9 shows the box plots of the 11 hourly semivar-
iograms with eight bins of lag distance, while the red line
represents the best theoretical semivariogram, which in this
case was obtained using the Bessel model. The Y andX axes
show the values of the semivariance γ (h) and the distances
in meters, respectively.

The optimized values of range, nugget, and sill were then
used for the four types of kriging interpolations. Figure 10
compares the results obtained for two stations (ID 1152 and
ID 1270) chosen at different elevations (943 and 2100 m
a.s.l., respectively). All the interpolators were able to capture
the rainfall peak at midnight for both stations. Comparing the
volumes of cumulative rainfall, shown in Table 2, all the in-
terpolators gave good results for station ID 1152, while there
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Figure 6. Fitting of the experimental semivariogram using PSO for 15 June 2008 12:00 CET.
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Figure 7. Monthly variation in the NSE index over the entire hourly temperature dataset using the Bessel semivariogram model.

is an overestimation in the case of station ID 1270; this is
due to peaks detected but not recorded between 21:00 CET
and the 00:00 CET.

Table 2 also shows the GOFs between the measured and
the interpolated rainfall for the four types of kriging and the
two stations. The performances are overall good in the case
of station ID 1152 and the best interpolator is the LDK com-
puted using the five closest stations. Results for station ID
1270 are generally worse, with the highest NSE of 0.62 for
the LOK case. This could be due to the higher elevation of
the station, which led to a series of interpolated peaks that
were not recorded.

The spatial interpolation of the precipitation was also per-
formed for each pixel of the DEM, applying the LOK and
the Bessel semivariogram model. Figure 11 shows the re-
sults of the interpolation for 30 June 2008 at 00:00 CET. As
it appears from the map, the rainfall intensities are higher
in the river valley, with a value of 9.8 mm h−1 measured at

station ID 1152. The bubble plots of the RMSE obtained
between the measured and the interpolated values are over-
lapped. The size of a bubble represents the magnitude of
the error: the largest error is obtained for station ID 90133
(Z = 1246 m a.s.l.).

6 A qualitative comparison with the R package gstat

A comparison between SIK and the R package gstat was
made in order to highlight their differences and similarities,
and to justify the deployment of an alternative software. We
performed a qualitative comparison between the two soft-
wares accounting for design, the implemented features, and
the accuracy of the results. Benchmarks or quantitative per-
formance comparisons would not have been useful or com-
pletely truthful since the “velocity” of computation (a classic
quantitative comparison) depends on too many factors, some
of which are described below. Moreover, in our opinion, the
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Figure 8. Maps of spatialized temperature for 15 February 2008 and 15 June 2008. Two bubble plots are overlapped, which represent the
RMSE between the measured and interpolated values.

Table 2. Results in terms of goodness of fit indexes between the measured and interpolated rainfall values for two stations.

Kriging
ID 1152 ID 1270

NSE RMSE R2 Cum (mm) NSE RMSE R2 Cum (mm)

OK 0.77 1.42 0.94 20 0.31 1.88 0.45 24
LOK 0.86 1.09 0.94 22 0.62 1.39 0.65 22
DK 0.80 1.33 0.83 22 0.46 1.66 0.54 20
LDK 0.91 0.92 0.92 25 0.35 1.82 0.37 13

Measured – – – 25 – – – 16
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Figure 9. Box plots of the semivariograms of the precipitation event
of 29 and 30 June 2008.

two tools that we analyzed have different purposes. This can
be seen just by looking at the features of the relative program-
ming languages. The gstat software is developed in C with a

part of the code in R language. It must be executed using the
various R environments. SIK is developed in Java (7) as a
group of OMS components and it can be executed within the
OMS console, as a stand-alone Java program, or embedded
in other codes in languages that support Java bindings. Java
is slower than third-generation languages such as C. How-
ever, in the course of Java development several optimiza-
tions, such as “just-in-time compilation” and “adaptive opti-
mization”, have been introduced to improve the performance
of its Java virtual machine (JVM). These techniques iden-
tify recurrently executed algorithms, so-called “hot spots”,
and dynamically recompile them at run time. Eventually, the
hot spots gain valuable computational speed. C is one of the
fastest compiled languages. But only the computational core
of gstat is coded in C; the management of temporal steps,
such as “for-loops”, and data structures must be scripted in R.
Undoubtedly, R is a very powerful programming language,
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Figure 10. Comparison among the four types of kriging and the measured rainfall.

Precipitation (mm h-1)

Figure 11. Spatial interpolation of the precipitation applying LOK
and the Bessel semivariogram model. The bubble plot of the RMSE
is overlapped.

mainly because of its flat learning curve and easy syntax and
semantics, but it is fully interpreted, which makes it very
slow. As a result, the comparison of the speed of computation
for a single temporal kriging interpolation is unfair against
Java since the JVM cannot exploit its optimization tools for a
single computation. Conversely, the comparison of the speed
of computation for a year of hourly kriging interpolations
is biased against R because temporal steps affect most of the
computational time. In terms of functionality, gstat computes

both omnidirectional and directional semivariograms, while
SIK does not implement directional semivariograms yet (al-
though we have included this feature on the software wish
list). Furthermore, gstat provides four more theoretical semi-
variogram models with respect to SIK: Matern, Matern with
Stein’s parameterizations, Wave, and Legendre. Adding the
desired theoretical model to any SIK-TV component would
be easy and straightforward, thanks to the DP implemented,
as shown in Fig. 2, but they are not available yet. Regarding
the estimates that the two packages offer, these are usually
different. Comparisons were made with both the temperature
and rainfall datasets used in Sect. 4. Semivariograms were
computed using the same number of bins and cutoff distance.

Figure 12 shows the results of the temperature interpola-
tions performed with SIK and gstat, in terms of NSE, RMSE,
PBIAS, and R2: the overall performances of both tools are
very good. The NSE values are always above 0.65, while the
RMSE is always lower then 2 ◦C.

Figure 13 shows the results of the precipitation interpola-
tion performed with SIK and gstat, in terms of NSE, RMSE,
PBIAS, R2, and cumulative volumes. Also in this case, both
softwares are able to reproduce the rainfall event well, simu-
lating the peaks. The results obtained for station ID 1152 are
very good for both softwares, with a NSE> 0.9. Both soft-
wares show slightly worse results for station ID 2170, with
lower values of NSE and R2, higher RMSE, and an overes-
timation of the total rainfall (19 mm with gstat and 20 mm
with SIK, compared to the 16 mm recorded by the gauges).

In conclusion, gstat is a powerful, flexible tool to obtain
fast results with fast scripting in answer to single, specific
questions (with some implementation efforts user-side); SIK
is a tool that is ready to be integrated into broader MSs,
specifically because of its OMS-compliant design. The inter-
polations of both temperature and rainfall confirm the quality
and accuracy of the predictions obtained using the SIK pack-
age, demonstrating that it is a good competitor of R gstat.
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Figure 12. Comparison between the performances of gstat and SIK packages in the interpolation of the temperature dataset.

Figure 13. Comparison between the performances of gstat and SIK packages in the interpolation of the rainfall dataset.

7 Conclusions

This paper presents a new modeling package for the spatial
interpolation of environmental variables. It includes 11 theo-
retical semivariogram models and four types of kriging inter-
polations. To test the performance of the SIK package, two
applications were performed: the interpolation of 1 year of
temperatures and the interpolation of a rainfall event. Data
were retrieved from a dataset of 97 stations located in the
Isarco Valley in Italy and the resolution of the interpolation
grid data was 100 m.

Several characteristics make the SIK package a good com-
petitor tool among those available in the literature. From the
user perspective,

– it can be used as a stand-alone;

– it can be plugged in to the hydrological modeling sys-
tem GEOframe-NewAGE;

– it can be used with all OMS-compliant components,
such as calibration tools for the optimization of the pa-
rameters;

– it includes a tool for the automatic estimation of errors;

– its results are presented in data formats that can be vi-
sualized directly by GIS;

– a variety of MSs can be obtained, according to user
needs;

– it is faster than gstat in everyday use, under certain con-
ditions.
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From the programmer perspective, the implementation of
DP makes the package easy to maintain and suitable for fu-
ture improvements. All the elements are close to modification
and open to extension. Further developments of the pack-
age are easy and straightforward. Examples of such develop-
ments might include integrating new types of kriging, imple-
menting a different selection method of the gauge stations,
and the addition of nonlinear relationships between the inter-
polated variable and an auxiliary variable.

The interpolations of both the temperature and the rain-
fall gave very good results, with a high agreement between
the measured and the interpolated variables. The tests also
show how it is possible to choose between 11 variograms and
four kriging alternatives and to compare the outcomes easily.
Conversely, the single rainfall event did not show trend with
elevation.

In comparison with gstat, the SIK package proved to be a
good alternative, regarding both the easiness of use and the
accuracy of the interpolation.

Code availability. An OSF project with all the components needed
to reproduce the results shown in this paper has been created and
is available at the following link: https://osf.io/24rgv (Rigon, 2018).
The interested researcher can find the entire OMS project, contain-
ing input data, output, .sim files, jar files, and the R script used
for the plots, at the following link: https://doi.org/10.5281/zenodo.
1244034 (Bancheri et al., 2017), as well as in the OSF project.
Moreover, the links to the source codes and to the documentation
of the SIK components are also available in the OSF project. In par-
ticular, for the present work, version 0.9.8 is the version of the codes
of the GEOframe-SIK package that we used, available at the follow-
ing link: https://github.com/geoframecomponents/Krigings/tree/v0.
9.8 (Serafin, 2018)
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Appendix A: Kriging theory

Kriging is a group of geostatistical techniques used to in-
terpolate the value of random fields based on spatial auto-
correlation of measured data, (Isaaks and Srivastava, 1989;
Goovaerts, 1997; Kitanidis, 1997). The measurement value
z(xα) and the unknown value z(x), where x is the loca-
tion given according to a certain cartographic projection, are
considered as particular realizations of the random variables
Z(xα) and Z(x) (Isaaks and Srivastava, 1989; Goovaerts,
1997). Let the estimation of the (true) random variable Z(x)
be Zλ(x). It is obtained as a linear combination of the N
random variables at surrounding points, denoted as xα with
α = {1,N}, as in Goovaerts (1999):

Zλ(x)−m(x)=

N∑
α=1

λα(xα)[Z(xα)−m(xα)], (A1)

where m(x) and m(xα) are the expected values of the ran-
dom variables Z(x) and Z(xα); λ(xα) at varying α is the
N -uple of weights assigned to the random variable Z(xα) at
measured sites. The superscript λ in Zλ(x) denotes that this
new random variable is parameterized by the weights. These
are chosen to satisfy the condition of minimizing the error of
variance of the estimator σ 2

λ , that is

argmin
λ

σ 2
λ ≡ argmin

λ

Var[Zλ(x)−Z(x)] (A2)

under the constraint that the estimate is unbiased, i.e.,

E[Zλ(x)−Z(x)] = 0. (A3)

The latter condition implies that

N∑
α=1

λα(xα)= 1. (A4)

As shown in various textbooks, e.g., Kitanidis (1997), the
above conditions create a linear system with the unknown be-
ing the N -uple of weights, and the system matrix dependent
on the semivariograms (defined below in a simplified case).
In synthetic notation, the linear system can be written as

03= B, (A5)

where 0 is the matrix of two point variograms (defined be-
low), 3 is the N -uple of unknown weights and B (the so-
called known term) is an N -uple containing the variograms
between the ungauged site and the measured sites. Further
information is required for Eq. (A5) to be a solvable linear
system. In fact, B is still unknown at this stage.

If isotropy of the spatial statistics of the quantity analyzed
is assumed, then the semivariogram is given by (e.g., Cressie
and Cassie, 1993)

γ (h)=
1

2Nh

Nh∑
i=1
[Z(x)−Z(xi)]

2, (A6)

where Nh denotes the number of observation points at lo-
cation xi at distance h from x for any h. When random
variables are substituted by their available realizations (i.e.,
z(xi), indicated with normal letters) an empirical semivari-
ogram is obtained. In order to be extended to any distance, γ
(h) needs to be fitted to a theoretical semivariogram model,
i.e., an assumed function form, as those detailed in Ap-
pendix D. The fitting to the theoretical semivariogram model
is also necessary to obtainB. In fact, when a theoretical semi-
variogram is selected, only position information for the un-
gauged location is required to obtain its semivariogram with
respect to any of the measured locations.

Once B has been determined, the system (A5) can be
solved. This procedure is clearly delineated in the literature
and explained for instance in Kitanidis (1997). Optimized
semivariogram models are used to estimate the weighted pa-
rameters of the kriging algorithm.

Appendix B: List of abbreviations

Abbreviations Meaning
m a.s.l. meters above sea level
CET central European time
DEM digital elevation model
DK detrended kriging
DOI Digital Object Identifier
DP design patterns
GIS geographical information systems
LDK local detrended kriging
LOK local ordinary kriging
LOO leave-one-out
MS modeling solutions
NSE Nash–Sutcliffe efficiency
OMS3 Object Modeling System v3
OK ordinary kriging
PBIAS percent bias
PSO particle swarm optimization
R2 coefficient of determination
RMSE root-mean-square error
SIK spatial interpolation kriging

Appendix C: Goodness-of-fit indexes

– Coefficient of determination

The coefficient of determination, R2, is the proportion
of variance in the dependent variable that is predictable
from the independent variable(s):

R2
= 1−

∑n
i=1(Mi − Si)

2∑n
i=1(Mi −Mi)2

, (C1)

whereMi is the true value,Mi is the mean ofMi , and Si
is the predicted value. It varies between 0 and 1, where
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1 corresponds to the maximum agreement between pre-
dicted and true values.

– Nash–Sutcliffe efficiency

The Nash–Sutcliffe efficiency (NSE) is a normalized
model efficiency coefficient. It determines the relative
magnitude of the residual variance compared to the
measured data variance (Nash and Sutcliffe, 1970):

NSE= 1−
∑n
i=1(Si −Mi)

2∑n
i=1(Mi −Mi)2

, (C2)

where Si is the predicted value and Mi is the observed
value at a given time step. It varies from−∞ to 1, where
1 corresponds to the maximum agreement between pre-
dicted and observed values.

– Percent bias

Percent bias (PBIAS) measures the average tendency
of the simulated values to be larger or smaller than
the corresponding measured ones. The optimal value of
PBIAS is 0, with small values indicating accurate model
simulation. Positive values indicate overestimation bias,
while negative values indicate model underestimation
bias.

PBIAS= 100 ·

N∑
i=1
(Si −Mi)

N∑
i=1
Mi

, (C3)

where Si is the predicted value and Mi is the observed
value.

– Root-mean-square error

The root-mean-square error (RMSE) is given by

RMSE=

√√√√ 1
N

N∑
i=1
(Mi − Si)

2, (C4)

where M and S represent the measured and simulated
time series, respectively, and N is the number of com-
ponents in the series.

Appendix D: List of semivariogram models
implemented in SIK

Using n to represent nugget, h to represent lag distance, r
to represent range, and s to represent sill, the 11 theoretical
semivariogram models most frequently used in literature are
as follows.

– Bessel semivariogram

γ (h)= s

(
1−

h

r
k1
(
h

r

))
(D1)

– Circular semivariogramγ (h)= n+ s
{

2
π

[
h
r

√
1−

(
h
r

)2]
+ arcsin

(
h
r

)}
h < r

γ (h)= n+ s h≥ r

(D2)

– Exponential semivariogram

γ (h)= n+ s(1− e−
h
r ) (D3)

– Gaussian semivariogram

γ (h)= n+ s[1− e−(
h
r
)2
] (D4)

– Hole semivariogram

γ (h)= n+ s

[
1−

sin(h
r
)

h
r

]
(D5)

– Linear semivariogram{
γ (h)= n+ s h

r
h < r

γ (h)= n+ s h≥ r
(D6)

– Logarithmic semivariogram

γ (h)= n+ s log
(
h

r

)
(D7)

– Pentaspherical semivariogramγ (h)= n+ s
{

15
8
h
r
+

(
h
r

)3[
−

5
4 +

3
8

(
h
r

)5]}
h < r

γ (h)= n+ s h≥ r

(D8)

– Periodic semivariogram

γ (h)= n+ s

[
1− cos

(
2π
h

r

)]
(D9)

– Power semivariogram

γ (h)= n+ shr (D10)

– Spherical semivariogramγ (h)= n+ s
[

1.5h
r
− 0.5

(
h
r

)3]
h < r

γ (h)= n+ s h≥ r

(D11)
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