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Abstract

The paper starts out by recailing a constitutive equation of no-tension materials that accounts for thermal dilatation
and the temperature dependence of the material constants, Subsequently, a numerical method is presented for
solving, via the finite element method, equilibrium problems of no-tension solids subjected to thermal loads.
Finally, three examples are solved and discussed: a spherical container subjected to two uniform radial pressures

and a steady temperature distribution, a masonry arch subjected to a uniform temperature distribution and a

converter used in the steel and iron industry.
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1. Introduction

In many applications it is necessary to model the behaviour of solids not withstanding
tension in the presence of thermal dilatation. For example, molten metal production processes,
in particular integrated steel manufacturing, require refractory linings able to withstand the
thermo-mechanical actions produced by high-temperature fluids [1]. Ana]ysis of these
coverings is usually carried out by considering the refractory materials to be linear elastic,
though they are actually non-resistant to traction. Results obtained by applying such a
constitutive model are generally characterised by considerable tensile stresses and are thus quite
unrealistic.

However, there are many other engineering problems in which thermal dilatation must be
accounted for: consider, for example geological problems connected with the presence of a
volcanic caldera, such as that of Pozzuoli [2], or the influence of thermal variations on stress
fields in masonry bridges [3]. In many such cases the thermal variation is so high that the
dependence of the material constants on temperature cannot be ignored.

In [4] the authors present a constitutive equation for no-tension materials in the presence of
thermal expansion which accounts for the temperature-dependence of the material's constants.
In particular, under the hypothesis that the strain minus the thermal dilatation is infinitesimal,
explicit expressions for stress and inelastic strain are given, from which free energy, internal
energy and entropy are then obtained, and both coupled and uncoupled equations of the thermo-
mechanical equilibrium of a no-tension solid have been developed.

In this paper we recall the constitutive equation presented in [4] and, by limiting ourselves
to thermo-mechanical uncoupling, we propose a numerical method. for solution of the
equilibrium problem of solids not supporting tension that are subjected to thermal loads.

In Section 2 the solution to the constitutive equation proposed in [4] is calculated for the
three-dimensional case. It is assumed that the thermal dilatation is a temperature-dependent
spherical tensor, and that the total strain minus the thermal dilatation is the sum of two
components: an elastic part, on which the stress, negative semi-definite depends isotropically
and linearly, and an inelastic part, positive semi-definite and orthogonal to the stress. We
thereby obtain a non-linear elastic material conforming to a masonry-like material when no




temperature change occurs. The solution to the equation for plane stress problems is presented
in the Appendix.

By applying a procedure similar to that used in [5], it can be proved that the solution to the
equilibrium problem is unique in terms of stress, and independent of the particular loading
process chosen. This laiter result is necessary in order to justify application of incremental
numerical technigues that must usually be used because of the non-linearity of the constitutive
equation.

At the end of Section 2 the derivative of the stress with respect to the strain is explicitly
calculated for three-dimensional problems (the derivative for plane stress is reported in the
Appendix). This is needed in order to calculate the tangent stiffness matrix used in applying the
Newton-Raphson method for solution of the non-linear system obtained by discretising the

structure in question into finite elements.
The constitutive equation and the numerical techniques for solving the non-linear boundary-

value problem have been implemented in the finite element code NOSA [6].

In Section 3, the stress and displacement fields are explicitly calculated for a spherical
container subjected 1o two uniform radial pressures and a steady temperature distribution.
Finally, two problems are numerically solved by applying NOSA: a masonry arch subjected to
temperature changes and a converter used in the steel and iron industry.

2. The nomerical method

In this section, after recalling the constitutive equation of isotropic no-tension material in

the presence of thermal expansion introduced in [4], we present a numerical procedure for
solving the equilibrium problem via the finite element method. In the following, ée (6, 6,]

will be the current absolute temperature, with 8, > 0 and 6,€ [6,, 6,] the reference
temperature.

Let 7 be a three-dimensional linear space, and Lin the space of all linear transformations
from ¥ into ¥, equipped with the inner product AeB = tr (ATB), A, B € Lin, with AT the
transpose of A. Let us indicate as Sym, Sym+* and Sym-, the subsets of Lin constituted by
symmetric, symmetric positive semi-definite and symmetric negative semi-definite tensors,

respectively.
Let us now assume that the thermal dilatation due to a temperature change 6 - 8, is S(6)],

where 3 is a sufficiently smooth function, called thermal expansion, such that B(6,)=0,and 1

is the second-order identity tensor. When @ - 8, is small, the expression of thermal dilatation

. ap(6,)
can be written in the usual way, a(6 - 6,)1, where & = T

is the linear coefficient of

thermal expansion. Denoting E as the symmetric part of the displacement gradient, we assume
that tensor E - B(6)1 is O(6)!. The strain E - B(6)] is assumed to be the sum of a part E¢ and a

part E° positive semi-definite

I Given a mapping B from a neighbourhood of 0 in R into a vector space with norm i1, we write B(8) = O(6) if
there exist k > 0 and &* > O such that || B(8)ll < & |8 whenever |d < k'.



E - f(6)1 = E¢ + Ee | (2.1)

E2 e Sym*. (2.2)

Moreover, we suppose that the stress T, orthogonal to E@ and negative semi-definite, depends

linearly and isotropically on Ee,

TeEe=0, (23)

T ¢ Sym, (2.4)
_ _E@) ., v(8) ¢

+vie) "t Tovg) TEN | (2.5)

where Young's modulus £(6) and Poisson's ratio W(6) depend on the temperature and satisfy the

inequalities
E(0)>0, 0<wO) <05, foreachfe [6; 6;]. (2.6)

Tensor E¢ can be interpreted as fracture strain, because one can expect fractures in the regions

where E¢ is different from zero.
By a procedure similar to that used in [7], it is possible to prove that, given (E, 6) € Sym x
[6;, 621 and the functions f, E and v, the constitutive equation (2.1)-(2.5) has a unigue solution

(T, E9). Moreover, tensors E, S(0)1, Es, E¢.and T are coaxial, and the constitutive equation
(2.1)-(2.5) can be written with respect to the basis {q,, q,, q,} of the eigenvectors of E. Let
{e, €, e}, {a, a,, a;} and {1,, 1,, 1,} be the eigenvalues of E, E< and T, respectively,

with ¢, ¢, and e; ordered in such a way that ¢, < ¢, < e,. The quantities {a,, a,, a, } and
{#,, 1,, 13} satisfying (2.1)-(2.5) can be calculated as functions of e, - S(6), e, - 5O, e, -

B(6), and their expression has already been presented in [4). At this point, we recall the solution
to the constitutive equation (2.1)-(2.5) for three-dimensional problems; to this end let us define
[4] the following subsets of Sym x [8;, 65)
R ={(E, 0)12(e;- B8) +%0) (rE-3 6) <0}, (2.7)
Re={(E. O)le;-f6) 20}, (2.8)
Ra={(E,0)le;-B(0) <0, %6) (e - B(6) +2 (1+v6)) (e f(6)) 2 0}, (2.9)
Ra={(E, &)1 6) (e;- B6))+2(1+16)) (e2- f(6)) £ 0,

2(ez - f6)) + HO) (wE-3 f(6)) 2 0}, (2.10)




2v(8)

where we have put {8) = 1 2v(6)

and R, it clearly follows that in &3 and ®; we have ¢; < e; and ez < e3, respectively.

. 3
Given E - B(6)I, with spectral representation E(e,.- B(6)) q; ®q;,

i=]

. For later use, we observe that from the definition of %3

by solving the

constitutive equation (2.1) - (2.5), we establish that tensors E4 and T have the following

eXpressions

if (E, ) € &), then

__E©)
T 1+ v(0)

T

if (E, 6) € R, then
Es=E- B(0)1,

T=0;

if (E, 6) € Ry, then

{E-B(6)1+

v(B)
1-2v(6)

tr (E-B6) D1}

Es=[e;- f(6)+w6)(e;- B(9)] 4, ® q,

+[e3- B(0)+w6) (er- f(6)]a: ® q,

T=E(0)(e;-f(6) q ®q,;

if (E, ) € R4, then

1
ke = 1—v(6)

__E®)
T 1-viO)

[es- B(6) + (0) (e1 +e2-e3-B(ED] 4, ® a5 5

{[e;- B(8)+ vB) (e2- f(O))] a, ® q, +

[e2- B(6)+wv(0) (es-P(O)] a,®q, } -

(2.11)

(2.12)

(2.13)

(2.14)



We shall denote by T, the function T : Sym x [6;, 6] — Sym which associates the stress T =
T (E, 6) given in (2.1 1)-(2.14) o every (E, 6); T is an isotropict?), continuous, non-linear, non-
injective function, positively homogeneous of degree one and differentiable with respect to E in
the internal part of every region %. 7

The uncoupled equations governing the thermo-mechanical equilibrium of no-tension solids
in the presence of thermal variations have been set forth in [4], under the hypotheses that E,
B(6), B(6), E and 6 are O(8). In order to solve the equilibrium problems for masonry-like
solids by using the finite element method, we must consider loading processes and associated
incremental equilibrium problems.

As in the isothermal case [5], it is possible to prove that the numerical solution obtained by
using an incremental procedure is independent of the particular Joading process chosen: it
depends solely on the final assigned load, provided that the loading process considered is
admissible, in the sense specified as follows.

Let B be a body made of a no-tension material, S, and S, two subsets of the boundary 03
of B such that their union covers 8 and their interiors are disjoint. A loading process (f) =
[b(x, 1), B(x, 1), s(x, )], with b and @ defined on Bx[0, 7], and s defined on §, x[0,7 ], is
admissible if for each parameter ¢ € [0, 7 ] the corresponding boundary-value problem has a
solution, i.e. if there exists a triple [u(), E(#), T(#)] differentiable with respect to f, constituted
by stress field T, strain field E and displacement field u defined on the closure of B such that

they satisfy the equations

Vu+Va' '
E= "+2“ , (2.15)
divT +b =0, (2.16)
T = T'(E, 6), (2.17)

on B, and the boundary conditions
Tn=son S, (2.18)
u=1uonJS§, (2.19)

where n is the unit outward normal to S, and T an assigned displacement on S, %[0, 7 ].

We now turn to the numerical procedure used for finite element analysis of masonry solids.
Let w be a vector field such that w =0 on S, From (2.16) and (2.18) it follows that at every ¢,

the following equilibrium equation must be verified

2 Tisan isotropic function in the sense that T(QEQ", 8) = QT(E, 6)Q” for each orthogonal tensor Q, for each E
€ Symand 8 e [0, 6;].




jT-dev= js-wdA+jb-wdv. (2.20)
B 5 B

Since T depends non-linearly on E, we must also consider the following incremental

equilibrium equation

[{DET® )] )+ Vwa =

B
- js-wdA + jb-wdv - j{DeT(E,a)é}-deV, (2.21)
5 B B

where the dot denotes the derivative with respect to 7.
The finite element method allows us to transform the incremental equation (2.21) into a non-

linear system of algebraic equations which can be solved by means of a Newton-Raphson
procedure. By using standard methods, the incremental equation (2.21) can be transformed into

the evolution system

[Ki{a}={/} (2.22)
where { @ } is the vector of nodal velocities, matrix [K] is obtained from the relation
{c}-IK1{a}) = [{DET(EONE]}+VWdV, (2.23)
B
~ with {c} the vector of nodal values of field w, and finally,
{e}-{f1= js-wdA + jb-wdv - j{DgT(E,e)é YeVwav. (2.24)
Sf B ‘B

We assume that equation (2.20) holds in correspondence of 7, and that the body is therefore in
equilibrium; subsequently, we assign a load increment {Af} defined by means of relation

{c}-{Af} = J(s(r+Ar)—s(t))~wdA + _[(b(z+Ar)—b(r))-de
‘B

°f

- [{AVE6,)-T(E6))- VwaV, (2.25)
3

where 8, =6(t+Ar), 6, =0(1) . Itis easy 10 verify that the following equality



- [{T(E6,)-T(E6))) e VWav =
B

= f{@(Gz)[AE“]wag )ABT - AC[E-Ef1+3Ay B(6;)1 }+ VW aV (2.26)

B

holds, where we have

E©) v(6)

{T+

1+ v(6) l-2v(9)1®1}’

C(6) =

AC=C(8,) - C(6,),
Aﬁ: )8(92) - ﬁ(al)a

Ay =x(6,)- x(8),

E
3y = ,
Wy
AE* = E! —E?,

and E} and E] are the solutions to the constitutive equation corresponding to (E, 6,) and (E,

6,), respectively.
We then solve the linear system

[K(@){Aa) = {Af] 2.27)

and follow the iterative procedure described in [7].
In order to determine the matrix [K(a)] of system (2.27) while accounting for (2.23), the
derivative of the stress with respect to the strain must be calculated in the four regions ;.

For each E € Sym with eigenvalues ¢,, ¢,, e, and eigenvectors q,, q, . q,, let us consider

the orthonormal basis of Sym

0, =q,9®q,, 0,=q,9q,, 0,=q,9q,,

1

04=7—2——

1
(QI®‘]2+QZ®'~]1)=05EJ_E'(QJ®Q3+Q3®Q1), (2.28)

1
06""_\/"‘5 (Q2®Q3+ Q3®Q2)-



The fourth-order tensor DET(E,G) in the four regions % can be calculaied by accounting

for (2.11)-(2.14) and recalling that [5]

Dge, =0,
Die, =0, ,
Die, = 0, ;
D:0, = 0,80, +—— 0,00,
17 € L)
DO, = 0,®0, + 0, ®0,,
€~ € 276
1
DO, =— 0, ®0; + 0,®0,,

€3~ € € -6

where the operator A®B, with A, B € Lin is the fourth-order tensor defined by A®B[H] =

(B« H) A, forevery H € Lin.
For the derivative of T with respect to E we have

if (E, 6) € &, then

EO) YO ey, (2.29)

D.T0) = 7755 1-2v(6)

if (E, 6) € Ry, then

D.T(E,8 =0, (2.30)
if (E, 6) € s, then
D,T(E.6) =E6) {0, ® 0, -flélp—i;@ 0,80,
27 6
e, - B(O
f_';%l 0,90, 2.31)

3 1



if (E, 6) € Ry, then

T E(0)
D, T(E,0) = —2— ) ]
=10 21+ v(8)) (0, - 0,)8(0, - 0,)
1+v(8)
+ 1Ty 101 +0:,)8(0,+0,)+20,80,

e, + V(B)e, - B(O)(1+ v(6))
(] - V(B))(Es - 61)

0,80,

e, +v(B)e, = &1+ v(6))

0.20,), (2.32)
(1-v(8))e,s —€;) ¢ )

where I and O are the fourth-order identity tensor and the fourth-order null tensor, respectively.
Since in %3 and Ry we have e; < ¢; and e; < e3, respectively, the derivatives given in (2.31) and
(2.32) are well-defined. '

3. Numerical examples

Three different examples are dealt with in this section. In the first, the explicit solution of an
equilibrium problem is determined, thus highlighting the difference between the thermo-
mechanical behaviour of a no-tension material and a linear elastic one having the same elastic
constants and thermal expansion. Moreover, the solution is a test case for validating the
numerical method proposed and its implementation in the finite element program, NOSA,

Subsequently, we analyse a masonry arch subjected to its own weight and a temperature
distribution representing the mean seasonal thermal variation, and finally, we consider a
converter used in the steel and iron industry, subjected to its own weight and a highly non-
uniform temperature distribution. The two structures, made of no-tension materials having
constitutive equation (2.1)-(2.5), have been discretised into finite elements and analysed with
the NOSA code. For the arch, the stress fields and corresponding lines of thrust have been
determined both for when it is subjected to its own weight alone and when subjected to this
weight as well as a temperature distribution. For the converter, on the other hand, in addition to
determining the stress field, we also characterise any fracturing that would occur. In Section 2 it
was stated that if the inelastic part E4 of strain is non-null in any region of the structure, then
we can expect fractures to be present in that region. Nevertheless, a simple analysis of the
components of E4 does not generally yield any information about the direction of eventual
- fractures. To this end, we point out that if for any v, v-E4v >0, v is not necessarily a fracture
direction; in other words, v is not necessarily an eigenvector of T corresponding to the zero

eigenvalue. Nonetheless, there must surely exist at least one eigenvector ¢ of E? (in view of the
coaxiality of E@ and T, q is also an eigenvector of T) such that q-Eéq > 0 and then, by virtue



10

of the orthogonality of E and T, q-Tgq = 0. By such reasoning, we deduce that if ¥ is a
fracture surface, then every vector orthogonal to ¥is an eigenvector of T corresponding to the
eigenvalue 0. This criterion has been used in the last example in order to reveal the regions
were fractures are present and their corresponding directions.

3.1 Spherical coniainer subjected to two uniform radial pressures and a steady temperature

distribution.
A spherical container with inner radius @ and outer radius b is subjected to two uniform
radijal pressures p, and p, acting on the internal and external boundary, respectively, and to a

steady temperature distribution € varying with the radius r

ab(¥,-9,) 1 b0, -ad
-+ . 3.1
b-a r b-a * b @D

6(r) =

In (3.1) ¢, and ¥,, with &, > O, are defined by ¥, = 6, - 6, and U,= €, - €,, with 6; = 6(a)
and @, = 6(b), respectively. For the thermal expansion 3, we assume that |

p(6)=o(6-6,), (3.2)

with constant «; Poisson’s ratio is taken equal to zero and finally, Young’s modulus is a
decreasing function of temperature

ab(ﬁl - 1.92 )

b—a
B b1, — a?d, _ ’ (3.3)

6
b—-ua 0

Ef)=w
6

E
with @ = —;— a positive constant. In view of (3.1) we have
E(r)=E6(r)=or, (3.4)

. - b
in particular E(a)=E, , E(b) =EE‘ > E|.

For the moment, let us suppose that the spherical container is made of a linear elastic material.

We denote by 0 and ¢”, the radial and tangent stress, respectively. By using a procedure

I

similar to that described in [8] we get

ab(% =%, ) )] , (3.5)

O'f.U(r)=a)(ulC]r#‘ +/.12C2r'“= -0 5
-d
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-da

where 4, = —(1++/3), g, =-1++/3 and (Cl,Cz) is the unique solution of the linear system
-0
p o -b,)

=1 5=l -
wa'™" pa* (Cl | wa b . a7
wb* b NG _P & a(t -1, )

wb b-a

The radijal displacement is

uO(r)= Crt + Cyrts 4+ 22270 (3.8)
b-a

It can be proved that for suitable values of parameters p,, p,, ¥, and ¥,, the stress field with

components (3.5) and (3.6) is purely compressive, while, on the contrary, there exist values of

Pys P2, U, and 9, such that the radial stress is still negative, whereas the tangent stress is

negative fora £ r £ 7 with 7 belonging to (g, &), and then becomes positive. Therefore, the

stress field in (3.5)-(3.6) is not the solution to the equilibrium problem of a spherical container

‘made of a material with constitutive equation (2.1)-(2.5). In this case, it is possible to prove that
the spherical container is compressed fora < r < r,, and the region 7, < r £ b is characterised

by a nul] tangent stress and is therefore cracked. The transition radius r; is the only solution

belonging to the interval [a, b] to the non-linear equation

Cr)rt + Gy rt - 2200 (3.9)
b—a
and (C] (r), G, (r)) is given by
G e e -]
(Cl (r)J [t ppa wa  b-a (3.10)
G " \r ™™ prt [ ppb® | aab(%=By) | '
1)) r3 (b'a)r
By setting
b2
Pg-'-;:‘fpg ; 3.1D)
0

through the same procedure used in [9], we arrive at the stress field and radial displacement for
the container made of a no-tension material with constitutive equation (2.1)-(2.5)
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G () 1+ 1, Cy () 1™ _a_aﬁ%’:fﬁ
-4
O'r(m)(r).—_
b?
- p2 -T .
C,(r) ™ +Cy(ry) 7™ _g % oY)
b—a
O'r(m)(r):
0,
C](ro)r-”l +C2(r0)r.uz +aMr ’
b—a
u(m)(r)z

, rela, ],

(3.12)
relrn.bl;
rela, rl,
| (3.13)
re [n,bl;
re la, rl,
(3.14)

2a)r2 b-a

py b? o (abw] -9, b -ad,
b-a

r} relr.bl,

where the constant u, is determined by imposing the continuity of the radial displacement at

InE

u, = C (rg) r," +C(r) " +a 2

260?‘02 b-a 0

b, —ad, .

, _
L [ab(ﬁ, =0, +b192 —at
b-a

0

The radial inelastic strain is equal to zero, and the tangent one is

0,

g™ (r) =

u(m)(r) o (ab(iﬂl -,) N
r (b—a)r

Figures 3.1, 3.2 and 3.3

displacement for a spherical container made of a linear elastic material (grey line)

b1, —av,
b-a |

(3.15}

rela, ],

(3.16)

refn.b].

show the behaviour of the radial and tangent stresses and the radial

and a no-
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tension elastic material (black line). The graphs have been obtained from expressions (3.5),
(3.12), (3.6), (3.13) and (3.8), (3.14), using the following parameter values

a=1m, b=2m,

v=0, E, =25 10° Pa,
a=1.10°¢C)"',

p, =1.10° Pa, p, =04 10° Pa,
6,=30.°C, 0 =400.°C, ©0,=-10.°C.

With the aim of comparing the explicit solution with the numerical one calculated by means of
the finite element program NOSA, we have considered a half spherical container discretised
with 800 axisymmetric elements with 8 nodes and 9 Gauss points. Figures 3.4, 3.5, 3.6 and 3.7
show the values of the stress components, radial displacement and tangent inelastic strain
calculated by using expressions (3.12), (3.13), (3. 14) and (3.16) (continuous line) and those

furnished by NOSA code (markers).

0,00E+00

-1,00E+06

-1,50E+36

-2,00E+06

-2,50E+06

-3,00E+06

Figure 3.1. 67 (Pa)and 0™ (Pa) vs. r (m).



14

6,00E+06

4,00E+06

2,00E+06

0,00E+00

-2.00E+06

-4,00E+06

-6,00E+06

-8,00E+06

Figure 3.2. ¢V (Pa) and o™ (Pa) vs. r (m).

4,00E-03

3.50E-03

3,00E-03

2,50E-03

2,00E-03

1,50E-03

5,00E-04

0,00E+00

1,00E-03 4

1

Figure 3.3. u

0]

{m) and ¥

(m}

(m) vs. r (m).
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—
0,00E+0G

-2,00E+05

-4,G0E+05

-6,00E+05

-8,00E+05

-1,00E+06

-1,20E+06

-1,40E+06

Figure 3.4. Radial stress (Pa) vs. r (m), explicit solution and numerical solution.

r 5,00E+053

0,00E+00
-5,00E+05
-1,00E+0¢6
-1,50E+06
-2,00E+06
-2.50E406

-3, 00E+06

-3,50E+06

Figure 3.5. Tangent stress (Pa) vs. r (m), explicit solution and numerical solution.
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4,10E-03

3,60E-03

3,]10E-03

2,60E-03

2,10E-03

},60E-03

1,10E-03

6,00E-04

1,.00E-04

-4, 00E-04

Figure 3.6. Radial displacement (m} vs. r (m), explicit solution and numerical solution.

2,50E-03

2,00E-03

1,50E-03

1,00E-03

5,00E-04

0,00E+00

-5,00E-04

Figure 3.7. Inelastic tangent strain vs. r {m), explicit solution and numerical solution.
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3.2 Masonry arch subjected 10 its own weight and a uniform temperature distribution.

A circular masonry arch having mean radius 110 cm and thickness 20 cm has been
discretized into 4800 isoparametric plane stress elements. The arch, whose springings are fixed,
is subjected to its own weight. The reference temperature is 30° C, and the arch subsequently
reaches the temperature of -10° C. The elastic constants, assumed to be independent of
temperature, are £ = 50000 kg/ cm?, v = 0.1, while the thermal expansion is 5(6) = - 40 a,
with @ = 1. 107 (° C)™'. For the first increment the weight alone has been assigned, and the

temperature variation is divided into the four subsequent increments. Figures 3.8 and 3.9 show
the lines of thrust for the arch subjected to its weight alone, as well as under the action of both
weight and a temperature variation of - 40° C. Figures 3.10 and 3.11 present plots of the normal
force and bending moment per unit length vs. the anomaly, for the first (black line) and fifth

(grey line) increment.

- L.

S

Figure 3.9. Line of thrust of the arch subjected to its own weight and temperature variation of - 40° C.
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Figure 3.13. Wear layer, protective lining and steel vessel in the converter.
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Figure 3.14. Temperature distribution within the converter.
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Figure 3,15, Displacements magnified 10 times, non-linear analysis.
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Figure 3.16. Displacements magnified 10 times, linear analysis.
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Figure 3.17. Fractures belonging to the meridian planes.
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Figure 3.18. Fractures belonging to planes orthogonal to the meridians.
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With regard to the stress field, it can be seen that the regions that result to be subjected to
tensile stresses in the linear analysis are characterised by zero stress in the non-linear one.
Moreover, although the stress fields in the other regions are essentially equal in the two cases,
the maximum compressive stresses in the non-linear case are slightly lower. For the sake of
comparison, Figures 3.15 and 3.16 show the deformed configuration superimposed upon the
initial one for the two analyses. In the case of non-linear behaviour, a substantially greater
displacement of the lower part is observed. Analysis aimed at revealing the fracture field was
performed according to the criterion described above. Disregarding the filling zones, it can be
observed that while fractures are absent along surfaces orthogonal to the direction of the
thickness, they are concentrated in the protective layer, along the meridian planes (Figure 3.17)
and along planes orthogonal to the meridians (Figure 3.18), particularly in the cylindrical wall
zone and around the porous cooling tubes in the lower zone.

4. Conclusions

The constitutive equation and the numerical procedure proposed in this paper can be
used in many applications. In particular, the equation of no-tension materials in the presence of
thermal expansion is both realistic enough to describe the actual constitutive response of
masonry and refractory materials, and simple enough to be employed in many engineering

problems.
The third example provided shows that the proposed numerical method permits

determination, not only of the stress field, but more importantly, the distribution of cracking
within the refractory and its critical zones. The finite element code developed for thermo-
mechanical analyses can be a useful tool for industries involved in the production of molten
metals and refractories, as well as those concerned with the design of furnace metalwork.
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Appendix

An analyse of the plane stress is provided here, though for the sake of brevity, plane strain has

been omitted.

V(6
Let us suppose 2, = q3 - Tqs = 0. From (2.5) we obtain e, - J(6) - a; = ;“—*i}z)'é“)- (a, + a,

-e -¢ +2 B(8)); moreover, since by virtue of (2.3), a, is arbitrary, it can be assumed to be
equal to zero. In order to calculate the values of a,, a,, t, and 1, we define the following

subsets of Sym x [6], 82]
Q, = {E, O 1%O)(e, - BO) +2(1 + %) (e, - B) <0}, (A1)

Q, = {(E, )1 (6)(e, - B(6)) +2(1 +16) (e, - BO) >0, ¢ - f(6) <0}, (A2)
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Q, ={(E, 0le -H6>0}. (A3)
In this case E2 and T have the following expressions
if (E, & e Q,, then
Ea=0,
(A.4)
__E®) v(6) _
T= 1 g E-AOT+ T w(E-AO D)
if (E, 6} € Q,;then
Et=[v(f)e + e, -(1+ o) BO)] q, ®q,.
(A.5)
T = E(6) (¢, - f(6) q,®q, ;
if (E, )€ Q,,then
E2= (61 -ﬂ(@)) q,®q + (ez -ﬁ(@)) q, ®q, ,
(A.6)

T=0.

Recalling that e, < e,. are the eigenvalues of E, and q,, q, are the corresponding

eigenvectors, we define the tensors

1
0, =q,%gq,, 0,=q,9q,, 03=E(q1®qz+qz®ql), (AT)

and we recall that [5]

Die, =0, Dge, =0, ,

€ —é €, ¢

1 1
D,0,=—— 0,®0,,D;0,=—— 0,00, .

From (A.4)-{A.6) we obtain the derivative of T with respect to E

if (E, &) e Q,,then
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- E(9) v(#) '
D T(E,60) = —— 2 {J4 —1_ .
E0) = o I e 191 (A9)
if (E, &) e Q,,then
D, T(E.6) =(6){ 0,00, - 4=F0 4 go,1, (A9)

if (E, 6) € Q;, then

T(E,6) =0 (A.10)

Dg
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