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Ref: PROOCE_2018_54_R1
Title: Derelict fishing gear and megabenthic cnidarian distribution in submarine canyons of the 
Ligurian Sea and adjacent shelves
Journal: Progress in Oceanography

Dear Dr. GIUSTI,

Thank you for submitting your manuscript to Progress in Oceanography. Guest Editor Danovaro 
has completed the review of your manuscript and a summary is appended below. He recommends 
reconsideration of your paper following major revision. I invite you to resubmit your manuscript 
after addressing all reviewer comments.

When resubmitting your manuscript, please carefully consider all issues mentioned in the reviewers' 
comments, outline every change made point by point, and provide suitable rebuttals for any 
comments not addressed.

To submit your revised manuscript:

 Log into EVISE® at: 
http://www.evise.com/evise/faces/pages/navigation/NavController.jspx?JRNL_ACR=PROO
CE

 Locate your manuscript under the header 'My Submissions that need Revisions' on your 'My 
Author Tasks' view

 Click on 'Agree to Revise'
 Make the required edits
 Click on 'Complete Submission' to approve

What happens next?

After you approve your submission preview you will receive a notification that the submission is 
complete. To track the status of your paper throughout the editorial process, log in to Evise® at: 
http://www.evise.com/evise/faces/pages/navigation/NavController.jspx?JRNL_ACR=PROOCE.

I look forward to receiving your revised manuscript as soon as possible.

Kind regards,

Dr Mantua
Co Editor-in-Chief
Progress in Oceanography

Comments from the editors and reviewers:
-Editor Danovaro

Dear Dr Giusti, 

As you can see in the reviewers’ report, Rev#1 is positive and suggests minor revision while Rev#2 
is still critic on the content of your paper. 

Although the present version has been improved according to most of the previous Rev#2’s 
comments, the request of statistical analyses to support data has been completely neglected. 

http://www.evise.com/evise/faces/pages/navigation/NavController.jspx?JRNL_ACR=PROOCE
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I would like to offer you the possibility to respond to the specific comment on data elaboration and 
other suggestions provided by the ref#2 in this second report. 

If you are not in the position to respond to all rev#2’comments, I regret to inform you that your 
contribution cannot be considered for publication in this special issue.

-Reviewer 1

Dear Editor, 

Please find attached my comments on Giusti et al. In this current version authors have addressed 
some of my suggestions. After carefool consideration I believe this manuscript still requires lots of 
work and it cannot be published in its current status. My biggest concern is that authors have failed 
to provide any statistical evidence that reinforce their assumptions. Authors indicate that they did 
not have enough time to do required statistical analysis. I consider that this is not a valid argument. 
Some of the suggested statistical analyses were very simple and could have been done with the 
available data (linear regressions evaluating cnidarian and DFG densities). 

The Introduction and the Materials and Methods have been improved. As I previously mentioned, in 
the Results section I think that authors must provide statistical analyses regarding the relationship 
between DFGs and cnidarian density. Moreover, authors are looking at the relationship of DFGs 
and megabenthic cnidarians I think it is necessary to give information on the status of these 
populations’ necrosis and epibiosis (number of colonies, necrotic or epiphyted surface %, 
dimensions of affected colonies, which is the epiphyte species). This information can easily be 
extracted from the video transects. Once more, I do not think it is a valid argument to say that 
authors have ran out of time. In the previous version of the manuscript authors did not show the 
number of entangled colonies (Fig. 8). I assume they had to review the videos to provide this 
information. In this sense, I believe authors could have easily provided the number of epiphyted or 
necrotic colonies. To do so only 3 canyons needed to be revised, since authors mentioned that they 
already have the number of epiphyted colonies for Arma di Taggia canyon (Authors original quote: 
We were not able provide the necrotic colonies and the epibiosis presence because we didn’t 
clearly identified them, except for the Arma di Taggia canyon and buecause, due to the large 
number of changes made with the help of the reviewer, we ran out of time). 

Most of the Discussion section is mainly a summary of the previously mentioned results. Author’s 
indicate that E. verrucosa faces the highest risk of entanglement what are the bases for this? This 
contradicts the results in Fig. 8. Less than 10 colonies out of 267 (Table 2) have been entangled, this 
represent ~4% of all observed colonies. Other species such as D. cornigera (approx. 120 entangled 
colonies out of 175, ~68% of observed colonies), C. rubrum (approx.130 entangled colonies out of 
287, ~45% of observed colonies), or P. clavata (appox.100 colonies out of 417, ~24% of observed 
colonies) present much larger entangling values. Authors need to dig deeper on their results, 
compare them with previous data on the Mediterranean and other areas of the world. For instance, 
why do you think D. cornigerais so heavily impacted? Could it be that C. rubrum colonies were 
affected since they tend to occur on overhanging rocks where fishing gear can easily get stuck? P. 
clavata is a species that can reach very large dimensions (e.g. Linares et al. 2018), was there any 
size pattern regarding entangled colonies? Which type of fishing gear tends to entangle the most? In 
case there is a trend is it the same in all canyons? Authors should add a few conclusions 
summarizing their most relevant findings. 

Regarding the Reference authors need to correct all mistakes an add newly added references. 

Authors have a very interesting data set with great potential make the best of it. 



Considering that this manuscript was submitted in a special issue of Progress in Oceanography I 
leave on the hands of the Editor to decide if it should go to major changes or be rejected. 

 The paper was greatly modified according to the reviewer's suggestions. 
The ROV dataset has been viewed again and the data analysis redone; the statistical analysis 
has been added as well as the analysis of the entangled, epibiotic and necrotic cnidarians 
species. Compared to the previous version, this one has been significantly modified in the 
hope of having responded adequately to all the reviewers' suggestions.
The title has been modified to : “Coral forests and Derelict fishing gears in submarine 
canyon systems of the Ligurian Sea” to better focalize the subject of our manuscript.
As for the answers below, we tried to answer as best as possible, but the work has changed a 
lot compared to the previous one: for example, the numbers of the lines no longer 
correspond to those of the previous version and several sentences have been removed and / 
or modified, as well as some bibliographical references.

Authors have not addressed the following suggestions or mistakes from the previous review: 
 
Regarding my previous comment: Depth range are given into four different forms “-47 and -93 m, 
242 –423 meters, 60-116 meters, 64m and 287m”. Use only one form I suggest: 242 – 423 meters 
depth.
 

 The form suggested was used

Please, sea lines 282–290, lines 337–344 of the current version. 

 Modified as suggested
 
 Please, correct line 372, 376, 389, 391 of the current version, species names are not properly 
written. 

 Species names corrected
 
Quoting authors response: Corrected. The name of the species was also ganged throughout the text 
from E. cavolinii to E. cavolini , as reported by the world Register of Marine Species
 
E. cavolinii should be maintained as this gorgonian species was named after Filippo Cavolini, and 
consequently double final "i" is needed following the international code of zoological nomenclature

 Corrected
 

Line 370-371: In particular, DFG was found along all the depths at which E. verrucosa is present.
 
The bathymetric distribution of DFGs in Arma di Taggia canyon cover the entire bathymetric range 
overlapping with all species found in this canyon why do you focus on E. verrucosa?

 The reviewer is right and the phrase was removed

 Please see my previous comment on S. dubia.



You have not corrected Table 2 and Figure 4, lines 295: change Swiftia dubiato Swiftia sp. 

 Swiftia dubia changed to Swiftia sp.
 
Regarding density values, authors have mentioned that they have used 1 m-2(Authors quote: Density 
was calculated as colonies per 1 m-2). If this is correct how can you obtain such low values in 1 m-

2? Based on my experience such low densities are found with surface units larger than 1 m2. Please, 
clarify if you have calculated density considering the hall surface of the transect or surfaces larger 
than 1 m-2. 

 Density of cnidarians was expressed as number of colonies per square meter of hardground. 

Data were checked again and we obtained such low densities values.

 Minor comments: 
 
Lines 74-81: This study is based on canyons on the Ligurian Sea. Why do you focus on the canyons 
on the Adriatic Sea? If authors wanted to give an example of Mediterranean submarine canyons 
hosting CWC and sponge assemblages there are many examples all over the western Basin: North 
Ionian Sea (Saviani et al., 2010), Sardinia (Taviani et al., 2015); Southern Thyrrenian 
(Pierdomenico et al., 2016); Corsica (Fourt et al., 2017), Gulf of Lion (Gori et al., 2013) Catalan 
Margin (Lastras et al., 2016); Balearic Islands (Grinyó et al., 2018; Santín et al., 2018).

Authors have given a much-detailed vision of CWC assemblages in submarine canyons of the NW 
Mediterranean improving this section. However, if Authors consider that the Adriatic Sea is part of 
the Eastern Basin shouldn’t they consider the North Ionian Sea as part of the Eastern Basin?

 The reviewer is right and the North Ionian Sea was moved to the phrase concerning the 
Eastern  Basin.

 
Line 87: 
 
Remove extra space.

 Removed
 
Line 94: 
 
“Lost fishing gear, (Derelict Fishing Gear = DFG)…” please change as follows “Lost fishing 
gears, referred from now one as Derelict Fishing Gears (DFG)…”

 Changed
 
Line 99: 
 
Correct (Cánovas- Molina et al. 2016) to (Cánovas-Molina et al.,2016).

 Corrected
 
Line 101



 
Small fleets or small boats?

 Phrase modified in the text
 
Line 167 
 
Correct “0ºto” to “0º to” 

 Corrected

 
Line “0º-52º”: in all previous cases you’ve used “to”. Change 0º to 52º.

 Changed

Line 174: 
 
There is an extra space: “with moderately”. 

 Extra space removed
 
Line 176: 
 
Please change Km to km. 

 Km was changed to km
 
Table 1: 
 
“Dive lenght” to “Dive lenght” correct lenght to length 

 corrected
 
Line 185: 
 
Remove extra space between Bordighera and ,. 

 Extra space removed

Line 192: 
 
Remove extra space “…vessels. The three…”

 Extra space removed

 
Line 243, 301 and 330: 
 
Correct:  “m-2”  to “m-2”



 Corrected
 
 Line 255: 
 
I suggest adding megabenthic in front of cnidarins: 
 
“In this study, megabenthic cnidarian species were chosen…”
 

 Phrase modified in the text
 
Table 288: 
 
Correct 117 -310 to 117–310.

 Corrected
 
Line 387: Change “twenty two” to 22. In line 34 authors numerical values “22 megabenthic 
species” please be consistent throughout the manuscript.

 Changed “twenty two” to 22
 
Line 406: “E. verrucosa, as other large anthozoans (e.g. other gorgonians and antipatharians), isa 
long-lived species, able to form dense three-dimensional habitats (the so called “coral gardens” or 
“animal forests”)”
 
Provide reference for coral gardens and the animal forest and please look beyond E. verrucosa. You 
have shown in Figure 8 that other species are, actually, more susceptible to entanglement than E. 
verrucosa. 

 References for coral gardens and the animal forest were added and new considerations about 
the entanglement of the species were also added

 
Line 410: “As a consequence, there is a higher probability of losing fishing gear and thus increasing 
the risk of being caught in the nets.”
 
Why is there a higher probability of losing fishing gear? Is it due to the three-dimensional structure 
of the organisms forming the animal forests?

 Phrase modified in the text
 

Line 412: “We can speculate that this large amount of lost fishing nets at this site is due to the fact 
that it is close to the coast, in front of the Bordighera port and near San Remo port, which makes 
this canyon more accessible to fishing vessels.”

How about the fishing fleet is it larger than in other canyons? You need to discuss this. Do you 
think recreational fishing may also play a role in the degradation of this canyons ecosystems? Could 
it be that recreational fishing boats also visited this area more often due to its proximity to shore? 

 Phrase modified in the text
 



Line 421: 

Please correct: “that coveri” 

 Corrected

 

References: 

The following references are missing in the Reference list: 

Saviani et al., 2010

Pierdomenico et al., 2016

Fourt et al., 2017

Gori et al., 2013

Lastras et al., 2016

Grinyó et al., 2018

Santín et al., 2018

 References were modified according to the changes made in the manuscript

 

Extra spaces on lines 445, 478, 486, 501, 583, 587, 739. 

 Extra spaces removed

Line 519: Sarda change to Sardà

 Sarda changed to Sardà

Line 529: Italics?

 Corrected

Line 578: García not Carcìa

 Reference removed

Line 605: Nazare to Nazaré



 Reference removed

Line 606: you are missing )

 Added

Line 610, 621, 653, 715: you are missing a space

 Added

-Reviewer 2

The Authors checked the ms according to the referee' suggestion. In my opinion can be accepterd. 
In the file attached I have marked some errors in the bibliography.

 The bibliography was checked and the errors corrected.



Highlights

 Derelict Fishing Gears (DFGs) cause severe impact on megabenthic species. 
 High biodiversity areas are the primary target for artisanal fisheries.  
 Derelict Fishing Gears (DFGs) are present up to a depth of 300 meters.
 None of the five canyons investigated were free from DFGs.
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22

23 Abstract 

24 Biodiversity of coral forests and occurrence of Derelict Fishing Gears (DFGs) have been assessed in 

25 canyon systems of the western Ligurian Sea (Dramont, Monaco, Bordighera, Arma di Taggia and 

26 Bergeggi) exposed to different anthropic pressures. Arborescent cnidarians were elected as 

27 representative species due to their role as structuring organisms and their vulnerability to DFGs 

28 damage; hence, their occurrence, density and distribution were correlated to the presence of DFGs. 

29 The canyon systems were mapped using a Multibeam Echo Sounder and visually surveyed by means 

30 of a Remotely Operated Vehicle between 20 and 445 m depth. With the exception of the Bergeggi 
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31 canyon system all sites host rich assemblages of structuring anthozoans, accounting for more than 

32 2000 colonies belonging to 11 species, predominantly Corallium rubrum, Dendrophyllia cornigera, 

33 Eunicella cavolinii, E. verrucosa, and Paramuricea clavata. 

34 The coral forests appear vulnerable with the larger structuring gorgonians being the most susceptible 

35 to mechanical injuries. DFGs, represent 85% of the total marine litter is the most serious threat to 

36 resident sessile communities, most noticeably in the eastern canyons. The fishing footprints is 

37 strongly influenced by vicinity to ports, size and fishing effort of local fleets, and by socio-

38 economical differences in the fishing activity . 

39 Our study further confirms the role of submarine canyons as site of high coral biodiversity and 

40 vulnerability to the mechanical damages by fishing-related littering, calling for adequate management 

41 measures to reduce fishery pressure and concomitant DFG discharge.

42

43 Keywords: structuring anthozoans; marine litter; Derelict Fishing Gears, fishing impact; Ligurian 

44 Sea; canyons .

45

46 Introduction

47 Submarine canyons are major geomorphic features of continental margins characterised by steep and 

48 complex topography (e.g. Lastras et al., 2007; Harris and Whiteway, 2011; Amblas et al., 2017). 

49 They are formed at the junction of the continental shelf with the continental slope. Schematically, 

50 they are a V-shaped valley, with steep walls (e.g. Shepard, 1972). A submarine canyon consists of an 

51 upper part, the “canyon head”, that deeply incises the continental shelf extending down to the 

52 continental slope and ending at the base of the continental slope, where it forms a “canyon mouth” 

53 (Canals et al., 2009; Würtz, 2012). Canyons are characterised by a variety of topographic situations 

54 and bedforms (Rowe et al., 1982; Vetter, 1994; Trincardi et al., 2007; McClain and Barry, 2010; 

55 Migeon et al., 2012; De Leo et al., 2014; Fabri et al., 2014; Lo Iacono et al., 2015; Quattrini et al., 

56 2015; Robert et al., 2015).They influence current patterns (Shepard et al., 1979; Canals et al., 2006; 
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57 Xu, 2011), and are a major pathway for the particle-transport from the continental shelf to the deep-

58 sea (Nittrouer and Wright, 1994; Amaro et al., 2016; Fildani, 2017), thus playing a fundamental role 

59 in shelf-deep ocean exchanges (Würtz, 2012). 

60 From a biological perspective, they play a key role in providing habitat, nursery and refuge for 

61 spawning pelagic and benthic species, some of which of commercial interest (Sardà et al., 1994; 

62 Yoklavich et al., 2000; Tyler et al., 2009; De Leo et al., 2010; Hoff, 2010; Vetter et al., 2010; 

63 Company et al., 2012, Farrugio, 2012; Morris et al., 2013; Fernandez-Arcaya et al., 2017). Canyons 

64 often house Vulnerable Marine Ecosystems (VMEs) usually dominated by gorgonians, 

65 antipatharians, scleractinians, and sponges (Schlacher et al., 2007; Huvenne et al., 2011; Davies et 

66 al., 2014; Morris et al., 2013; Brooke and Ross 2014, Miller et al., 2015; Trotter et al., 2018), having 

67 the ability to form three-dimensional habitats (coral forests, coral gardens, or animal forests: Rossi et 

68 al., 2017). For instance, the Mediterranean canyons provide habitat to Cold-Water Coral (CWC) as 

69 documented in the western basin for the Catalan Margin (Orejas et al., 2009; Lastras et al., 2016), 

70 Balearic Islands (Grinyó et al., 2018; Santín et al., 2018), Gulf of Lion (Gori et al., 2013; Fabri et al., 

71 2014, 2017), Ligurian canyons (Fanelli et al., 2017), Corsica (Fourt et al., 2017), South Sardinia 

72 (Taviani et al., 2017), Gulf of Naples (Taviani et al., in press), and southern Tyrrhenian Sea 

73 (Pierdomenico et al., 2016). In the central basin, most information is available for the southern 

74 Adriatic Sea, i.e. the Bari Canyon (Freiwald et al., 2009; Bo et al., 2012; Sanfilippo et al., 2013; 

75 Angeletti et al., 2014; D’Onghia et al., 2015, 2016; Taviani et al., 2011, 2016), the Tricase Canyon 

76 (Prampolini et al., in press) and canyons and incisions in the eastern side of Montenegrin and 

77 Albanian margins (Angeletti et al., 2014, 2015, in press; Taviani et al., 2016, this issue). 

78 Submarine canyon systems resent climate change that can modify the intensity of the currents and 

79 seriously affect the structure and functioning of the benthic communities, for example, by impinging 

80 on the nutrient supply to the deep ocean ecosystems (Solomon, 2007; Levin and Le Bris, 2015). 

81 However, the main source of impact is due to human activities, such as dumping (Hughes et al., 

82 2015; Ramirez-Llodra et al., 2015), oil and gas extraction (Harris et al., 2007), litter (Mordecai et al., 
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83 2011; Ramirez-Llodra et al., 2013; Bergmann et al., 2015; Tubau et al., 2015; Cau et al., 2017), 

84 chemical pollutants (Palanques et al., 2008; Koenig et al., 2013; Pham et al., 2014), and fishing 

85 activities (Palanques et al., 2001; Oberle et al., 2018). 

86 Fishing exerts considerable pressure on submarine canyons by altering their morphology (Puig et al., 

87 2015; Daly et al., 2018) directly impacting the benthic assemblages thriving here. The negative 

88 effects related to fishing activities are due to the removal of conspicuous habitat-forming species 

89 (gorgonians, black corals, scleractinians, sponges and bryozoans) and also to the accidental loss of 

90 demersal gears (Company et al., 2003; Mortensen et al., 2005; Martín et al., 2008; Orejas et al., 

91 2009; Buhl-Mortensen et al., 2015; Cau et al., 2017; Gori et al., 2017; Taviani et al., 2017). 

92 Lost fishing gears (Derelict Fishing Gears: DFGs, hereafter) can affect negatively the seafloor 

93 integrity by suffocating benthic organisms and inducing epibiont overgrowth, or by mechanical 

94 removing mostly of erect species (Bavestrello et al., 1997; Bo et al., 2014). The loss of three-

95 dimensionality, in turn, may lead towards an over-simplification of the community structure (Ponti et 

96 al., 2014). Once on the seabottom, DFGs like nets or traps, may continue to exert negative effects for 

97 long by trapping fish and other organisms, a problem known as ghost fishing (Fernandez-Arcaya et 

98 al., 2017). Several studies have highlighted the impact of DFGs on deep benthic communities or have 

99 used indicators of impact regarding structuring species as parameters of ecological indexes 

100 evaluating the health status of these communities (e.g. Bo et al., 2014, 2015; Cánovas-Molina et al., 

101 2016; Oberle et al., 2018). 

102 The problem of fishing impact is usually related to demersal artisanal fisheries operating on the 

103 continental shelf (0 - 200 m) or on the upper bathyal zone (200 - 400 m) (Forcada, 2009), and it can 

104 be amplified by recreational fishermen insisting on the same grounds (Bo et al., 2014). Canyon biota 

105 are negatively impacted by bottom trawling, mainly operated along the mouth of the canyon, because 

106 of the heavy mechanical action of the trawl net enhanced by metal footropes, accompanied by 

107 deleterious sediment resuspension (Martín et al., 2014; Payo-Payo et al., 2015; Paradis et al., 2017). 

108 Fishing in the Mediterranean Sea is a significant activity, especially intense in the Ligurian Sea 
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109 (Cattaneo Vietti et al., 2010); thus far, only few studies have been, however, devoted to evaluate the 

110 environmental status of the deep benthic communities (Cánovas-Molina et al., 2016).

111 This paper describes the megabenthic biodiversity, with main focus on the anthozoan component, and 

112 the occurrence of lost fishing gears and lines (DFGs) in five canyons located in the western Ligurian 

113 Sea (north-western Mediterranean Sea). Presence, density and distribution of cnidarian megabenthic 

114 species as well as DFGs, were analysed and related to two physical descriptors of seafloor 

115 morphology, depth and slope. 

116

117 Materials and methods

118 Study area

119 The five investigated canyon systems are, from West to East: Dramont (France), Monaco 

120 (Principality of Monaco), Bordighera, Arma di Taggia, and Bergeggi (Italy) (Fig. 1). The study sites 

121 were mapped using a Multibeam Echo Sounder (MBES) and explored with a Remotely Operated 

122 Vehicle (ROV) from 20 to 445 m. Except Bergeggi, all canyons, were investigated during a scientific 

123 campaign organised in the frame of the RAMOGE (Saint-RApahel, MOnaco and GEnoa) agreement. 

124 The main objective of RAMOGE is to coordinate the activities of France, Italy and Monaco for 

125 protection of the marine environment, through the establishment of multidisciplinary collaboration 

126 between local and regional administrations, scientific institutions and users of the sea in order to 

127 carry out joint actions. During the 2014 ad hoc workshop on the Mediterranean Sea organized within 

128 the framework of the Convention on Biological Diversity (CBD) in Malaga (Spain), two Ecologically 

129 or Biologically Significant Marine Areas (EBSAs) were identified in the North-western 

130 Mediterranean Sea: one for pelagic and one for benthic ecosystems. Through cross-border 

131 cooperation between RAMOGE countries for the implementation of CBD criteria, 35 focus areas 

132 were identified in the Ligurian Sea (Italy), 6 in Monaco and 25 in the Provence-Alpes-Côte d’Azur 

133 Region (France). Most of the identified areas are represented by submarine canyon heads and outer 

134 continental shelf rocky outcrops. In 2015, RAMOGE organized its first deep-sea exploration 
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135 campaign at a depth range of 50 - 400 m aimed to obtain an overall picture of the habitats, occurrence 

136 of protected and commercial species, and human pressures. Six ecological focal areas were identified 

137 for the campaign (Daniel et al., 2017), four of which are the canyon systems examined by this study. 

138 A fifth site (Bergeggi) was investigated during the CNR oceanographic cruise BIOLIG, designed to 

139 explore mega- and macrobenthic communities, and meiofauna of the Ligurian Sea canyons.

140

141

142 Fig. 1. Location of the five investigated canyons and nearby shelf regions.

143

144 The canyon systems under scrutiny are exposed to various human stressors, above all fishing 

145 activities. Bergeggi is located at a distance of about 4 km from the port of Savona. According to the 

146 fleet register data (http://ec.europa.eu/fisheries/fleet/index.cfm), Savona hosts 64 artisanal fishing 

147 vessels (less than 12 m overall length). Arma di Taggia and Bordighera, are located at a distance of 6 

148 km and 8 km, respectively, from the port of San Remo that hosts, according to the fleet register data, 
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149 about 30 artisanal fishing vessels. These three canyons are important fishing areas for local, small-

150 scale fishery fleets. The Monaco canyon, belonging to the Principality of Monaco, could be 

151 considered as a reference site for fishing activities pressure because there is only one artisanal fishing 

152 boat operating in the area (L. Tunesi, unpublished).

153

154 Data acquisition and analysis

155 The RAMOGE research campaign was conducted on board the R/V Astrea from 16 to 23 August 

156 2015. During the survey, high resolution bathymetric data were collected using an MBES Kongsberg 

157 EM 2040, operating at a frequency of 300 kHz and nine ROV dives were carried out, five in the 

158 canyon heads and seven on the adjacent continental shelves (Table 1). The BIOLIG oceanographic 

159 cruise took place on board the R/V Minerva Uno from 9 to 12 May 2013. High-resolution 

160 bathymetric data of the Bergeggi Canyon were collected using an MBES Reason SeaBat 8160, 

161 operating at a frequency of 50 kHz. The canyon was explored through three ROV dives, two in the 

162 canyon’s head and one on the nearby continental shelf (Table 1).

163 High-resolution bathymetric data were collected using the Seafloor Information System (SIS) 

164 software and were analysed with the HIPS and SIPS (CARIS) software. The morphometric 

165 parameters were extrapolated with the open source SAGA GIS software (Conrad et al., 2015), 

166 georeferenced to the World Geodetic System 1984 ellipsoid and converted to metres within Zone 

167 32N of the Universal Transverse Mercator projection. 

168 Preliminary georeferenced maps were generated on-board first from non-filtered MBES data in order 

169 to identify the presence of hard bottoms suitable to be explored by ROV. Twelve ROV dives were 

170 then performed between 20 - 445 m to assess megabenthic communities and anthropic impact (Table 

171 1). A “Pollux III”  ROV was equipped with a high-resolution video camera and a reflex (DSLR) 

172 Canon camera with two strobes; real-time position was provided by an underwater acoustic 

173 positioning system (Linquest – Tracklink 1500 MA), connected with a Geographic Information 

174 System (GIS) (Blue Marble geographics, Global Mapper v17; a depth sensor, a compass and two 
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175 laser beams placed 10 cm apart for scale complete ROV equipment. The ROV navigated at an 

176 average speed of 0.3 m s-1, approximately 1.5 m above the substrate. The field of view of the ROV 

177 was estimated to be approximately two metres wide (defined on the distance of the two parallel laser 

178 pointers) when moving at that distance from the bottom (Bo et al., 2009).

179 Georeferenced videos were recorded continuously and images were extrapolated from the video 

180 tracks for a total of 642 frames by means of the free Internet software DVDVideoSoft, every 10 s, 

181 (Table 1). For every image the following parameters were considered: i) megabenthic diversity; ii) 

182 number of cnidarian colonies; iii) number and typology of litter items. Density of cnidarians 

183 (expressed as number of colonies per square meter) was obtained for each site and for each 

184 topographic area (shelf and canyon head). Impacted colonies (entangled or epibionted) were also 

185 annotated and compared in terms of percentage of frames over the entire site dataset. 

186 Precise location, depth and number of cnidarian colonies and litter items were also mapped in 

187 ArcGIS 10.1 (ESRI) to check and avoid for image overlapping. 

188 Marine litter was classified according to the categories reported in the “Guidance on monitoring of 

189 Marine Litter in European Seas” (GMML) (Galgani et al., 2015). The DFGs belonging to categories 

190 A. 6, A. 7 and A. 9 were used to calculate the density of the various litter categories (expressed as 

191 number of items per hectare).

192 Morphobathymetric data were used to extrapolate two physical descriptors of seafloor morphology, 

193 depth and slope. Due to the fact that data were collected using two different MBES models, these 

194 descriptors were gridded differently in the corresponding raster files. MBES data collected within the 

195 framework of the RAMOGE campaign were gridded in raster files with 1x1 m cell size, while MBES 

196 data collected within the framework of the BIOLIG campaign were gridded in raster files with 10x10 

197 m cell size. These are the highest possible resolution MBES cell sizes that can be retrieved from the 

198 systems used, operating at the depths reported above, without losing information (Giusti et al., 2017). 

199 Depth and slope are considered to be among the main factors influencing coral distribution on hard 

200 bottoms (e.g. Davies and Guinotte, 2011; Giusti et al., 2014 , 2017; Angeletti et al., in press). Slope 
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201 describes the rate of change in elevation, with low values associated with flat bottom and a high 

202 probability of sediment deposition sites, and higher values indicating potential hard bottoms (rocky 

203 or lithified sediments). The output slope raster was calculated in degrees from 0° (flat) to 90° 

204 (vertical). 

205 In this study, arborescent anthozoans were chosen due to their paramount role as structuring 

206 organisms and their vulnerability to DFGs (Bo et al., 2014). For this reason, their occurrence was 

207 related to the two terrain attributes described above (depth and slope). 

208 Furthermore, with the aim of better understand the correlation between the co-occurrence of 

209 structuring cnidarians and DFGs, partial correlation matrices were calculated. In order to do that the 

210 ROV data were organized in a table that reports the depth, the distance from the coast, the distance 

211 from the nearest port, the presence or absence of cnidarians and DFGs and, in case of presence, the 

212 number of specimens/items found. The linear correlation between presence or absence of cnidarians 

213 and DFGs did not show any statistically significant result. However, simple linear correlations 

214 between the presence of the species and that of DFGs could lead to misleading results due to other 

215 variables that could influence both the habitat of the species and the presence of DFGs, such as depth, 

216 distance from the coast and from the nearest port (Ferrigno et al., 2017; Consoli et al., 2018). 

217 To control the effect of other variables, partial correlations were used to calculate the relationships 

218 between species, DFGs, depth, distance from the coast and from the nearest port. Partial correlations 

219 allow to calculate the linear correlations between two variables removing the effects of the other 

220 variables, that can be numerically associated to the two variables of interest, thus leading to confound 

221 results (Anderson et al., 1958). The partial correlations were calculated in the R environment (R Core 

222 Team, 2018) using the “ppcor package” (Kim, 2015) and the relative matrices were drawn using the 

223 “corrplot package” (Wei et al., 2017).
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227 Sites description

228 The canyon systems here considered present different topographic characteristics. (1) Dramont (Fig. 

229 2A) is W-E oriented and is located at a distance of 1.5 km from the coast, with the canyon’s actual 

230 incision starting at ca. 145 m. The slope in the W-E direction ranges from 6° to 34°. (2) Monaco (Fig. 

231 2B) is oriented in a NW-SE direction; it is at a distance of 1.6 km from the coast, starting at a depth 

232 of 102 m; the slope in the NW-SE direction ranges from 6° to 31°. (3) Bordighera has two heads 

233 (Fig. 2C), both oriented in a N-S direction, located at a distance of about 0.5 km from the coast, 

234 beginning at a depth of 80 m; both heads have a slope range from 0° to 85°. (4) Arma di Taggia is 

235 formed by two heads (Fig. 2D). One is oriented in a N-S direction, the other mainly W-E. Both heads 

236 are at a distance of about 2 km from the coast, beginning at a depth of 100 m. The N-S oriented slope 

237 ranges from 7° to 46°. The slope of the other head ranges from 7° to 34° (5) Bergeggi canyon (Fig. 

238 2E) is NW-SE oriented and located at about 4.6 km from the coast. The slope ranges from 0° to 55°. 
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E

246

247 Fig. 2. Morphobathymethric maps with the position of the ROV dives (black lines); (A) Dramont, 

248 (B) Monaco, (C) Bordighera, (D) Arma di Taggia, (E) Bergeg
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260 Table 1. Metadata of ROV dives (the ROV dives executed in the canyon heads are marked with an*).

Canyon ROV 
dive

Dive start position 
(decimal degrees)

Dive end position 
(decimal degrees)

Dive 
duration 
(h:mm)

N° of 
frames 
per site

Dive 
depth-
range 
(m)

Dive 
length (m)

Hard 
bottom 
length 

(m)

Dive 
area   
(m2)

Hard bottom 
surface (m2)

latitude longitude latitude longitude

9 43.433 6.925 43.433 6.925 2:09 20-342 2,476 2,476 3,071 3,071

10* 43.429 6.907 43.430 6.910 1:08 20-90 811 354 1,269 554
Dramont

11 43.427 6.939 43.427 6.939 0:36

99

20-165 530 530 731 731

Monaco 12 43.710 7.432 43.710 7.432 2:45 38 40-251 4,360 412 5,621 531

4* 43.770 7.678 43.764 7.691 2:50 20-300 2,282 830 3,575 1,300
Bordighera

5* 43.755 7.678 43.752 7.685 1:36
246

22-263 1,427 1,427 2,192 2,192

1 43.792 7.912 43.796 7.921 0:46 179 25-61 959 615 1,709 1,096

2 43.801 7.897 43.801 7.898 1:53 25-66 1,726 494 2,920 836
Arma di 
Taggia

3 43.809 7.893 43.805 7.892 0:58 25-95 956 956 1,483 1,483

6 44.264 8.523 44.265 8.525 1:37 230-240 890 134 1,349 203

7* 44.260 8.541 44.260 8.541 2:35 383-405 1,640 224 2,271 310
Bergeggi

8* 44.257 8.553 44.255 8.553 2:18

80

352-445 1,247 184 1,647 243

261
262

263 Results

264 Structuring cnidarians: diversity, abundance, distribution and vulnerability

265 The ROV dives surveyed the sea bottom over a distance of 19,304 linear m (8,636 m are hard 

266 substrates) covering an area of 27,838 m2 (12,550 m2 are hard substrates) (Table 1). 

267 Considering the shelves and the canyons heads altogether, a total of 140 species have been recorded 

268 (Table 2). The most diverse community was found in the Italian canyons of Bordighera and Arma di 

269 Taggia, where 73 and 72 species were found, respectively, followed by Dramont canyon hosting 64 

270 species, Monaco canyon hosting 30 species, and, lastly, Bergeggi canyon with only 12 species. 

271 Among benthic invertebrates, cnidarians are the most common taxonomic group, with a consistent 

272 presence in all investigated sites (from 15% to 70%) followed by sponges (from 15% to 24%) (Fig. 

273 3). Another highly diversified taxon is that of fish, ranging from 12% in Bergeggi canyon to 40% in 

274 the Monaco canyon.
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275 Table 2. Species recorded in the five investigated canyon systems. 

Species observed in the five canyons Dramont Monaco Bordighera Arma di Taggia Bergeggi

Kingdom: Plantae
Phylum Species

Chlorophyta Palmophyllum crassum x

Rhodophyta Peyssonnelia sp. x
Kingdom: Animalia

Phylum Species

Porifera Aaptos aaptos x x

Agelas oroides x

Aplysina cavernicola x x x

Axinella damicornis x x x

Axinella polypoides x x x

Axinella sp. x x x x

Axinella verrucosa x x

Chondrosia reniformis x

Cladocroce fibrosa x

Clathrina clathrus x

Dysidea sp. x

Haliclona magna x

Haliclona poecillastroides x x x x

Hemimycale sp. x

Hexadella pruvoti x x x

Hexadella racovitzai x x x

Spongia lamella x x

Spongia officinalis x

Pleraplysilla spinifera x

Poecillastra compressa x

Oscarella sp. x

Petrosia ficiformis x

Sarcotragus foetidus x

Tethya sp. x

Cnidaria Alcyonium acaule x x x

Alcyonium coralloides x x x

Alcyonium palmatum x x

Antipathella subpinnata x x x

Antipathes dichotoma x x

Caryophyllia sp. x

Cerianthus membranaceus x x x

Corallium rubrum x x x

Dendrophyllia cornigera x x x x

Eunicella cavolinii x x x

Eunicella singularis x
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Eunicella verrucosa x x x x

Funiculina quadrangularis x x x

Leiopathes glaberrima x

Leptogorgia sarmentosa x x x x

Paramuricea clavata x x x x

Parantipathes larix x

Parazoanthus axinellae x

Pennatula phosphorea x

Pennatula rubra x x

Solmissus sp. x

Switfia sp. x

Villogorgia bebrycoides x

Mollusca Eledone cirrhosa x

Loligo sp. x

Neopycnodonte cochlear x x

Octopus salutii x

Octopus vulgaris x

Pteria hirundo x x

Peltodoris atromaculata x x

Anellida Bonellia viridis x x x x

Filograna/Salmacina complex x

Myxicola sp. x

Myxicola infundibulum x

Protula sp. x

Sabella sp. x

Sabella spallanzanii x

Serpula vermicularis x

Artrhopoda Latreillia elegans x

Macropipus tuberculatus x

Munida sp. x x x x

Pagurus prideaux x x

Palinurus elephas x x x x

Plesionika gigliolii x

Plesionika sp. x

Brachiopoda Gryphus vitreus x x

Bryozoa Myriapora truncata x

Reteporella sp. x x

Turbicellepora avicularis x

Smittina cervicornis x

Myriapora truncata x

Pentapora fascialis x

Reteporella grimaldii x

Schizomavella mamillata x
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Echinodermata Amphiura sp. x

Anseropoda placenta x

Astrospartus mediterraneus x x x

Centrostephanus longispinus x x x

Echinaster sepositus x x

Echinus melo x x

Hacelia attenuata x x x

Holothuria forskali x x x x

Holothuria poli x

Holothuria sp. x x x x

Leptometra phalangium x

Marthasterias glacialis x

Parastichopus regalis x x x

Peltaster placenta x x

Spatangus purpureus x

Chordata Acantholabrus palloni x x

Anthias anthias x x x x

Argentina sphyraena x

Aulopus filamentosus x x

Benthocometes robustus x x

Capros aper x x x

Chlorophthalmus agassizi x

Ciona intestinalis x

Ciona sp. x

Clavelina sp. x

Coelorinchus caelorinchus x

Conger conger x x

Coris julis x

Diplodus vulgaris x

Gadiculus argenteus x x

Halocynthia papillosa x x x x

Helicolenus dactylopterus x x

Lappanella fasciata x

Lepidorhombus boscii x x

Lepidorhombus whiffiagonis x

Lesueurigobius friesii x

Lophius piscatorius x

Macroramphosus scolopax x x x

Mullus barbatus x

Mullus surmuletus x

Muraena helena x x x

Pagellus acarne x

Pagellus bogaraveo x x
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Phycis blennoides x

Phycis phycis x x x x

Scorpaena elongata x

Scorpaena porcus x

Scorpaena scrofa x x

Scorpaena sp. x x x x

Scyliorhinus canicula x

Seriola dumerili x x

Serranus cabrilla x x x x

Serranus hepatus x x

Spicara maena x

Spicara smaris x

Symphodus mediterraneus x

Scyliorhinus sp. x

Trachurus sp. x

Zeus faber x
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279

280

281 Fig. 3. Percentage taxa composition of the investigated communities: (A) Dramont, (B) Monaco, (C) 

282 Bordighera, (D) Arma di Taggia and (E) Bergeggi.

283

284 Cnidarians accounted for 22 species, 11 of which can be ascribed to structuring arborescent taxa 

285 settling hardgrounds (2080 colonies) (Table 3). Four such arborescent species (three gorgonians and 

286 one scleractinian) represented  > 97% of the total records, with Eunicella cavolinii being the most 

287 representative (42%) (Table 3). Three species, E. verrucosa, Leptogorgia sarmentosa and 

288 Paramuricea clavata, occur in all canyon sytems, except Bergeggi, while Dendrophyllia cornigera 

289 was not detected in Monaco (Table 3). 

290
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291 Table 3. Cnidarian diversity and abundance in Ligurian canyon systems; the five most representative 

292 species are noted in bold, while the asterisk refer to the structuring taxa. 

Cnidarian species
Colonies 

total 
number

Dramont Monaco Bordighera Arma di 
Taggia Bergeggi

Alcyonium acaule 3 1 1 1
Alcyonium coralloides 13 1 1 11
Alcyonium palmatum 12 1 10 1

Antipathella subpinnata* 39 6 26 7
Antipathes dichotoma* 6 1 5

Caryophyllia sp. 3 3
Cerianthus membranaceus 5 2 3

Corallium rubrum* 287 142 49 96
Dendrophyllia cornigera* 173 6 157 1 9

Eunicella cavolinii* 881 244 331 306
Eunicella singularis* 1 1
Eunicella verrucosa* 267 31 64 148 24

Funiculina quadrangularis 67 5 61 1
Leiopathes glaberrima* 2 2

Leptogorgia sarmentosa* 6 2 1 1 2
Paramuricea clavata* 417 74 4 301 38
Parantipathes larix* 1 1

Parazoanthus axinellae 292 292
Pennatula phosphorea 9 9

Pennatula rubra 3 2 1
Swiftia sp. 2 2

Villogorgia bebrycoides 1 1
TOTAL 2,490 514 81 1,091 785 19

293

294 Some differences appear in the composition of the structuring cnidarians observed at canyon heads 

295 and continental shelf (Fig. 4). Both situations share eight conspicuous, arborescent species;  

296 Antipathes dichotoma and Antipathella subpinnata were only observed in the canyon heads, whereas, 

297 E. singularis, Leiopathes glaberrima, and Parantipathes larix were detected only on the continental 

298 shelves (Fig. 4). 
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301 Fig. 4. Density (n° colonies m-2) of the structuring species in the canyon heads (A) and on the 

302 continental shelves (B). 

303

304 The occurrence of coral forests relate differently to the abiotic variables in the five study sites. At 

305 Arma di Taggia, structuring colonies were found between 47 – 93 metres depth on substrates with a 

306 slope range of 6° - 50°. At Bergeggi, structuring species were observed between 229 – 394 metres 

307 depth, with slopes of 29° - 41°. At Bordighera, structuring species were observed between 117 - 310 
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308 metres depth along slopes ranges of 22° - 47°. Structuring cnidarians in Dramont were identified 

309 between 64 – 287 metres depth on substrates with an inclination range of 6° - 62°. Finally, at Monaco 

310 the structuring species were found between 84 - 128 metres depth over slopes of about 14°. On 

311 average, our data show that 95% of the structuring cnidarian colonies in canyons’ heads mainly 

312 settled in correspondence of slope range values of 6 °- 61 °, whereas, on the continental shelf, 97.6% 

313 of the colonies occurred on sites with slope range values of 7° - 49°. 

314 Various parameters have been gathered concerning the vulnerability of the most common structuring 

315 species in the five areas. Monaco and Bordighera canyon systems showed the highest percentage of 

316 impacted frames (58% and 47%, respectively), followed by Arma di Taggia (26%), Dramont and 

317 Bergeggi (20% and 12%). Despite this, Monaco showed no frames with entangled colonies; a 

318 relatively low percentage was observed in all other canyons with the exception of Bordighera (17%).

319 A total of 553 impacted colonies were counted, divided into 72% of entangled specimens, 21% of 

320 epibiotic and 31% of necrotic ones. When considering the single species, the ones mostly interested 

321 by these phenomena are P. clavata, E. cavolinii, E. verrucosa, D. cornigera, and C. rubrum, with 

322 site-specific differences. In Arma di Taggia shelf, 67% of red coral colonies are entangled, while P. 

323 clavata and E. verrucosa showed the highest percentage of overgrown and necrotic colonies (Fig. 

324 5A-C). Significant necrosis signs were observed only in this site. P. clavata colonies are usually 

325 colonized by the serpulid Filograna spp., whose presence and degree of coverage (about 11%), 

326 however, is considered normal. E. verrucosa colonies are commonly colonized (about 10% of the 

327 surface) by the parasitic soft coral Alcyonium coralloides and sometimes by hydroids. In the 

328 Bordighera Canyon, E. cavolinii is the species most affected by the epibiosis phenomena (Fig. 5B): 

329 colonies are usually covered by the A. coralloides or hydroids for nearly 40% of their surface. D. 

330 cornigera, instead, is observed to be the most frequently entangled in lines (Fig. 5A). In the Bergeggi 

331 Canyon, few species are affected by epibiosis and necrosis phenomena, as well as entanglements 

332 (Fig. 5A-C). 
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334 Fig. 5. Percentage of colonies showing entanglement (A), epibiosis (B) and necrosis (C) .

335

336 At  Dramont P. clavata and E. verrucosa displayed the largest percentage of overgrown colonies 

337 (Fig. 5B), almost all of them being colonized by A. coralloides or hydroids covering the gorgonians 
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338 surfaces for over 40%. High percentages of entangled colonies concerned E. cavolinii and C. rubrum 

339 (Fig. 5C). Finally, the Monaco canyon system hosted the least compromised coral forests (Fig. 5A-

340 B).

341 Regarding necrosis, the largest number of necrotic colonies were found in the Arma di Taggia site 

342 where P. clavata was the species most affected by the phenomenon (Fig. 5C). A single colony of E. 

343 verrucosa entirely necrotic was observed in Monaco (Fig. 5C).

344  

345 Marine litter: typologies and distribution

346 The presence of marine litter was widely registered along the paths of the twelve ROV dives carried 

347 out in the canyons (Table 4; Fig. 6). 

348

349

350

351 Fig. 6. Examples of Derelict Fishing Gears: (A) lost trammel net in the Bordighera Canyon; (B) lost 

352 trammel net in the Arma di Taggia site; (C-D) lost fishing lines in the Arma di Taggia site. Scale 

353 bar= 10 cm.
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354 A total of 146 items were found in the study areas, accounting for 85% of DFGs (divided into fishing 

355 nets (57%), lines (12%) and ropes (16%)). The remaining 15% is related to general urban litter, 

356 mainly plastic (12%), followed by glass and metals.

357 None of the five canyons investigated were free of DFGs, however, some differences were reported 

358 among sites in terms of litter density per hectare: the site with the highest density of litter was 

359 Bergeggi, followed by Monaco and Bordighera (Fig. 7). DFGs are well represented in the sites of 

360 Bergeggi and Bordighera, while urban litter is more abundant in Monaco. 

361 Marine litter also was related to the considered environmental variables. In the Dramont Canyon, 

362 litter was found between 68 - 227 m depth, with slope range from 23° to 44°. In the Monaco Canyon, 

363 litter was found between 95 - 127 m with a slope values of about 13°. In the Bordighera Canyon, 

364 litter was observed between 62 - 300 m with slope range from 15° to 34°. In Arma di Taggia site, 

365 litter was found between 47 - 93 m over slope range from 9° to 21°, while in the Bergeggi Canyon, 

366 litter was observed between 229 - 434 m with slope range from14° to 44°.

367

368 Table 4. Number of marine litter items observed along the ROV dive tracks. Codes from Galgani et 

369 al. (2015) of the categories are reported in brackets.

Canyon  System ROV dive
Fishing nets

(A.6)
Fishing lines

(A.7)
Fishing ropes

(A.9)
Metals

(C)
Glass
(D)

Other
(I)

9 4 2
10 4Dramont

11 3
Monaco 12 4 1 7

4 28 1 2Bordighera
5 38 1
1 5 3
2 4 2

Arma di Taggia

3 2 8 3
6 1 7 1 1
7 6

Bergeggi

8 7 1

370
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372 Fig. 7. Density of marine litter items (n° litter items ha-1) observed along the path of the ROV dives. 

373

374 A representation of the partial correlations between DFGs, occurrence of structuring cnidarians, 

375 depth, distance from the coast and from the nearest port is shown in Fig. 8 for the whole dataset, and 

376 in Fig. 9A-E for each canyon. In both, positive correlations are displayed in blue, and negative 

377 correlations in red colours. The correlation values that are not statistically significant (p-value > 0.05) 

378 are not displayed.

379 Focusing on DFGs, the matrix showing the partial correlations calculated on the whole ROV dataset 

380 (Fig. 8) highlights that: 

381  the presence of fishing nets is negatively partially correlated with that of D. cornigera (r = - 

382 0.25), E. verrucosa (r = - 0.23), A. subpinnata (r = - 0.20), A. dicothoma (r = - 0.15), E. 

383 cavolinii (r = - 0.14), L. sarmentosa (r = - 0.12) and L. glaberrima (r = - 0.12). Moreover, the 

384 fishing nets are positively correlated with depth (r = 0.42) and negatively correlate with the 

385 distance from the nearest port (r = - 0.25), the distance from the coast (r = - 014) and the 

386 presence of ropes (r = - 0.23);
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387  the presence of fishing lines is not significantly correlated with the presence of any species, it 

388 is correlated negatively with depth (r = - 0.14) and positively with the distance from the coast 

389 (r = 0.20);

390  the presence of ropes is negatively correlated with that of A. dicothoma (r = - 0.29), L. 

391 glaberrima (r = - 0.29), D. cornigera (r = - 0.24) and P. larix (r = - 0.21). In addition, the 

392 presence of ropes is positively correlated with depth (r = 0.52) and the distance from the coast 

393 (r = 0.20), and it is negatively correlated with the presence of fishing nets (r = - 0.23).
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395 Fig. 8. Partial correlations matrix calculated on the whole dataset. 

396

397 Regarding the partial correlations of DFGs calculated for each canyon system, the matrices of Fig. 9 

398 point out that:

399  in the Dramont Canyon (Fig. 9A) the presence of fishing nets is negatively correlated with 

400 that of A. dicothoma (r = - 0.54) and D. cornigera (r = - 0.41), and is positively partially 

401 correlated with depth (r = 0.60);
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402  in the Monaco Canyon (Fig. 9B) there are no statistically significant correlations.

403  in the Bordighera Canyon (Fig. 9C) the presence of fishing nets is negatively correlated with 

404 that of D. cornigera (r = - 0.33), E. verrucosa (r = - 0.25) and A. subpinnata (r = - 0.23);

405  in the Arma di Taggia site (Fig. 9D) the presence of fishing nets is negatively correlated with 

406 that of C. rubrum (r = - 0.24). The presence of fishing lines is negatively correlated with that 

407 of E. verrucosa (r = - 0.32) and E. cavolinii (r = - 0.29), with depth (r = - 0.30) and presence 

408 of ropes (r = - 0.25). The latter is also negatively correlated both with the presence of C. 

409 rubrum (r = - 0.25) and of fishing lines (r = - 0.25). 

410  in the Bergeggi Canyon (Fig. 9E) the presence of fishing nets is negatively correlated with the 

411 presence of D. cornigera (r = - 0.41) and the presence of ropes (r = - 0.46); the presence of 

412 ropes is negatively correlated with the presence of D. cornigera (r = - 0.66), L. glaberrima (r 

413 = - 0.66), A. dicothoma (r = - 0.65), P. larix (r = - 0.55) and with the presence of fishing nets 

414 (r = - 0.46).
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420

421

422 Fig. 9. Partial correlations matrices calculated for each sites. (A) Dramont, (B) Monaco, (C) 

423 Bordighera, (D) Arma di Taggia and (E) Bergeggi.

424

425 Regarding the five most representative species (Table 3), the partial correlations underline that:

426

427  C. rubrum occurrence is mostly hampered by fishing nets and ropes in Arma di Taggia site 

428 (Fig. 9D) and does not show any statistically significant correlation in the aggregate data (Fig. 

429 8) and in Bordighera (Fig. 9C) and Dramont canyons (Fig. 9A);

430  D. cornigera presence is mostly affected by fishing nets and ropes in the aggregate data (Fig. 

431 8) and in Bergeggi Canyon (Fig. 9E) and by fishing nets both in Bordighera (Fig. 9C) and 

432 Dramont canyons (Fig. 9A). It does not show any statistically significant correlation in the 

433 sites of Arma di Taggia (Fig. 9D) and Monaco (Fig. 9B);
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434  E. cavolinii is mostly affected by fishing nets in the aggregate data (Fig. 8), by fishing lines in 

435 the Arma di Taggia site (Fig. 9D), and does not show statistically significant correlation both 

436 in Bordighera (Fig. 9C) and Dramont canyons (Fig. 9A);

437  The presence of E. verrucosa presence is negatively correlated with that of fishing nets in the 

438 aggregate data (Fig. 8) and in Bordighera Canyon (Fig. 9C), with that of fishing lines in the 

439 Arma di Taggia site (Fig. 9D), and does not show statistically significant correlation in the 

440 canyons of Dramont (Fig. 9A) and Monaco (Fig. 9B).

441  P. clavata presence does not show statistically significant correlations in the aggregate data 

442 matrix (Fig. 8) and in none of the matrices of the canyons where it was observed (Fig. 9A, B, 

443 C and D).

444

445 Discussion

446 A better understanding of the biological and ecological role as well as of threats and vulnerability of 

447 deep-sea environments such as canyons, is crucial for their sustainable governance. Only a limited 

448 number of the over 500 canyons recorded for the Mediterranean Sea (Würtz, 2012) has been 

449 investigated for their resident biota. With respect to the Western Mediterranean, the Spanish and 

450 French canyons are among the best known with respect to sessile macro- and megabenthos (Orejas et 

451 al., 2009; Gori et al., 2013; Fabri et al., 2014), while lesser is known for Ligurian canyons (Tunesi et 

452 al., 2001; Fanelli et al., 2017). The Ligurian region comprehends 24 major canyons, out of 19 are 

453 along the Italian coasts, one in Monaco and four along the French coastline (Würtz, 2012; Fabri et 

454 al., 2014). In this context, this study represents the first description of the deep assemblages of five 

455 Ligurian canyons’ head and adjacent shelf areas.

456 Of the five investigated topographic features, all except one (Bergeggi), showed rich megabenthic 

457 communities mainly dominated by arborescent anthozoan forests, recognized as highly valuable and 

458 complex Mediterranean ecosystems both along the continental shelf and in deeper areas (Bo et al., 

459 2015; Gori et al., 2017; Chimienti et al., in press). This situation is related to a higher occurrence of 
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460 hardgrounds in those canyons with a shallower canyon head; hard sloping substrates are considered 

461 preferential habitats for coral forests formed by dense aggregations of gorgonians and black corals 

462 (Gori et al., 2017). Additionally, it has to be noted that the deeper depth range investigated in 

463 Bergeggi was mainly outside the bathymetric distribution interval of the main recorded species, E. 

464 cavolinii, E. verrucosa and P. clavata.

465 A great effort was dedicated in investigating the structure, habitat preference and environmental 

466 status of the coral forests. The assemblages are multi-specific, mainly composed of gorgonians and 

467 only occasionally by antipatharians. Species show distinct habitat preferences: on average, in the 

468 canyon heads forests are found on moderately sloped sites, whereas, on the continental shelf they 

469 thrive on flatter surfaces. Slope and depth are among the abiotic drivers well recognized as 

470 environmental constraints of benthic settling that control the distribution of large filter-feeders (e.g.: 

471 Mortensen and Buhl-Mortensen, 2004; Davies and Guinotte, 2011; Angeletti et al., in press, Lo 

472 Iacono et al., in press): the mean slope values found are probably a compromise in relation to the 

473 local current movements, allowing specimens to prevent sedimentation and ensure a correct exposure 

474 to the water flow for the food supply. Moreover, slope can be considered an important factor in 

475 providing protection from bottom trawling, because this kind of fishing cannot be carry out on 

476 sloping sea bottoms (Fabri et al., 2014). Canyons, as privileged environments for deep hydrodynamic 

477 circulation, are generally considered good fishing grounds (Revenga Martinez de Pazos, 2012). This 

478 assumption is based on the fishing footprints available for canyon ecosystems, but can be derived 

479 also on the base of the well-recognized role of animal forests in supplying food and protection 

480 attracting a rich associated fauna, including fish of commercial interest, thus enhancing the fishing 

481 exploitment of these areas (Cerrano et al., 2010; D’Onghia et al., 2012; Bo et al., 2014; Galgani et 

482 al., 2018). The occurrence of steep flanks and rocky outcrops in canyon areas (Fourt et al., 2013) 

483 enhances the settling of coral forests that, indirectly, enhance fishing effort. Because of their steep 

484 profiles, canyons are generally protected from bottom trawling, but, on the other hand, are highly 
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485 exploited by artisanal and recreational fishermen, especially in the Ligurian context in which the 

486 canyons’ heads are relatively close to the coastline, hence accessible. 

487 This study confirms the vulnerability of such ecosystems to fishing activities as demonstrated by the 

488 high frequency of occurrence of DFGs in all investigated canyons and a high rate of entanglements 

489 especially for large arborescent species (P. clavata) and fragile, calcareous ones (D. cornigera and C. 

490 rubrum). As previously observed, the size of the colonies as well as the complexity of their canopies 

491 or the fragility of their skeletons, greatly affect the catchability of conspicuous, structuring species, 

492 hence their vulnerability (Sampaio et al., 2012; Bo et al., 2014; Mytilineou et al., 2014; Cau et al., 

493 2017). The fragility of these species and the risk for their habitats due to the fishing activities 

494 pressure, clearly emerged from the many negative indexes of the partial correlations calculated 

495 between the presence of the species and that of the DFGs (Figs. 8 and 9A-E). This result points out 

496 that the presence of all the species, with the exception of P. clavata and E. singularis, is negatively 

497 affected by that of one or more types of DFGs. Considering the aggregate data (Fig. 8), the fishing 

498 nets, that are the most numerous DFGs, seem to have the greatest impact. However, in the Bergeggi 

499 Canyon and Arma di Taggia shelf, the DFGs that are more representative, and that have the major 

500 number of negatively correlation with the occurrence of the species, are ropes and fishing lines, 

501 respectively. Every canyon has a predominant DFGs typology, but whatever it is, its presence is 

502 negatively correlated with that of one or more species, with the exception of Monaco where no 

503 meaningful correlations were found. In the case of P. clavata, one of the most entangled species, the 

504 partial correlation matrices are not statistically significant regarding the co-occurrence of specimens 

505 vs  DFGs. Considering that 1) in the studied areas specimens are surely affected by the presence of 

506 DFGs (percentage of entangled specimens); 2) respect to the overall population, the colonies highly 

507 damaged (presence of necrosis and/or epibiosis) are a small number; 3) no evidence of broken 

508 colonies were found; and 4) the presence of the P.clavata is not correlated with the presence of 

509 DFGs, we can speculate that P. clavata could have a certain degree of resilience respect to the fishing 
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510 activities, probably due to its flexible skeleton. DFGs, also, were found in sites moderately sloped 

511 which indicate the presence of rocky bottoms where the nets remain entangled.

512 The contribution of generic urban trash to the observed litter is minimal, whilst the majority is 

513 attributable to DFGs, especially nets and lines. Our results agree well with published results 

514 regarding the continental platform and slopes in the Mediterranean Sea (Fabri et al., 2014; Bo et al., 

515 2014; Angiolillo et al., 2015; Cau et al., 2017). The Bordighera canyon system appears to be the 

516 most affected in respect to the abundance of litter and its impact on cnidarian colonies, followed by 

517 Arma di Taggia and Dramont. The Monaco canyon system is the less impacted by fishing litter, 

518 likely because of a reduced fishing effort there operated by the small local fleet, what guarantees the 

519 protection of its coral forests. Still, major differences are reported between Italian and French sites, 

520 probably ascribable to different socio-economic and cultural approaches to fishing activities, as well 

521 as to the body of the local fleets, besides local physiographic differences in the various canyon 

522 systems that may influence the actual exposure to fishing malpractices for their benthic ecosystems. 

523 A similar difference was highlighted by Fabri et al. (2014) when comparing the abundance of litter 

524 and typology of material between the Gulf of Lion’s canyons and those in the French Ligurian Sea. 

525

526 Conclusions

527 We have identified the occurrence of vulnerable coral forests in canyon systems and adjacent shelves 

528 of the Ligurian Sea. Although these canyon systems share a number of arborescent cnidarian species 

529 in common, they also display local differences in their compositions. Many such environments 

530 appear impacted at various degree by fishing, especially with respect to the local abundance of 

531 derelict fishing gears. We urge to implement specific abatement measures aimed at containing 

532 malpractices in the use of small-scale professional fishing gears in submarine canyons as well as 

533 promoting the identification of “Ecologically or Biologically Significant Marine Areas (EBSAs)” to 

534 protect and include in basin-scale protection networks. 
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