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Abstract
The celestial microwave radiation is generated by various astrophysical sources. Measuring this radiation does not enable us to
immediately extract information about the sources, since the individual signals are superimposed to one another all over the
measurement bandwidth. Each source process radiates in accordance with a typical frequency-emission law, which, unfortunately,
is often unknown. Some blind technique should thus be used to separate the individual components from the total radiation. In this
paper, we apply a recently introduced approach, called Independent Factor Analysis (IFA), which models the sources as mixtures
of Gaussians. After checking the appropriateness of this model to our case, we briefly describe the IFA approach and show some
results from simulated but realistic data.
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1. Introduction
Astronomical microwave images carry important information about the Universe. Unfortunately, a radiometric
image taken at any working frequency is a superposition of radiations coming from different sources, and always
corrupted by measurement noise. The classical components of the microwave sky radiation are the cosmic
microwave background (CMB), the galactic dust radiation, the synchrotron radiation and the free-free radiation.
Each of these radiations has its own interest in cosmology or astrophysics. For example, the CMB temperature map
over the celestial sphere is a picture of the Universe at last scattering and would yield invaluable information to
estimate fundamental quantities, thus enabling cosmologists to assess competing theories. The problem is thus to
separate the individual radiation components from the total measured field. Since the spectral features of the
individual source emissions are normally not known, they should be separated by a blind technique. The problem is
further complicated by the presence of the sensor noise, which can be very strong and location-dependent. One
technique for blind source separation, namely, independent component analysis (ICA), has been exploited for
astrophysical image separation [Baccigalupi et al., 2000]. Owing to the particular data model adopted, blind
separation by ICA techniques  has only been shown to be feasible and reliable when noise is negligible. Strong noise
components affect both the output noise level and the quality of the separation. The ICA procedure does not assume
any other information than mutual independence of the source signals, it implicitly assumes some particular form for
their statistical distributions and normally does not permit the introduction of any additional information. This forces
one to neglect useful information when, as in our case, something is known on the source distributions, the mixing
coefficients and the noise process.

In this paper, we adopt a method that is able to incorporate prior information about the sources in a very generic
way. This method is called independent factor analysis (IFA), and has been introduced recently [Moulines, et al.,
1997, Attias, 1999]. Attias proposes a Gaussian mixture model for the source densities (with the mixture coefficients
to be estimated), and provides a neural network architecture with an expectation-maximization (EM) learning
algorithm [Dempster et al., 1977]. Since noise is also taken into account in the data model, IFA offers a promising
alternative to ICA. Nevertheless, the basic IFA approach, as described in [Attias, 1999], is computationally
expensive, and this would complicate the problem when a considerable number of sources are to be separated.
Moreover, the fact that the learning algorithm is not guaranteed to converge to a global optimum suggests us that the
effectiveness of this approach could depend on the particular problem. The numerical studies on IFA reported in the
literature are only limited to some simple toy problems, and the potentials and the drawbacks of the technique are not
well understood yet. Our aim is thus to analyze the IFA features in the case of realistic data. Our data maps simulate
the ones expected from the Planck Surveyor Satellite, a mission that will be launched in 2007 by the European Space
Agency. The aim of this mission is to map, with unprecedented accuracy, the CMB radiation anisotropies over the
entire celestial sphere and on nine measurement channels in the millimeter and submillimeter-wave range, with
working frequencies from 30 to 857 GHz. Our data are totally synthetic or extrapolated from other data sets, with
different frequency ranges or spatial resolutions, but are considered realistic for the Planck application, especially as
far as the location-dependent noise maps are concerned. We constructed our mixture data on this basis and tested the
IFA technique against them.



2. Data and Noise Analysis
Before starting our numerical experimentation, we analyzed the amplitude distributions of our test signals in order to
see whether the mixture of Gaussians model proposed by the IFA approach is justified, and how many significant
Gaussians are to be expected for each source process.

Figure 1: Simulated CMB radiation map

The analysis we present here is related to the CMB, galactic dust and synchrotron radiations. According to the
standard cosmological theories, the CMB radiation should have a Gaussian distribution. Figure 1 shows a typical
CMB image generated synthetically. Much less is known about the statistical distribution of the other radiations we
are considering here. For galactic dust, existing sky maps obtained from different frequency channels have been used
as spatial templates, from which the specific emission values have been generated according to the hypothesized dust
emission process. A map of galactic dust radiation is shown in Figure 2.a. The related histogram is provided in
Figure 2.b, solid curve.

Figure 2 a: Simulated galactic dust radiation map Figure 2 b: Histogram for Fig. 2 a and related Gaussian
mixture model fit

It is clear from the histogram that the galactic dust exhibits a non-Gaussian behavior: the curve is multimodal and
unsymmetric. We checked the feasibility of a mixture of Gaussians model for this spatial distribution, that is, we
tried to fit the density
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to the existing histogram using an EM algorithm. The resulting density is shown in Figure 2.b, dashed curve. We
repeated our experiments on 15 different images of the same size, and in all cases we have seen that the Gaussian
mixture model provides very good fits using less than five components. The simulated galactic synchrotron maps
have been obtained by extrapolating existing data, both for spatial resolution and for spectral emission. Figure 3.a
shows one such map. The related histogram is given in Figure 3.b, solid curve. Again, we tried to fit the curve by a
Gaussian mixture using the EM algorithm. The result obtained by fitting a mixture of only four components is given



in Figure 3.b, dashed curve. These observations were repeated for many other radiation maps, showing that the
Gaussian mixture density is an efficient generic model for images of the type considered here. The measurement
noise is often assumed to be white, Gaussian and space-invariant. This is not always the case: in satellite radiometric
images, noise may not be space-invariant, since the antenna does not scan the sky uniformly. A typical noise map is
shown in Figure 4. For each measurement channel, our test maps have been constructed by combining some of the
available source maps and then adding one such noise realization. Each map has been considered as the product of a
frequency-independent spatial template and a specified function of the frequency, which is assumed unknown in the
separation process. The measured data have been simulated at the four working frequencies of the “low-frequency
instrument” that will be onboard the Planck spacecraft, i.e., 30 GHz, 44 GHz, 70 GHz and 100 GHz.

Figure 3 a: Simulated galactic synchrotron radiation
map

Figure 3 b: Histogram for Fig. 3 a and related Gaussian
mixture model fit

Figure 4: Typical location-dependent noise map

3. Independent Factor Analysis
For the case considered here, we can restrict our attention to a linear mixture model, described by:
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where Hij is the ij-th entry of a mixing matrix H, yi are the observations, xj are the sources and ni are the noise
realizations. In our application, the N-vector y is made of the instrument output maps at the N different channels, the
L-vector x collects the source spatial maps, the N-vector n contains the instrumental noise maps on all the channels,
which are assumed to be Gaussian and space-varying. The mixing coefficients in the L×N matrix H depend on the
frequency laws characteristic of the individual sources and on the frequency responses of the measuring instrument
on all the channels considered. We would like to obtain H and x from y. In the last decade, various efforts have been
made for the solution of this blind source separation (BSS) problem. In particular, the ICA approach assumes
statistical independence among the source functions, and solves the separation problem by optimizing some criterion
involving a separable joint density for the estimated sources. Studies on the related class of techniques have been
widely reported in the literature. However, ICA considers a highly idealized problem, and its performance
deteriorates as the noise increases [Attias, 1999]. Efforts have been made to include noise into the analysis:



Hyvarinen suggested employing a special class of noise-insensitive contrast functions [Hyvarinen, 1998]. However,
we still observed a deteriorating behavior when the noise level increases [Maino et al., 2001].

To remove these drawbacks, in [Moulines et al., 1997] it is suggested to model the sources with mixtures of
Gaussians, and employ an EM-based technique to estimate the mixing matrix and the source distribution parameters.
Attias named this formulation independent factor analysis [Attias, 1999]. An IFA algorithm is performed in two
steps: in the first one, the mixing matrix is learned, along with the noise covariance matrix and the source density
parameters. The adaptation of a Gaussian mixture model for the source densities makes the model analytically
tractable and yet flexible, and enables one to use the EM algorithm for the estimation of the parameters. In the
second step the sources are estimated using the posterior source densities obtained in the first step.

Figure 5: IFA data model

The data generation model assumed is depicted in Figure 5 [Attias, 1999]. The top layer of the network generates the
independent sources x following a mixture of Gaussians model, with parameters θ µ νi i q i q i qw
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xi of the source vector, where wi qi,  is the probability of generating xi from the qi-th Gaussian density, whose mean
and variance are µ i qi,  and ν i qi, , respectively. The joint density of vector x is thus:
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where wq, is a vector collecting all the probabilities wi qi,  and function G  is an L-dimensional Gaussian density
function with mean and variance vectors µq, Vq, respectively. The i-th element of the L-vector q is the index that
determines which component in the i-th mixture has generated the sample.

The sensor signals y are generated from the intermediate layer of the network, through the mixing matrix H and
the additive noise, which is zero-mean Gaussian with covariance matrix ΛΛΛΛ. The probability of generating a particular
sensor vector y given a source vector x is

  p( | ) ( , )y x y Hx= −G ΛΛ (4)

where G is now an N-dimensional Gaussian and, in general, ΛΛΛΛ  may depend on any particular sample of the data
vector realization; a space-varying noise can thus be easily modeled.

With some manipulations, on the basis of the data generation model and the Gaussian form of the source densities,
it is possible to derive the density p(y|W) of the data vector conditioned to the model parameters H, θ  and ΛΛΛΛ,
synthetically denoted by the vector W. The estimation of W is then performed by minimizing the Kullbach-Leibler
divergence between p(y|W) and the measured data density p0(y):
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where E is the averaging operator over the observed data.
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The model parameters are learned through a modified EM algorithm:
Maximization step:
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where 〈⋅〉 denotes the expectation operator.
Expectation step:

µ i q
i i i

i
i

Ep q x q

Ep q,
( | ) | ,

( | )
=

y y

y
(8)

ν µi q
i i i

i
i qi i

Ep q x q

Ep q, ,

( | ) | ,

( | )
= −

y y

y

2
2 (9)

w Ep qi q ii, ( | )= y (10)

All the quantities in steps (6)-(10) can be calculated from the probability densities evaluated on the basis of the data
model. No scheme is suggested in [Moulines et al., 1997] for the estimation of the sources, while in [Attias, 1999]
two schemes are suggested, namely, least squares and MAP estimation. For our experiments, we used the least
squares estimation scheme:
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where the posterior p(x|y,W) can be calculated from the parameters and the density functions already evaluated.

4. Numerical Experiments
We ran various simulations on ideal data (the source samples were extracted from Gaussian mixture densities and
uniform Gaussian noise was added), and found that the results in [Attias, 1999] were partly confirmed. When some
of the parameters to be estimated are fixed at their correct values, and thus the number of unknowns is small, we
observed a fast convergence to the optimal values. However, when all the parameters are left unknown, we observed
a significant degradation in performance.

To test the technique in more realistic situations, we used data maps constructed from source maps of the type
shown in Section 2. The first simulations we ran considered two measurement channels and two sources. We formed
mixtures of CMB and synchrotron and of CMB and galactic dust, with the frequency coefficients related to the 70
and 100 GHz channels, and added space-varying noise at a level of 3% of the CMB radiation values. We observed
that, when the mixture model parameters are fixed, for good starting points the algorithm finds the optimal H, and
the sources are recovered successfully, despite the presence of noise. In Figure 6, it is shown the worst case
examined, where the data contained CMB and dust radiation sources. When the mixture model parameters are also
unknown, the algorithm fails in convergence and gets stuck in a local minimum, due to the complicated error-
function surface.

This means that not all the promised improvements are achieved by IFA for the problem of separating radiometric
astrophysical images. We should note, however, that this technique allows us to include in the problem any prior
information on the source densities and any noise variance spatial configuration, thus avoiding some of the rigidities
of the ICA approaches.

Further study is needed to assess the performance of this technique. We are now starting to apply optimization
with simulated annealing instead of EM, to ensure global convergence.
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Figure 6: IFA experiment with two sources and two measurement channels, 3% noise. Left to right, top row, original
source maps; second row, measurement maps at 70 and 100 GHz; bottom row, estimated sources.
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