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Abstract. BiPd is a noncentrosymmetric superconductor with Dirac-like surface states on both 

(010) and (0  0) faces. The Dirac cone on (010) surface is intense and appears at 0.66 eV 

binding energy. These states have drawn much attention due to contradictory reports on 

dimensionality and the momentum of these Dirac fermions. We have studied the properties of 

these Dirac fermions using varied photon energies and different experimental conditions. The 

behavior of the Dirac cone is found to be two-dimensional. In addition, we found few more 

surface states appearing at higher binding energies compared to the Dirac cone. 

1.  Introduction 

 

Topological insulators host symmetry protected states at the surface of band insulators. Bi2Se3 is one 

of the most studied topological insulators [1-4]. Efforts have been made to find such surface states in 

superconductors which have significant fundamental and technological interests. BiPd is proposed to 

be one such example which is a noncentrosymmetric superconductor with superconducting transition 

temperature of 3.8 K [5,6]. Extensive photoemission studies have shown that single crystalline BiPd 

harbors interesting surface and bulk electronic structure and the Dirac like surface states appear on 

both (010) and (0  0) surfaces [7-11]. Spin-resolved photoemission measurements [8] have confirmed 

the spin-polarization of the surface states appearing on (010) face. Scanning tunneling spectroscopy 

study [12] shows presence of surface states above the Fermi level also. It has been found [13] that the 

surface states appearing below the Fermi level are located at   , while those appearing above the Fermi 

level are located at    (see figure 1(a)). The Dirac like surface states on (010) surface lie at 0.66 eV 

binding energy and are imaged clearly in ARPES experiments. But the states on (0  0) surface lie near 

the Fermi level in the vicinity of  the bulk states and are not resolved properly in ARPES experiments. 

Because of twinning in the BiPd single crystals, simultaneous ARPES imaging of both (010) and 
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(0  0) surfaces is possible [10]. At the same time it becomes difficult to tell on which face a particular 

surface state resides. 

 

The Dirac like states which appear at 0.66 eV binding energy on (010) face have drawn much 

attention due to conflicting reports about its properties. Both dimensionality and momentum of these 

bands are under scrutiny. While density functional theoretic calculations conclude it to be two-

dimensional, photon energy dependent ARPES [9] shows its possible three-dimensional nature. Also, 

few studies report the Dirac point to be located at the centre of the surface Brilloiun zone    [8,9], 

while others report it to be at the edge of the surface Brillouin zone     (see figure1(a)) [10,13]. In this 

work [11], we have shown photon energy dependent results, which are consistent with the two-

dimensional nature of the Dirac band. Apart from this Dirac state, we have discovered few more 

surface states.   

2.  Experimental Details 

 

Single crystals of BiPd were prepared using modified Bridgman method by Joshi et. al. [5]. Good 

crystallinity was ensured by Laue diffraction method. Samples were cleaved inside the vacuum 

chamber along the b axis for ARPES measurements. ARPES were carried out in I05 beamline, 

Diamond light Source, UK and VUV beamline, Elettra, Italy. Total energy resolutions in the Diamond 

light source and Elettra were 5 meV and 10 meV, respectively. 

3.  Results and Discussions 

 

To find the momentum and dimensionality of the Dirac bands, experiments were performed in two 

experimental geometries using various photon energies. Sample position was optimized at one photon 

energy to get a clear image of the Dirac point, i.e. without any energy gap at the Dirac point. But as 

the photon energy is varied, an energy gap at the Dirac point opens up in both cases. The energy 

 

 

Figure 1. (a) Surface Brillouin zone of BiPd. Energy gap at the Dirac point is shown for two sets of data using 

the sample position optimized at (b) 74 eV and (c) 35 eV photon energies. Zero energy gap can be obtained by 

optimizing the sample at each photon energy. Spectra taken along   -  -   at (d) 35 eV, (e) 40 eV, (f) 55 eV, and 

(g) 74 eV photon energies are shown. 
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gaps at the Dirac point obtained at different photon energies for two sets of measurements are shown 

in figures 1(b) and (c). The gap shows opposite trends for the two sets. The gradual opening of energy 

gap with photon energy may indicate a possible three-dimensional character of the Dirac band. It is 

known that the properties of a three-dimensional band show repetition as the probing photon energy is 

varied. Because the photon energy is directly linked to the out-of-plane momentum kz.  But our study 

over a large photon energy range spanning several Brillouin zones shows no periodicity in the gap 

value which is clear from figure 1(c). Moreover, one can make the gap zero by reoptimizing the 

sample position at different non-equivalent photon energies. 

 

Opening of energy gap at the Dirac point can also happen due to the sample geometry. Features 

appearing at    point will remain unchanged even if the photon energy is changed. Finite momentum of 

the Dirac point will correspond to different emission angle if the photon energy is changed. Thus, the 

above observations suggest that the position of the Dirac point maybe away from the   -point. By 

analyzing the angular position of the Dirac point in the spectrum at various energies we found that the 

Dirac cone on (010) surface is located at    [11]. After accounting for the gap arising due to the sample 

geometry, we get zero-gap condition at each photon energy. Evidently, the bandgap at the Dirac point 

is not an inherent property of the sample. The sample position can be optimized at different photon 

energies to image the Dirac point without any energy gap. Figures 1(d)-(g) show the Dirac cone with 

zero-gap at few photon energies. This supports the two-dimensional nature of the Dirac band. 

 

The dispersion of the Dirac band very quickly deviates from the linear dispersion as is clear from 

figures 1(d)-(g). Linear energy dispersion is maintained only very close to the Dirac point. It also 

looks very different from parabolic dispersion. Hence the consideration of the mass term, which is 

quadratic in momentum, is important; but it also cannot explain the dispersion well. Quadratic mass 

term and Rashba-like linear term together give rise to a parabolic dispersion. This suggests the 

importance of higher-order spin-orbit terms in the Hamiltonian of the Dirac states [14,15]. We find 

that the spin-orbit terms up to third order in momentum can explain all the experimental observations 

well [11]. 

 

Figure 2. Spectra at (a) 30 eV, (b) 35 eV, (c) 40 eV, and (d) 45 eV. DC1 and DC2 in (b) denote Dirac cones on 

(010) and (0  0) surface, respectively. SS1-SS5 denote additional surface states. 

 

Next, we show that apart from the well-known Dirac cone there exist several other surface states in 

single-crystalline BiPd. Spectra collected at various photon energies are shown in figures 2(a)-(d). In 



Strongly Correlated Electron Systems (SCES) 2020
Journal of Physics: Conference Series 2164 (2022) 012062

IOP Publishing
doi:10.1088/1742-6596/2164/1/012062

4

 

 

 

 

 

 

figure 2(b), DC1 denotes the Dirac cone on (010) surface and DC2 is the Dirac cone on (0  0) surface. 

Apart from DC1 and DC2 we see that several other states labeled as SS1-SS5 are present in the 

spectrum.  All of these states are present in the spectrum of every photon energy shown in figure 2. 

Binding energies of the bands SS1-SS5 do not vary as the photon energy is changed suggesting that 

they are two-dimensional in nature [11]. Also, these bands are not seen in the bulk band structure 

calculations. These results suggest that these bands represent the surface states of BiPd. 

4.  Conclusions 

 

In summary, we have done photon energy-dependent ARPES on BiPd single crystals. The Dirac cone 

acquired using various photon energies and sample optimizations unambiguously suggest two 

dimensional behavior of the Dirac fermions and the Dirac point appears at   . In addition, we discover 

several other surface bands at higher binding energies. These results suggest coexistence of the Dirac 

fermions and the normal surface states in this system. The binding energy of the Dirac Fermions is too 

high to have significant role in the ground state properties of this system. 
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