
High Dynamic Range Expansion of Point Clouds for Real-Time
Relighting

Manuele Sabbadin1,3, Gianpaolo Palma1, Francesco Banterle1, Tamy Boubekeur2, Paolo Cignoni1

1 Visual Computing Lab - ISTI - CNR, Pisa, Italy
2 LTCI, Telecom ParisTech, Paris-Saclay University, Paris, France

3 Department of Computer Science - University of Pisa, Italy

LDR Point
Cloud

HDR Photo

HDR Expansion
Section 4

HDR Point
Cloud

BSH Construction
Section 5.1

3D Model

Final Rendering
Section 5.3

Microbuffer Rendering
Section 5.2

BSH Cut

Mipmapped G-Buffer

BRDF DepthNormal

Microbuffer

Figure 1: The relighting framework can be split into two independent parts: the preprocessing of the LDR point cloud (HDR expansion
and BSH construction) and the real-time rendering of a 3D model inside the acquire environment. In the preprocessing step, the algorithm
expands the dynamic range of the point cloud using an input HDR photo (the images shows the difference map between the computed HDR
cloud and the LDR version) and computes the BSH to use in the following PBGI algorithm. The proposed PBGI algorithm takes advantage
of the computation capabilities of the geometry shader and of a new mipmapping operator for the G-Buffer to speed-up the computation of
the microbuffers of each pixel of the viewport. Finally, the collected microbuffers are combined with the BDRF data of the 3D model to obtain
the final rendering.

Abstract
Acquired 3D point clouds make possible quick modeling of virtual scenes from the real world. With modern 3D capture pipelines,
each point sample often comes with additional attributes such as normal vector and color response. Although rendering and
processing such data has been extensively studied, little attention has been devoted using the genuine light transport hidden
in the recorded per-sample color response to relight virtual objects in visual effects (VFX) look-dev or augmented reality
scenarios. Typically, standard relighting environment exploits global environment maps together with a collection of local light
probes to reflect the light mood of the real scene on the virtual object. We propose instead a unified spatial approximation of the
radiance and visibility relationships present in the scene, in the form of a colored point cloud. To do so, our method relies on
two core components: High Dynamic Range (HDR) expansion and real-time Point-Based Global Illumination (PBGI). First of
all, since an acquired color point cloud typically comes in Low Dynamic Range (LDR) format, we boost it using a single HDR
photo exemplar of the captured scene, that may only cover part of it. We perform efficiently this expansion by first expanding
the dynamic range of a set of renderings of the point cloud and then projecting these renderings on the original cloud. At
this stage, we propagate the expansion to the regions which are not covered by the renderings or with low quality dynamic
range by solving a Poisson’s system. Then, at rendering time, we use the resulting HDR point cloud to relight virtual objects,
providing a diffuse model of the indirect illumination propagated by the environment. To do so, we design a PBGI algorithm
that exploits the GPU’s geometry shader stage as well as a new mipmapping operator, tailored for G-buffers, to achieve real-
time performances. As a result, our method can effectively relight virtual objects exhibiting diffuse and glossy physically-based
materials in real time. Furthermore, it accounts for the spatial embedding of the object within the 3D environment. We evaluate
our approach on manufactured scenes to assess the error introduced at every step with respect to the perfect ground truth. We
also report experiments on real captured data, covering a range of capture technologies, from active scanning to multiview
stereo reconstruction.

CCS Concepts
• Computing methodologies → Computer graphics; Rendering; Point-based models;

2 M. Sabbadin et al. / HDR Expansion for Relighting

1. Introduction

Nowadays several solutions are available for acquiring large 3D
point clouds of objects or environments in a fast and completely
automatic way. These solutions are based on low budget hardware
such as an RGB-Depth camera for the active acquisition systems
(Microsoft Kinect, Intel RealSense, StructureSensor, etc.) or a sim-
ple camera for multiview reconstruction algorithms. These devices
allow the acquisition of the geometric information of the scene (3D
position and surface normal) and of the RGB color of each sam-
pled point. Typically, this data is used for different purposes; from
the simple visualization to a more complex processing to compute
dense triangular model or to infer more semantic information. Even
if the color data is acquired with a Low Dynamic Range (LDR) sen-
sor, getting a limited range of the output radiance of each sampled
point, together with the geometric information, it can be used in
the context of the relighting of a virtual object inside the acquired
scene in a realistic way. Typical application scenarios are the Aug-
mented Reality (AR) and Visual Effects (VFX) where the goal is
the integration of a virtual object into a movie or a picture with a
realistic illumination as similar as possible to the scene. In particu-
lar, in the relighting context, the colored point cloud can be used to
compute the mid-range lighting effects, while the classical environ-
ment map rendering and screen-space reflection can approximate
respectively the long range/direct illumination effects and the local
inter-reflection.

This paper presents an innovative framework to use the radiance,
spatial and visibility information of a captured colored point cloud
of a real-world scene to compute the contribution of the lighting on
a virtual object inserted into such scene. Since we obtain LDR col-
ored point cloud from the most common 3D acquisition solutions,
we propose a preprocessing step to extend the dynamic range of
the point cloud and obtain a High Dynamic Range (HDR) color for
each point sample. Then, this HDR point cloud is used to compute
the lighting over the virtual object using an innovative real-time
Point-Based Global Illumination (PBGI) method. The main contri-
butions are:

• the development of an innovative framework to extend the dy-
namic range of the color in a point cloud using a single HDR
photograph covering a small part of the environment and without
any calibration data (i.e., without estimation of the intrinsic and
extrinsic camera parameters). The algorithm is based on a first
step to transfer the dynamic range from the HDR photo to the
point cloud using a set of renderings testing different procedures
(i.e., inverse tone mapping, deep learning, and Patch-Match), fol-
lowing by the solving of the Poisson’s equation to propagate the
HDR data on the regions not covered by the renderings or with a
low quality extracted HDR values;
• an innovative PBGI method that exploits the geometry shader

capabilities and the mipmapping of the G-buffer of the virtual
object to speed-up the computation and to obtain real-time per-
formances.

We tested both the steps with a synthetic ground truth and several
real captured scenes, evaluating numerically the differences among
the proposed HDR expansion algorithms and among the render-
ing with the LDR and the HDR point cloud. We report an exhaus-

tive performance analysis of the proposed PBGI algorithm, and we
show the rendering results obtained in an AR application scenario.

2. Related Work

In this section, we present the state-of-the-art for the three main
topics related to our proposed method: the inverse/reverse tone
mapping (Section 2.1), the PBGI rendering algorithm (Section 2.2),
and the virtual relighting of a virtual object for AR applications
(Section 2.3).

2.1. Inverse Tone Mapping

Inverse/reverse tone mapping operators (IT-
MOs/RTMOs) [RWP∗10, BADC17] expand the dynamic range
of LDR images/videos in order to obtain content that can be
employed in HDR applications such as HDR visualization (i.e.,
showing this content on an HDR television) or Image-Based
Lighting [Deb98]. Typically, they can be classified into three
main classes: global, expand map-based, and user-based. A
global ITMO expands the dynamic range of LDR content using
a per-pixel function, such as a linear scale [AFR∗07] or power
function [Lan02, MSG15], with global statistics. Expand map-
based operators [BLDC06, RTS∗07, KO14] increase the dynamic
range using a global function (i.e., linear, inverse sigmoid, etc.)
that varies locally using an expand map (i.e., a map with values in
[0,1]), which controls which areas need to be expanded and the rel-
ative intensity. Finally, a user-based operator expands the dynamic
range of LDR content with user inputs such as classifying areas
to be expanded [DMHS08], or cloning details from well-exposed
areas into under-exposed and over-exposed areas [WWZ∗07].

Recently, deep learning has been employed with success for ex-
panding LDR content [EKD∗17, EKM17, MBRHD18]. However,
these approaches are not straightforward to apply to point clouds
because large training sets (i.e., point clouds with HDR color data)
are difficult to acquire and there are very few publicly available
datasets.

2.2. Point Based Global Illumination

For a survey on real-time global illumination methods, we refer the
reader to the state-of-the-art report by Ritschel et al. [RDGK12]
and to the work of Silvennoinen and Lehtinen [SL17] for a recent
overview. In our context, working with dense point clouds natu-
rally led us to adopt the Point-Based Global Illumination frame-
work. Introduced by Christensen [Chr08], who built upon surfel-
based ambient occlusion [Bun05] and LightCuts [WFA∗05], the
PBGI algorithm generalizes the idea of z-buffered rasterization in
a 2-step process. At caching time, the 3D scene is densely sam-
pled, the sample set is shaded and a multiresolution structure e.g.,
bounding sphere hierarchy or octree, is generated over it. At ren-
dering time, for each receiver i.e., unprojected final image pixel,
(i) a so-called microbuffer i.e., a low resolution color+depth hemi-
spherical buffer aligned to the shaded point normal, is generated,
(ii) an adaptive light cut is searched in the PBGI tree, and (iii) the
retrieved cut nodes are splatted into the microbuffer, solving for
visibility using the depth component. The final receiver response

M. Sabbadin et al. / HDR Expansion for Relighting 3

then sums the convolution of its microbuffer with its BRDF and its
direct illumination response. This algorithm is free from noise, ac-
counts for long-range indirect lighting and reproduces an important
subset of GI effects. Its improvements demonstrate high scalability
for parallel architectures [REG∗09, HREB11] and out-of-core ex-
ecution [Tab12], robustness to compression [BB12] and factoriza-
tion [WHB∗13] as well as the ability, to a certain extent, to cope
with non-diffuse effects [WMB15]. Our key observation is that a
scanned colored point cloud already provides the input of a PBGI
tree avoiding the significant amount of work requested at caching
time. At the same time, its 3D spatial embedding allows account-
ing for near-field effects and local visibility when used to relight a
virtual object.

2.3. Relighting

Relighting synthetic objects using natural real-world lighting (e.g.,
HDR environment maps) is an important topic in computer graph-
ics and has sparked a vast literature from the seminal work on
Image-Based Lighting (IBL) by Debevec [Deb98]. Over the years,
researchers have worked on different subtopics: increasing the re-
alism of classic IBL to have local effects (e.g., local shadows, shad-
ing, and caustics) by densely sampling the environment [UKL∗13],
editing the lighting [Pel10, BCD∗13], inserting virtual objects in
single photographs [GSY∗17,HSH∗17] or video stream (e.g., AR).
For a more complete overview of this topic, we point the reader to
the survey by Kronander et al. [KBG∗15].

Research more focused on our work is M360 by Rhee et
al. [RPAC17]. This system provides interactive mixed reality using
LDR 360 panoramic videos for lighting virtual objects 360 videos.
They employed inverse tone mapping to enhance LDR panoramic
videos and achieved convincing results. The use of panoramic
video limits the rendering of the lighting effects due to directional
lights. Zhang et al. [ZCC16] presented a system for capturing in-
door 3D scenes with color data using RGBD scanners tailored for
emptying/refurnishing indoors. Starting from an RGBD scan, it
produces a scene model of the empty room, its lighting emitters,
and its materials. The main differences with our approach are the
use of a triangular mesh instead of a point cloud and the com-
putation of the color data by integration of a set of LDR photos
with auto-exposure that do not return the entire dynamic range of
the scene. Finally, Whelan et al. [WSG∗16] introduced ElasticFu-
sion; a real-time dense visual simultaneous localization and map-
ping (SLAM) algorithm. Such SLAM has a module for estimating
light sources exploiting scene geometry and specular regions. This
estimation makes possible the insertion and rendering with a coher-
ent lighting of synthetic objects in augmented reality applications.

3. Algorithm Overview

Our goal is to relight virtual objects in real time inside a real scene
using a scanned colored point cloud of the environment. The in-
puts of our method are (i) PLDR, a scanned colored point cloud of
an environment, (ii) IHDR, an HDR photograph of a representative
portion of the scene free from registration (intrinsic and extrinsic
camera parameters are unknown), and (iii) O, the 3D polygon mesh
of the object to relight equipped with material properties. PLDR can

be acquired automatically using inexpensive hardware such as an
RGBD camera [DNZ∗17], or with a simple RGB camera together
with a multiview stereo software [SF16]. Since the output clouds
of these devices come with LDR color data, we start with a pre-
processing step to expand the dynamic range of PLDR using IHDR
(Section 4), especially in the overexposed regions. Then, at render-
ing time, the resulting HDR point cloud PHDR is used for relighting
the 3D model of the virtual object O in real time using a new PBGI
algorithm (Section 5). Fig. 1 shows an overview of the proposed
algorithm.

4. HDR Expansion of Point Clouds

In order to expand the dynamic range of the point cloud PLDR,
we assume that the HDR photo IHDR provides a representative
distribution of the dynamic range of the 3D scene, with no con-
straint on being aligned in any form to the point cloud. This
makes the capture process easy because IHDR can be taken com-
pletely independently from PLDR. In order to boost PLDR dynamic
range from IHDR, we propose a new 2-step framework. In the first
step (Section 4.1), the algorithm extends the dynamic range of a
set of LDR renderings of the point clouds, testing different ap-
proaches such as the classical inverse tone mapping operators for
images ([Lan02,BLDC06]), the recent deep learning architectures
([EKD∗17, EKM17]), and randomized match methods based on
PatchMatch ([BSFG09, BSGF10]). The output of this step is a
set of renderings with HDR color values. Each rendering is then
projected on the original point cloud using the camera parameters
used during their acquisition. The second step (Section 4.2) uses a
Poisson strategy [PGB03] to fill the HDR values on samples that
are not covered by the renderings or have with a low-quality HDR
mapping. Since all the proposed algorithms work in a linear color
space, we remove the gamma correction from the input images and
point cloud.

4.1. HDR Expansion

The general idea is to estimate the HDR data in the overexposed re-
gions of a set of unlighted renderings Si of the point cloud obtained
using the cloud LDR color. The renderings have to be taken from
reasonable positions so that they cover as much as possible of the
overexposed areas of the scene. Even if there exist solutions that
can be used to automatically extract these rendering positions (for
example [DBGBR∗14]), we decide to use a manual approach, al-
lowing a user to navigate the scene and acquire renderings from the
best positions; i.e., to see the most important overexposed areas. A
cubemap is captured from each of these positions and used in the
following steps. For the rendering we use a simple point splatting
algorithm with viewport 1024×1024. For each captured rendering
the algorithm stores the camera intrinsic and extrinsic parameters
for the following reprojection of the image data to the point cloud.

In the first step, the algorithm finds an LDR version of IHDR with
an exposure as close as possible to the one used for the acquisition
of the color in PLDR. To find this exposure the algorithm proceeds
in the three steps. Firstly, it retrieves a set of fixed exposure images
using the exposure fusion operator [MKR07]. Secondly, it looks
for the image with the closer luminance distribution to the point

4 M. Sabbadin et al. / HDR Expansion for Relighting

cloud. In particular, it selects the image with the closest histogram
to the histogram of the entire LDR point cloud, using as measure
the Wasserstein distance [CEN07]. The histograms are computed
only on the luminance channel in the CIE XYZ color space using
128 bins. Thirdly, the selected exposure is refined with a binary
search in the range defined by the nearest exposures of the tested
images. The algorithm proceeds to look for a better exposure until
the error stops to decrease or up to a limit of 50 iterations. Every
time the algorithm picks an exposure value α, it applies the expo-
sure to the HDR image and clamps the result in [0,1]:

ILDR = clamp(α · IHDR,0.0,1.0) (1)

The final output is an LDR version ILDR of the input HDR image
with a color range that is the closest to the input point cloud. This
increases the quality of the correspondences extracted by the Patch-
Match step.

At this point, the algorithm finds the correspondences between
each rendering Si of the point cloud and the HDR image IHDR, us-
ing its LDR version ILDR, without using any calibration data about
the camera parameters of the HDR photograph. We tested three
different strategies for the HDR expansion of the renderings (the
comparison is in Section 6.2). The first two strategies are based on a
trivial application of two well-known methods for HDR expansion
in images: the inverse tone mapping operators and the deep learning
architecture for HDR reconstruction for a single photo. The most
interesting results are instead obtained with the third strategy based
on the use of the generalized PatchMatch algorithm [BSGF10]. We
use the generalized PatchMatch [BSGF10] between Si and ILDR be-
cause it is more robust at the rotation and scale. In particular, for
each pixel of the rendering Si, it computes the offset in the image
ILDR to retrieve the most similar patch, defining the nearest neigh-
bor field (NNF), and the value of the distance between the patches
according to an error metric defining a quality field. In our imple-
mentation, the Sum of Squared Differences (SSD) error was em-
ployed. Exploiting the computed NNF of each rendering, the algo-
rithm transfers the HDR data from IHDR to the renderings Si (IHDR
and ILDR have the same size so the computed offset in the LDR
image can be used to retrieve the data from the HDR image).

The last step of all strategies (i.e., inverse tone mapping, deep
learning, and PatchMatch) is the projection of the HDR data from
HDR expanded renderings to the point cloud, using the camera pa-
rameters previously stored. In this step, we limit the expansion to
the overexposed areas of the point cloud. We consider overexposed
all the points with an input LDR color luminance above a threshold
tl = 0.9. For all the other points, the algorithm assigns the origi-
nal well exposed LDR color as HDR color. During the projection,
the algorithm applies the exposure value α computed in the first
step for the HDR image to align the black value of the HDR image
to the black value LDR point cloud, avoiding edge-step transac-
tion around the luminance threshold tl . If some points are visible
in more than one rendering, the algorithm computes the average of
the projected color samples. In the case of the inverse tone mapping
operator or of the deep learning approach, it computes the simple
average. On the contrary, in the case of the PatchMatch, the algo-
rithm computes the weighted average with the quality field of the
matching giving more weight to the samples with lower SSD.

When we project the HDR information to the point cloud, we

can transfer either the luminance alone (i.e., just extending the LDR
range) or the entire color from IHDR. In the latter case, we can ob-
tain a color for the overexposed areas (usually light sources) closer
to the original one instead of boosted white color. This is useful
when the hardware for the acquisition of the point cloud introduced
some strange chromatic shift to the captured colors. The choice of
what information to transfer depends on the specific application. In
Figure 2, we show the differences between the two methods.

(a) LDR (b) HDR lum (c) HDR color (d) Ground
Truth

Figure 2: Expanding the color as in (c) leads to results closer to the
ground truth (d) than expanding only the luminance (b). (a) shows
the rendering with the LDR point cloud.

4.2. Poisson Color Editing

The output of the HDR expansion framework is a point cloud PHDR
with HDR color values. However, some critical regions without
valid HDR colors may be created. This is due to two different rea-
sons: the points in such regions are not visible in any renderings; or
in the case of the PatchMatch approach, the points receive HDR
colors very different from the original ones, resulting in a high
patch SSD. In the first case, the point does not have projected HDR
color, while in the second case the HDR color is discarded because
the SSD is above a threshold th. In all our experiments, we always
use the same threshold th = 1. In both cases, to solve the problem
the general idea is to propagate the HDR color from the neighbor
valid points using a Poisson strategy [PGB03].

Let Ω be the set of the points in the target regions (without a
valid HDR color), ∂Ω the set of the points on the boundary of the
target regions (with valid HDR color), G the k-nearest neighbors
graph of the points (in our experiments we always use k = 16), Np
the set of neighbors of the point p in the graph G, H(p) and L(p)
respectively the HDR and the LDR color of the point p. The final
HDR color H(p) for the points in Ω is computed by solving the
following system of linear equations:

∀p ∈Ω |Np|H(p)−∑
q∈Np∩Ω

H(q) = ∑
q∈Np∩∂Ω

H(q)+∑
q∈Np

vpq, (2)

where vpq is the local gradient of the LDR colors of the points p
and q defined as:

vpq = (L(p)−L(q)). (3)

In this step, we can also propagate only the luminance or the en-
tire RGB color. In the first case, the algorithm solves a single sys-
tem of linear equation, while in the second it solves a system for

M. Sabbadin et al. / HDR Expansion for Relighting 5

each color channel independently. Figure 3 shows a rendering of
the point cloud with the HDR color after the projection without
Poisson editing, the area interested in the Poisson Editing and the
results obtained with the Poisson editing.

Figure 3: After the projection of the six shots to the point cloud (left
image), some points can receive invalid HDR color (cyan point in
the center image) due to missing information in the shots or a bad
quality value given by the PatchMatch algorithm. The image on the
right shows the final result, after the Poisson editing.

5. Real-Time PBGI

After the computation of the HDR point cloud PHDR, the goal is
to render a synthetic object O inside the cloud using a new PBGI
algorithm that runs in real time. Since PHDR already contains an ap-
proximation of the diffuse indirect lighting of the environment, the
proposed method avoids the expensive phase for the computation
of the shading information of each point. The proposed algorithm
exploits intensively the GPU geometry shading stage and a new
G-Buffer mipmapping method to speed-up the rendering alleviat-
ing the pixel shading, the PBGI bottleneck as each pixel requires
filling a specific microbuffer. Our method runs in three steps:

1. the GPU construction of H, a bounding sphere hierarchy struc-
turing PHDR, at loading time (Section 5.1),

2. the cut search in H for each pixel of the G-buffer rasterized from
O, to fill its specific microbuffer (Section 5.2),

3. the computation of the final rendering of each pixel, applying
any given BRDF to the relative microbuffer (Section 5.3).

The second step represents a tremendous amount of computation,
which usually prevents real-time performances at high framerate.
We tackle this issue using our new G-Buffer mipmapping strategy.

5.1. Hierarchy Construction

In this step, we compute a Bounding Sphere Hierarchy (BSH) H
of the HDR point cloud for which per-receiver light cuts will be
gathered to fill micro-buffers at rendering time. Each node A in the
hierarchy H stores the average color of the points inside the node
cA, the average position pA, the radius rA of the bounding sphere
that contains all the points in the node, the bounding cone contain-
ing the normal vectors of the points inside the node, represented
as a direction ~nA and half cone aperture αA and the two indices
pointing to the left and right child of the node. A leaf node contains
the color, the normal and the position of a single point. The tree
construction is organized in four steps: the creation and sorting of

Figure 4: Comparison of the renderings using the original BVH
(left) and the clustered version (center). On the right the map with
the probability to perceive differences between them computed with
HDR-VDP-2.2.

the leaf nodes, the creation of inner nodes, the propagation of the
leaves’ attributes to its inner nodes and tree vectorization.

In order to preserve the spatial locality, we organize the leaf
nodes using Morton codes, interleaved bits of the points 3D coor-
dinates. We voxelize the point cloud in its bounding box using a 64
bits Morton code and obtain a leaf node for each non-empty cell of
the voxelization. When the cell contains more points, the leaf node
averages the data of all the points in the cell. The resulting nodes are
Morton-sorted using a compute shader following the approach pre-
sented by Ha et al. [HKS09], using a parallel prefix sums [HSO07].
For the creation of inner nodes, we use the fast algorithm proposed
by Karras et al. [Kar12]. Once the structure of H is initialized, we
propagate the leaves’ attributes to inner nodes. While color is prop-
agated as a simple average of the children colors, the position and
the radius is computed with the approximate smallest sphere by
Fischer et al. [FGK03], making the approximation conservative by
forcing the parent node to always contain its children. For the com-
putation of the normal cone, for the first level above the leaves, we
use the algorithm in [BE05] to compute the minimum cone for a
set of vectors. For the other levels, we find the minimum cone of
normals that contains the cone of the children. We reduce this com-
putation to the previous problem by finding four vectors on the bor-
der of the cones of the children and computing the minimum cone
surrounding them. These four vectors are obtained by rotating the
cone direction of each child around the cross product between this
direction and the difference vector between the cones. The rotation
angle is the cone aperture. The obtained hierarchy is pruned by re-
moving all the sub-tree where the color variance of all the points
in the sub-tree is below tc and the normal variation is above tn. The
idea is to reduce the number of nodes by clustering all the point in
the cloud with very similar color and normal in order to speed up
the visit of the hierarchy during the rendering. The variances are
computed as the average vector distance from the node color and
average dot product from the node normal. In all our experiments,
we use the pruning thresholds tc = 0.01 and tn = 0.98. The visual
effects on the final rendering are negligible as is shown in Figure 4.
Finally, we linearize the pruned hierarchy H into a vector using a
depth-first visit.

5.2. Micro-buffer Rendering

We use H at rendering time to gather in real time the incoming radi-
ance from the surrounding scene over each point of O. To do so, we

6 M. Sabbadin et al. / HDR Expansion for Relighting

Figure 5: If a node faces a direction opposite with respect to the
pixel we are considering, it is discarded with all its sub-tree. The
cone of visibility is given by the cone of normals of the node (direc-
tion~nA with aperture 2αA) plus π

2 radians. For example, the point
p1 is inside the cone of visibility of A, while the point p2 is not.

extend the micro-buffer rendering approach proposed by Ritschel
et al. [REG∗09] with a new mipmapping operator designed for the
G-Buffer resulting from the rasterization of O. This G-buffer con-
tains for each pixel (i, j) the position pi j , the normal ~ni j and the
material attributes brdfi j of the rasterized object points. The gen-
eral idea of our algorithm is to store the incoming radiance in a set
of small environment map, the micro-buffers, one for each raster-
ized object point in the G-Buffer, where the incoming radiance is
gathered from the nodes of the BSH on the optimal cut of the hi-
erarchy computed in function of the resolution of the micro-buffer
and the distance of the object point from the scene. The algorithm
starts a depth-first search on the BSH from the root node A and it
decides if to continue the visit on the children nodes, to rasterize
the node in the microbuffer or to discard it because it is not vis-
ible from the point. The decision on the rasterization of the node
in the micro-buffer is based on the solid angle Ω(A) subtended by
the node A and the solid angle Ω subtended by a pixel (i, j) of the
micro-buffer. The solid angle of a node Ω(A) is the solid angle of
the cone generated by the pixel and the node sphere:

Ω(A) = 2π

1−

√
dist(A)2− r2

A

dist(A)

 (4)

where dist(A) = |pA−pi j| is the distance between the center of the
sphere of the node A and the 3D position of current pixel pi j, and
rA is the radius of the sphere. The solid angle of each micropixel
has been approximated as constant:

Ω =
2π

mwidth mheight
, (5)

where mwidth and mheight are the width and the height of the mi-
crobuffer. If Ω(A)> Ω, we continue the visit in the children nodes,
otherwise we rasterize the node in the micro-buffer using a standard

hemispherical projection Φ(x,y) = (x,y,
√

1− x2− y2), that maps
a pixel (x,y) (with x,y ∈ [0,1]) of the micro-buffer to the direction
~ω = pA−pi j that connects the center of the sphere of the node to
the surface point. In the microbuffer, we store the color of the node
cA and the value dist(A) to do the depth test during the rasterization
of the node. The node and its sub-tree are discarded during this visit
if the cone of normals of the node is not facing the direction of the
considered point (see figure 5), that is if −~ω ·~nA < cos(αA + π

2),
where αA is the normal cone angle of the node A. In the rest of
the paper, we call this version of the rendering algorithm as Classic
PBGI.

The following sections present two versions of the proposed
PGBI algorithm: the Mipmapped PBGI (Section 5.2.1), a mul-
tiresolution approach based on a new mipmapping operator for
the G-Buffer; the Hybrid PBGI (Section 5.2.2) that merges the
Mipmapped version with the classical approach for the micro-
buffer rendering, based on a visit of the BSH done in the same
shader for single pixel.

Classic G-Buffer Cone
Difference

mipmap mipmap angle
10

24
×

10
24

51
2
×

51
2

25
6
×

25
6

Figure 6: The first three mipmap levels of the normal data in the
G-Buffer. The first column shows the classical mipmapping while
the second and the third columns show the result of our algorithm,
respectively the cone direction and the aperture of the cone. To im-
prove the visualization, the last column shows the sine of the angle
between the normal computed traditionally and with our method.
The main differences are near the depth discontinuities.

5.2.1. Mipmapped PBGI

We present a new PBGI algorithm that parallelizes the BSH traver-
sal in a multi-resolution way using two observations from state-of-
the-art methods. As pointed out by Hollander et al. [HREB11], the
GPU geometry shader and the OpenGL Transform Feedback can
be used to parallelize the visit of several branches of the BSH for
the same pixel, instead of executing a sequential depth-first visit in
a single shader. The method works in an iterative way where the
input of the next step is stored in the Transform Feedback buffer by
the previous step. Given in input at the geometry shader a pair made

M. Sabbadin et al. / HDR Expansion for Relighting 7

(a) (b)

Figure 7: The image shows two of the three cases that the geom-
etry shader can manage during the processing of a pair [Ak, p j]
composed by a node of the BSH and a non-empty pixel of the G-
buffer. (a) When the node is bigger than the cone of normals of the
pixel, the algorithm proceeds the visit generating two new pairs for
the children of Ak. (b) When the node is smaller than the cone of
normals of the pixel and the pixel is not in the first mipmap level,
the algorithm generates four new pairs for the next iteration. The
third option happens when the node is smaller than the cone of nor-
mals of the actual pixel p j and the pixel is in the last mipmap level
or when the node is a leaf. In this case, the algorithm rasterizes the
node into the microbuffer.

by the current node of the hierarchy and the pixel of the viewport,
the shader decides or to rasterize the node in the microbuffer or to
continue the visit with another iteration by sending in the Trans-
form Feedback buffer two new pairs with the children of the nodes.
The second observation in Wang et al. [WHB∗13] points out that,
using small microbuffers, the cuts on the BSH to render the micro-
buffers result to be very similar for receivers near in position and
normal. The new contribution of our algorithm is the traversal of
the hierarchy using a mipmapped version of the G-buffer of the
rasterization of the 3D object. To be robust in the traversal of the
BSH, we implement a new operator for the mipmapping of the nor-
mal vector (see figure 6). For a level i after the first one, it stores a
cone of directions, stored as direction~n and cone angle γ. This con-
tains all the normals of the pixels of the first level that are projected
into one pixel of the level i. For the computation of these cones
of directions, we use the same procedure for the estimation of the
normal cone of internal nodes of the BSH described in Section 5.1,
based on [BE05].

The mipmapped algorithm starts by generating a buffer of pairs,
where each pair [A, p] is composed by two integer indices, the in-
dex of the root node of the BSH and the index of a not-empty pixel
in the smaller mipmapping level of the G-buffer. The index of the
pixel is generated with the classical 2D z-filling curve. When a pair
is sent to the geometry shader, there are three alternative process-
ing paths: to continue the visit of the BSH in the children nodes
(Figure 7a); to continue the visit in the next level of mipmapping
in the G-buffer (Figure 7b); to rasterize the current node of the pair
in the micro-buffer of the pixel. Take for example the pair [Ak, p j]i
at the level i of the mipmapped G-buffer. Let Ω(p j) be the solid
angle associated with the cone of normal vectors stored in the pixel

p j computed with the following formula Ω(p j) = 2π(1− cosα j).
If pixel p j is not in the first mipmapping level (i > 0) and the
solid angle of the BSH node is greater than the solid angle of the
pixel Ω(Ak) > Ω(p j), or if p j is in the first level i = 0 and the
solid angle of the BSH node is greater than the solid angle of the
pixel of the micro-buffer Ω(Ak)> Ω, then the algorithm must visit
the two children nodes of Ak. In both cases, it outputs two new
pairs with the children of Ak for the next iteration of the geome-
try shader ([le f t(Ak), p j]i and [right(Ak), p j]i). Otherwise, if p j is
not in the first mipmapping level and the solid angle of the BSH
node is smaller of the solid angle of the pixel Ω(Ak) ≤ Ω(p j),
the algorithm keeps the same BSH node but it continues the visit
from the next mipmapping level, generating four pairs, one for each
pixel in which p j is split: [Ak, p j0]i+1, [Ak, p j1]i+1, [Ak, p j2]i+1 and
[Ak, p j3]i+1. In this way, the first part of the BSH traversal is shared
by the four pixels p j0, p j1, p j2 and p j3 and it is refined when the
solid angle of the node becomes smaller. In all cases, before stor-
ing the new pairs in the Transform Feedback buffer for the input of
the next iteration, the algorithm checks the visibility of the nodes
(see figure 8) taking into account that now we have a cone of view
directions for the BSH node, determined by its distance from the
object surface and its sphere radius, with direction ~ωAk and angle:

αAk = arcsin
(

rA
dist(Ak)

)
, (6)

and the cone of normals in the pixel of the G-Buffer with direction
~ωp j and angle γp j . Let’s indicate as:

φAk = arccos
(
~ωp j ·~ωAk

)
, (7)

the angle between the normal at p j and the vector ~ωAk , which con-
nects p j to the center of the sphere of the node Ak. The algorithm
discards the node if its cone of normals does not intersect the cone
of visibility of the point p j, that is:

φAk −αAk > γp j +
π

2
. (8)

Finally, when the pixel p j is in the first mipmapping level and
the solid angle of the node is smaller the solid angle of the pixel
(Ω(Ak) ≤ Ω) or when the node Ak is a leaf of the hierarchy, the
shader rasterizes the BSH node into the pixel of the micro-buffer
covered by the visibility cone of the node. For the rasterization, we
use a simple ray-sphere intersection test. We approximate the depth
with the depth of the intersection of the ray with the plane described
by the center and the direction of the normal cone of the node.

5.2.2. Hybrid PBGI

Even if the previous approach can benefit of a great speedup com-
pared to the Classic PBGI especially for high-resolution viewports,
it requires a lot of memory (Table 3). The allocation of the output
buffer, used to store all primitives emitted by a geometry shader
iteration, becomes a bottleneck even for low-resolution viewports.
To solve this problem, we implement a hybrid algorithm where the
mipmapping PBGI version is used only until the solid angle of the
node is above a threshold Ωtr greater than the pixel solid angle Ω,
and the pixel of the viewport is not in the first mipmap level. When
one of these conditions are false, for each remaining pair in the
Transform Feedback, the algorithm refines further the cut using a

8 M. Sabbadin et al. / HDR Expansion for Relighting

Figure 8: The visibility of a node w.r.t. a pixel of the G-buffer de-
pends on the cone of normals of the pixel and the position and size
of the node. In particular, the node is inside the visibility cone of
the pixel if the angle φAk −αAk is less than γp j +

π

2 . In figure, the
nodes A1 and A2 are inside the visibility cone of p j, A3 is not.

depth-first search visit in a single shader execution, as in the classic
approach. Differently from the Classic PBGI, where the visit of the
BSH of each pixel is done in a single shader, with this hybrid ver-
sion the visit of each pixel is split into several shaders each one on
a different sub-tree of the BSH. The choice of an appropriate value
for the threshold Ωtr speeds-up the algorithm and reduces its mem-
ory usage. Experimentally, we noticed that the threshold Ωtr = 32Ω

guarantees the best speed-up for the algorithm.

5.3. Micro-buffer Final Rendering

All previous approaches lead to a texture filled with the micro-
buffers information. Each micro-buffer can be used to compute the
final color of the pixel by convolution of its information with BRDF
data f (~ωin,~ωout) of the rendered object. Since a micro-buffer rep-
resent a discrete set of directions (typical size is 24× 24 pixels)
over the visible hemisphere, we can weigh the incoming radiance
of each pixel pi j by the subtended solid angle Ωi j of the saved
nodes in the pixel. The outcoming radiance of the pixels along the
view direction ~ωout is equal to:

Lout(~ωout) = ∑
i, j

[
f (~ωi j,~ωout)Ci, jΩi j(~n ·~ωi j)

]
, (9)

where Ci j is the stored color in the pixel of the microbuffer, and
~ωi j is the associated input direction. Using this formula, we ob-
tain darker rendering w.r.t. the reference created with a Montecarlo
path tracing. The reason is due to the stopping condition that per-
mits to rasterize a node of the BSH in the micro-buffer when the
solid angle subtended by the node is smaller of the solid angle of
one pixel in the micro-buffer. This condition could create two prob-
lems: the node does not cover all the solid angle of the pixel Ω, so
the sum of the all the solid angles of the rasterized nodes is less
than the portion of visible hemisphere of the pixel; some pixels of
the microbuffer do not receive any information creating holes in

microbuffer because any node has a view direction that can be ras-
terized in the pixel according to the hemispherical projection. To
solve the first problem, we simply substitute the solid angle of the
node Ωi, j with the solid angle of the pixel Ω. To alleviate the sec-
ond problem, preserving the real-time performance, we change the
stopping criteria for the rasterization using a bigger threshold that
is four times the solid angle of the pixel (Ω(Ak)≤ 4Ω). In this way,
the sphere of the node can be rasterized in all pixels covered by the
visibility cone of the node using a simple ray-sphere intersection
test.

5.4. Implementation Details

We implemented all the presented algorithms in OpenGL4.4 us-
ing the Geometry Shader and the Transform Feedback capabilities.
In particular, the BSH is stored in a Shader Storage Buffer Object
where each node contains the indices of the children node (2 un-
signed int), the position (3 float), the color (3 float), the radius (1
float) and the cone of normals (encoded in an unsigned int as RGBA
color where the RGB channels contain the direction and the alpha
contains half the aperture angle of the cone). Each node requires 40
bytes. All the three versions of the algorithm (Classic, Mipmapped,
and Hybrid PBGI), store the microbuffers in a 2D texture with size
equal to the viewport multiple by the size of the microbuffer. Each
pixel in the texture is a half float RGBA color, where the alpha
channel contains the depth values. The texture is read and written
inside the shaders with the Image Load/Store. While the Classic
PBGI visits the BSH for each pixel inside a single shader and does
not need additional memory, the Mipmapped and Hybrid PBGI
visit the BSH in an iterative and parallel way using the geometry
shader. We use the Transform Feedback to store the output of the
geometry shaders, pairs of indices (2 unsigned int) that store the
index of the node of the BSH and the Z-order index of the pixel
in the G-Buffer. At each iteration, the algorithm takes in input the
pairs of the previous one and generates the new pairs by refining
the visit in the BSH or in the next level of the G-Buffer. The algo-
rithm stops when the array buffer of the Transform Feedback with
the generated pair is empty. This means that all the pairs have been
rasterized in the microbuffer texture. Finally, the Hybrid PBGI re-
quires an additional stream in the Transform Feedback where to
store the pairs where the cut of the BSH must be refined with the
Classical version. In this case, the algorithm runs a different shader
for each pair of the additional stream computing the optimal cut for
the rasterization as the Classic PBGI.

6. Results

We tested the proposed pipeline with different datasets comparing
the results of both the steps of the algorithm with state-of-the-art
methods. We performed the tests on a PC with an Intel i7-6700
CPU, 32GB of RAM, and an NVIDIA GeForce GTX1080 GPU
with 8GB of dedicated video memory. In the following sections,
we present the used dataset (Section 6.1), the numerical and visual
comparisons results for the HDR expansion (Section 6.2) and the
PBGI rendering (Section 6.3), and finally the rendering results us-
ing some PBR models (Section 6.4).

M. Sabbadin et al. / HDR Expansion for Relighting 9

Figure 9: Hybrid PBGI rendering of a sphere inside the scene TOYROOM by varying the parameters of a Disney Principled BRDF. (Top)
Rendering with increasing roughness (from 0.1 to 1) with fixed metalness (1). (Bottom) Rendering with increasing metalness (from 0.1 to 1)
with fixed roughness (0.3).

ATRIUM DESK CORRIDOR OFFICE

P
M

A
T

C
H

L
U

M
L

D
R

E
nv

ir
on

m
en

t

Figure 10: Rendering results of the Hybrid PBGI with the LDR point cloud (central row) and the cloud expanded with the PMATCHLUM

method (top row) in four different scenes. The rendered 3D models, an airplane and a helmet, has a spatially varying Disney Principled
BRDF [Bur12]. The last row shows an equirectangular map of the point cloud acquired from the point of view of the model.

6.1. Dataset

For our tests, we employed a set of several point clouds obtained
with different technologies, some of them with ground truth HDR
data. In particular, we tested the following seven scenes:

• SPONZA, a Montecarlo point sampling of the Crytek Sponza
scene after the baking of the color data computed with a Path
Tracing rendering (with HDR color data);

• ATRIUM and BUILDING, respectively an atrium and an outdoor
scene reconstructed from a single HDR panoramic image ac-
quired with a 360deg camera where the point cloud was created
with the user-assisted method proposed in [BCD∗13] (with HDR
color data);

• CORRIDOR, a scene reconstructed with the multiview stereo
software COLMAP [SF16] using the 1065 video frames of a
walking in the corridor (without HDR color data);

10 M. Sabbadin et al. / HDR Expansion for Relighting

• OFFICE and DESK, respectively a scene of an office and of a desk
with several light sources acquired with a Kinect using Bundle-
Fusion [DNZ∗17] (without HDR color data);
• TOYROOM, a point cloud of a simple room with some colored

objects modeled with Blender obtained with a Montecarlo sam-
pling of the 3D model after the baking of the color data computed
with a Path Tracing rendering (without HDR data). This dataset
was only used to evaluate the performance and the quality of the
new PBGI algorithm.

For the point clouds with HDR color data (SPONZA, ATRIUM and
BUILDING), the LDR version was obtained by simply applying an
exposure and a clamp operator to the HDR color using Equation
1. For rendering, we used several 3D models with different BRDF
data such as a pure diffuse BRDF, the GGX BRDF [WMLT07], and
the Disney Principled BRDF [Bur12].

Points Shots HDR BSH N.Nodes N.Cluster
SPONZA 3.0M 3 180.5s 13.82s 4.8M 1.6M
ATRIUM 818k 1 50.4s 3.62s 1.4M 430K
BUILDING 871k 1 50.1s 4.61s 450K 90K
CORRIDOR 2.87M 3 171.3s 13.96s 1.1M 860K
OFFICE 3.54M 1 59.5s 16.67s 3M 1.3M
DESK 2.81M 1 57.0s 14.57s 2M 590K

Table 1: For each scene, the table reports the number of points,
the number of cubemaps used for the HDR expansion, the time for
the HDR expansion, the time to build the BSH hierarchy before the
rendering with the proposed PBGI algorithm, and the number of
nodes of the BSH (before and after the clustering).

6.2. HDR Expansion Evaluation

To test the HDR expansion framework presented in Section 4,
we used the tree clouds with ground trust HDR data, SPONZA,
ATRIUM and BUILDING. Starting from the LDR version of
these point clouds, we tested the three different approaches
described in Section 4.1. The first one is the application of
two different ITMOs: the global operator by Landis et al.
[Lan02](LANDIS) and the expand-map based operator by Ban-
terle et al. [BLDC06](BANTERLE). We limited our focus to these
non-linear operators because non-linearity typically provides high-
quality results for IBL [BDA∗09]. In addition, we tested the results
obtained by the trivial extension of these ITMOs to the structure of
a point cloud (LANDIS-PC and BANTERLE-PC), by applying di-
rectly the operator to each point of the cloud. The second approach
is based on two deep learning networks for inverse tone mapping
proposed by Eilertsen et al. [EKD∗17](EILER) and by Endo et
al. [EKM17](ENDO). We use the pre-trained network of the au-
thors. The last approach is the proposed randomized match method
based on the PatchMatch algorithm (PMATCH). For the deep learn-
ing and the PatchMatch approaches, we tested both the possibility
to transfer only the luminance (method with the suffix LUM) or the
entire color (method with the suffix RGB) of the HDR expanded
images. For the ITMOs we use only the luminance because these
operators work only on this data.

We evaluated the output of these methods in two different ways.
The first one computes the Root Mean Square Error (RMS) of

SPONZA

View1 View2 Points

RMS HDR-
VDP SSIM RMS HDR-

VDP SSIM RMS

LDR 1.137 78.86 0.796 0.040 80.59 0.978 3.454
BANTERLE 10.58 78.03 0.843 0.469 78.30 0.896 8.314
LANDIS 16.97 77.60 0.833 0.820 77.70 0.871 12.97
BANTERLEPC 4.940 78.18 0.865 0.225 79.18 0.936 9.147
LANDISPC 6.844 78.11 0.857 0.351 78.69 0.909 17.15
EILERLUM 0.572 79.51 0.909 0.020 82.14 0.996 3.507
EILERRGB 0.567 79.50 0.909 0.019 82.10 0.996 3.507
ENDOLUM 1.045 79.00 0.811 0.038 80.80 0.982 3.454
ENDORGB 1.058 79.03 0.811 0.039 80.80 0.982 3.454
PMATCHLUM 0.442 79.73 0.941 0.013 83.30 0.998 3.555
PMATCHRGB 0.425 79.68 0.941 0.012 83.29 0.998 3.555

ATRIUM

View1 View2 Points

RMS HDR-
VDP SSIM RMS HDR-

VDP SSIM RMS

LDR 0.231 78.55 0.832 0.127 79.32 0.938 3.649
BANTERLE 0.114 81.82 0.938 0.061 82.53 0.982 2.383
LANDIS 0.175 80.03 0.932 0.101 80.45 0.973 3.349
BANTERLEPC 0.193 80.01 0.804 0.100 80.75 0.941 5.099
LANDISPC 0.150 80.52 0.948 0.088 80.93 0.974 2.834
EILERLUM 0.257 79.10 0.881 0.137 79.65 0.964 5.554
EILERRGB 0.240 79.11 0.881 0.126 79.72 0.964 5.554
ENDOLUM 0.245 78.87 0.824 0.136 79.55 0.937 3.549
ENDORGB 0.245 78.85 0.824 0.136 79.54 0.937 3.549
PMATCHLUM 0.109 81.33 0.969 0.060 81.86 0.990 2.145
PMATCHRGB 0.068 81.69 0.969 0.035 82.35 0.990 2.145

BUILDING

View1 View2 Points

RMS HDR-
VDP SSIM RMS HDR-

VDP SSIM RMS

LDR 0.129 82.13 0.833 0.080 82.93 0.890 0.064
BANTERLE 0.182 81.63 0.913 0.065 82.78 0.933 0.087
LANDIS 0.352 80.87 0.845 0.080 81.80 0.909 0.137
BANTERLEPC 0.107 83.08 0.911 0.090 82.83 0.815 0.493
LANDISPC 0.128 82.35 0.930 0.064 82.99 0.938 0.049
EILERLUM 0.310 80.79 0.880 0.073 82.10 0.917 0.130
EILERRGB 0.278 80.78 0.880 0.071 82.16 0.917 0.130
ENDOLUM 0.154 80.77 0.835 0.076 82.52 0.893 0.100
ENDORGB 0.157 80.69 0.835 0.078 82.49 0.893 0.100
PMATCHLUM 0.059 83.38 0.985 0.065 83.61 0.938 0.046
PMATCHRGB 0.043 83.54 0.985 0.067 83.68 0.938 0.046

Table 2: The table contains the error measures of the expanded
point clouds with respect to the ground truth HDR cloud. The
columns "View1" and "View2" contain the error measures of the
renderings obtained with the Hybrid PBGI (Section 5.2.2) for two
different rendering viewpoints. The used error metrics are the RMS
error, the quality of HDV-VDP-2.2, and the Structure Similarity
(SSIM). The last column contains the RMS error computed directly
on the point cloud color data. The green text highlights the best
result for each test (for HDR-VDR and SSIM higher the better).

M. Sabbadin et al. / HDR Expansion for Relighting 11

the HDR expanded point cloud with respect to the ground truth
HDR data. The second evaluation compares the indirect effect pro-
duced by the cloud on a virtual object inserted in the scene and
rendered with the proposed Hybrid PBGI in Section 5.2.2. In par-
ticular, given the renderings with the expanded HDR clouds, we
compare them numerically with respect to the rendering with the
ground truth HDR cloud using three error measures: the RMS er-
ror, the quality value of the HDR-VDP-2.2 [NMPDSLC15] and
the Structure Similarity (SSIM) [WBSS04]. For each dataset, we
used two different viewpoints for the camera. Table 2 contains the
numerical values of this comparison. Figures 12 and 13 show the
produced renderings with the different expanded point clouds com-
pared and the renderings with the HDR ground truth and the LDR
point cloud. We removed the image background to avoid wrong
perceptual impressions. These two figures show in the bottom a
panoramic view of the tested scene taken from the centroid of the
rendered object. Comparing these renderings, the PMATCH meth-
ods show the best results according to all the error measures and in
particular, the method based on the transfer of all the RGB color
generates renderings with slightly lower errors. Also according to
the RMS error on the point cloud data, the PMATCH methods are
the best ones but the differences from the LDR cloud is lower. Con-
sider that the trivial computation of the RMS on the cloud data does
not take account of the distribution of the error, on the contrary of
the evaluation of the rendering effects. This is the reason because
the LDR point cloud of the scene SPONZA has a lower point RMS
lower than the other method but it produces visually worse render-
ing results. Table 1 contains the timings for the expansion of the
different point clouds with the PMATCHLUM method.

6.3. PBGI Performance

We tested the performance of the proposed PBGI algorithms in
Sections 5.2.1 and 5.2.2 (Mipmapped and Hybrid PBGI) with the
classic microbuffer rendering by Ritschel et al. [REG∗09]. Table 3
contains the rendering time in milliseconds of the three versions of
the PBGI rendering (Classic, Mipmapped and Hybrid) by changing
the viewport size and the microbuffer size. We tested two scenes
(TOYROOM and SPONZA) with two different rendering viewpoint:
the first one where is visible a detail of the object that gets all the
viewport; the second one where the entire object is visible in the
viewport. The table in the bottom contains the maximum memory
occupied by the additional buffer to store the output primitives of
the Geometry Shader inside the Transform Feedback with respect
to the Classic PBGI. The letter ’x’ means that the algorithm fails
due to memory issue (the texture to store the microbuffers or the
buffer for the output of the Transform Feedback are too big). The
Hybrid approach is the faster one reaching also a speed-up of 10x
with respect to the Classic microbuffer rendering, especially for big
viewport and microbuffer. Furthermore, the memory occupancy is
always less than the Mipmapped version.

To evaluate the approximation introduced by the proposed Hy-
brid PBGI, we compared the rendering results of the proposed al-
gorithm with the outputs of a path tracing and the output of an
environment mapping rendering. Figure 14 shows the renderings
of the same object in the TOY ROOM scene by changing the rough-
ness parameter of a GGX BRDF. For the environment mapping, the

maps were taken from the position of the relighted object, the opti-
mal situation for this algorithm. The last columns show the maps of
the luminance differences from the path tracing rendering with the
relative RMS error. Numerically, the error introduced by the Hy-
brid PBGI is lower or comparable to the error of the environment
mapping rendering. The main advantages of the proposed method
are the real-time rendering and the possibility to capture also close
and mid-range illumination effects such as the green color bleeding
on the front of the bust.

The main limitation of our method is the rendering of very spec-
ular surfaces (i.e., low roughness) due to the approximation intro-
duced by the size of the microbuffers. For small microbuffer, the
algorithm may not capture the main/optimal reflection directions,
and it may lead to a higher error, which may create visible arti-
fact as shown in Figure 9. This happens for roughness parameters
below 0.2. The use of an importance sampling strategy during the
rendering can solve these artifacts.

6.4. HDR Rendering

Figure 11 shows a comparison of the renderings computed with
LDR point cloud and the HDR cloud expanded with the method
PMATCHLUM of a new object placed inside the scene. The figure
shows also the difference map between the two renderings com-
puted only on the new object placed in the scene. In all the test it
is visible the additional contribution of the saturated areas of the
cloud that are expanded with the proposed method. The proposed
PBGI framework is also able to manage different type of BDRF.
Figure 10 shows the rendering of an airplane and a helmet with a
spatially varying Disney Principled BRDF in different scenes from
two rendering point of views. Also in this case, the contribution of
the HDR expansion is visible on the specular regions of the object.

7. Conclusion

We presented an innovative algorithm to use the data encoded into
a captured point cloud (radiance, spatial and visibility informa-
tion) of a real-world scene to compute the real-time relighting of
the virtual object inside the scene. The framework is based on two
components: the HDR expansion of the input point cloud, usually
captured with LDR devices; the real-time relighting of the virtual
object using a new PBGI algorithm. For the HDR expansion, start-
ing from a single exemplary HDR photo of the environment, we
propose a framework based on the HDR reconstruction of a set of
LDR rendering of the point cloud. We tested three different strate-
gies to expand the LDR rendering (image inverse tone mapping,
deep learning architecture and randomized matching), showing nu-
merically that the methods based on the PatchMatch between the
HDR photos and the LDR renderings are the best solution. After
the reprojection of the HDR data from the rendering to the point
cloud, the algorithm computes a Poisson HDR infilling for the ar-
eas not covered by the rendering or with a low-quality HDR re-
construction. The expanded HDR point cloud is used as input for
the proposed PGBI algorithm to compute in real-time the final ren-
dering of the object. Starting from the construction of a BSH of the
cloud in a preprocessing step, the proposed method takes advantage
of the geometry shader and of a new mipmapping operator for the

12 M. Sabbadin et al. / HDR Expansion for Relighting

Microbuffer size

Time Perf. TOYROOM SPONZA

(ms) View1 View2 View1 View2

Classic 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32
128x128 9.7 21.3 35.2 7.5 16.7 27.0 32.7 79.9 135.9 23.8 58.9 90.8
256x256 37.8 85.1 254.5 15.6 35.2 81.2 146.3 374.9 953.3 36.8 90.3 161.9
512x512 138.9 598.0 3272.0 41.1 173.5 920.6 584.9 2093.5 10k 126.5 380.6 1680.0
1024x1024 752.0 x x 306.2 x x 3025.8 x x 890.1 x x
Mipmapped 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32

128x128 15.2 31.2 51.9 9.9 16.4 24.8 45.4 115.8 194.7 24.1 53.1 81.0
256x256 40.0 88.0 151.0 22.6 47.9 77.9 144.8 370.4 606.9 75.7 184.7 292.5
512x512 131.1 293.0 565.2 64.5 148.4 281.6 515.5 x x 242.8 640.0 1237.1
1024x124 604.6 x x 244.7 x x x x x 930.7 x x

Hybrid 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32

128x128 9.1 13.3 24.7 6.5 8.8 11.5 19.2 42.3 64.6 9.6 15.8 22.1
256x256 19.3 41.4 82.3 9.9 16.9 29.8 58.2 150.0 233.4 20.1 41.2 67.8
512x512 62.1 156.7 316.2 24.2 53.1 108.5 205.1 568.1 927.6 58.5 132.7 243.7
1024x1024 285.3 x x 115.8 x x 874.1 x x 227.0 x x

Memory Perf. TOYROOM SPONZA

(MB) View1 View2 View1 View2

Mipmapped 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32

128x128 10 16 27 4 6 11 30 84 128 13 26 45
256x256 38 55 90 15 24 39 113 303 435 47 101 174
512x512 146 206 325 50 81 135 440 x x 156 360 642
1024x124 756 x x 183 x x x x x 603 x x

Hybrid 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32 16x16 24x24 32x32

128x128 5 10 19 1 2 4 20 45 80 3 7 13
256x256 22 39 76 4 8 15 82 183 319 14 29 52
512x512 89 158 306 18 32 61 329 734 1279 56 115 208
1024x1024 356 x x 71 x x 1.3k x x 227 x x

TOYROOM-View1

TOYROOM-View2

SPONZA-View1

SPONZA-View2

Table 3: Performance comparison (time and memory occupancy) of the three PBGI algorithms, Classic [REG∗09], Mipmapped (Section
5.2.1) and Hybrid (Section 5.2.2), varying the viewport and the microbuffer size. The tests were performed on the point clouds TOYROOM

and SPONZA using the two viewpoints on the right: in the first one the object to relight gets all viewport; in the second one the entire object
is visible in the viewport. The ’x’ letter means that the algorithm was unable to run for memory issues. For the memory occupancy, the table
reports only the additional memory required to store the output primitive of the geometry shader in the transform feedback buffers.

G-buffer of the rendered object to speed up the rendering. In partic-
ular, we proposed a hybrid solution that splits the visit of the BSH
into two parts. In the first one, the visit of the BSH is done in par-
allel and in an iterative way for each pixel with multiple instances
of the geometry shader. During this visit, the geometry shader can
decide to refine the visit in the BSH or in the next level of the G-
Buffer. In the second part, when the solid angle of the node is below
a multiple of the solid angle of a pixel in the microbuffer, the algo-
rithm refines the visit for each sub-tree reached by the first visit in a
single shader until the rasterization of the node in the microbuffer.
In this way the algorithm can share the visit of the tree for near
pixels in the viewport, reducing the rendering time at the cost of a
minimum memory overhead. We tested the algorithm with several
datasets with and without HDR ground truth information, showing
very good numerical and very convincing visual results. We show

also the result obtained in an AR scenario with some small anima-
tion of PBR models in the video of the supporting information.

In future works, we plan to investigate some preprocessing steps
to increase the quality of the input LDR point cloud in term of bet-
ter density and distribution of points, taking also account of the
source of the data that produced it. This step should help to reduce
areas in the cloud without information, improving the quality of
the rendering. A further future research direction is the proposal of
an interactive HDR expansion method that could help to use the
framework in a dynamic AR scenario where the lighting environ-
ment can change.

Acknowledgements

M. Sabbadin et al. / HDR Expansion for Relighting 13

SPONZA ATRIUM BUILDING CORRIDOR OFFICE DESK

P
M

A
T

C
H

L
U

M
L

D
R

D
iff

Figure 11: Comparison of rendering results obtained with the HDR cloud expanded with the method PMATCHLUM (top row) and the input
LDR point cloud (central row). For all objects, we used a GGX BRDF with roughness equal to 0.25. The last row shows the differences of
the rendered object in the images.

References
[AFR∗07] AKYÜZ A. O., FLEMING R., RIECKE B. E., REINHARD E.,

BÜLTHOFF H. H.: Do hdr displays support ldr content?: A psychophys-
ical evaluation. ACM Trans. Graph. 26, 3 (2007), 38. 2

[BADC17] BANTERLE F., ARTUSI A., DEBATTISTA K., CHALMERS
A.: Advanced High Dynamic Range Imaging: Theory and Practice (2nd
Edition). AK Peters (CRC Press), July 2017. 2

[BB12] BUCHHOLZ B., BOUBEKEUR T.: Quantized point-based global
illumination. Comp. Graph. Forum (Proc. EGSR 2012) 31, 4 (2012),
1399–1405. 3

[BCD∗13] BANTERLE F., CALLIERI M., DELLEPIANE M., CORSINI
M., PELLACINI F., SCOPIGNO R.: Envydepth: An interface for re-
covering local natural illumination from environment maps. Computer
Graphics Forum 32, 7 (October 2013), 411–420. 3, 9

[BDA∗09] BANTERLE F., DEBATTISTA K., ARTUSI A., PATTANAIK
S. N., MYSZKOWSKI K., LEDDA P., CHALMERS A.: High dynamic
range imaging and low dynamic range expansion for generating HDR
content. Comput. Graph. Forum 28, 8 (2009), 2343–2367. 10

[BE05] BAREQUET G., ELBER G.: Optimal bounding cones of vectors
in three dimensions. Inf. Process. Lett. 93, 2 (Jan. 2005), 83–89. 5, 7

[BLDC06] BANTERLE F., LEDDA P., DEBATTISTA K., CHALMERS A.:
Inverse tone mapping. In GRAPHITE ’06: Proceedings of the 4th Inter-
national Conference on Computer Graphics and Interactive Techniques
in Australasia and Southeast Asia (New York, NY, USA, 2006), ACM,
pp. 349–356. 2, 3, 10

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A., GOLDMAN
D. B.: PatchMatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Transactions on Graphics (Proc. SIGGRAPH)
28, 3 (Aug. 2009). 3

[BSGF10] BARNES C., SHECHTMAN E., GOLDMAN D. B., FINKEL-

STEIN A.: The generalized PatchMatch correspondence algorithm. In
European Conference on Computer Vision (Sept. 2010). 3, 4

[Bun05] BUNNELL M.: Dynamic ambient occlusion and indirect light-
ing. GPU Gems 2 (2005), 223–233. 2

[Bur12] BURLEY B.: Physically based shading at disney. In ACM SIG-
GRAPH 2012 Courses:Practical physically-based shading in film and
game production (2012), ACM, p. 26. 9, 10

[CEN07] CHAN T., ESEDOGLU S., NI K.: Histogram based segmenta-
tion using wasserstein distances. In Scale Space and Variational Meth-
ods in Computer Vision (Berlin, Heidelberg, 2007), Sgallari F., Murli A.,
Paragios N., (Eds.), Springer Berlin Heidelberg, pp. 697–708. 4

[Chr08] CHRISTENSEN P.: Point-based approximate color bleeding.
Pixar Technical Notes 2, 5 (2008), 6. 2

[DBGBR∗14] DI BENEDETTO M., GANOVELLI F., BALSA RO-
DRIGUEZ M., JASPE VILLANUEVA A., SCOPIGNO R., GOBBETTI
E.: Exploremaps: Efficient construction and ubiquitous exploration of
panoramic view graphs of complex 3d environments. Computer Graph-
ics Forum 33, 2 (2014), 459–468. 3

[Deb98] DEBEVEC P.: Rendering synthetic objects into real scenes:
bridging traditional and image-based graphics with global illumination
and high dynamic range photography. In SIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics and interactive
techniques (1998), ACM Press, pp. 189–198. 2, 3

[DMHS08] DIDYK P., MANTIUK R., HEIN M., SEIDEL H.-P.: En-
hancement of bright video features for HDR displays. Computer Graph-
ics Forum 27, 4 (2008), 1265–1274. 2

[DNZ∗17] DAI A., NIESSNER M., ZOLLHÖFER M., IZADI S.,
THEOBALT C.: Bundlefusion: Real-time globally consistent 3d recon-
struction using on-the-fly surface reintegration. ACM Trans. Graph. 36,
3 (May 2017), 24:1–24:18. 3, 10

14 M. Sabbadin et al. / HDR Expansion for Relighting

[EKD∗17] EILERTSEN G., KRONANDER J., DENES G., MANTIUK R.,
UNGER J.: Hdr image reconstruction from a single exposure using deep
cnns. ACM Transactions on Graphics (TOG) 36, 6 (2017). 2, 3, 10

[EKM17] ENDO Y., KANAMORI Y., MITANI J.: Deep reverse tone map-
ping. ACM Trans. Graph. 36, 6 (Nov. 2017), 177:1–177:10. 2, 3, 10

[FGK03] FISCHER K., GÄRTNER B., KUTZ M.: Fast smallest-
enclosing-ball computation in high dimensions. In European Symposium
on Algorithms (2003), Springer, pp. 630–641. 5

[GSY∗17] GARDNER M.-A., SUNKAVALLI K., YUMER E., SHEN X.,
GAMBARETTO E., GAGNÉ C., LALONDE J.-F.: Learning to predict
indoor illumination from a single image. ACM Trans. Graph. 36, 6 (Nov.
2017), 176:1–176:14. 3

[HKS09] HA L., KRÜGER J., SILVA C. T.: Fast four-way parallel radix
sorting on gpus. Computer Graphics Forum 28, 8 (2009), 2368–2378. 5

[HREB11] HOLLANDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. Computer Graphics Forum
30, 4 (2011), 1233–1240. 3, 6

[HSH∗17] HOLD-GEOFFROY Y., SUNKAVALLI K., HADAP S., GAM-
BARETTO E., LALONDE J.: Deep outdoor illumination estimation. In
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017 (2017), pp. 2373–
2382. 3

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum
(scan) with cuda. GPU gems 3, 39 (2007), 851–876. 5

[Kar12] KARRAS T.: Maximizing parallelism in the construction of
bvhs, octrees, and k-d trees. In Proceedings of the Fourth ACM SIG-
GRAPH / Eurographics Conference on High-Performance Graphics
(2012), EGGH-HPG’12, pp. 33–37. 5

[KBG∗15] KRONANDER J., BANTERLE F., GARDNER A., MIANDJI E.,
UNGER J.: Photorealistic rendering of mixed reality scenes. Computer
Graphics Forum 34, 2 (May 2015), 643–665. 3

[KO14] KOVALESKI R. P., OLIVEIRA M. M.: High-quality reverse tone
mapping for a wide range of exposures. In 27th SIBGRAPI Conference
on Graphics, Patterns and Images (August 2014), IEEE Computer Soci-
ety, pp. 49–56. 2

[Lan02] LANDIS H.: Production-ready global illumination. In SIG-
GRAPH Course Notes 16 (2002), pp. 87–101. 2, 3, 10

[MBRHD18] MARNERIDES D., BASHFORD-ROGERS T., HATCHETT
J., DEBATTISTA K.: Expandnet: A deep convolutional neural network
for high dynamic range expansion from low dynamic range content.
Computer Graphics Forum 37, 2 (2018), 37–49. 2

[MKR07] MERTENS T., KAUTZ J., REETH F. V.: Exposure fusion. In
Proceedings of the 15th Pacific Conference on Computer Graphics and
Applications (2007), PG ’07, IEEE Computer Society, pp. 382–390. 3

[MSG15] MASIA B., SERRANO A., GUTIERREZ D.: Dynamic range
expansion based on image statistics. Multimedia Tools and Applications
(2015), 1–18. 2

[NMPDSLC15] NARWARIA M., MANTIUK R., P. DA SILVA M.,
LE CALLET P.: Hdr-vdp-2.2: a calibrated method for objective qual-
ity prediction of high-dynamic range and standard images. Journal of
Electronic Imaging 24 (2015), 24 – 24 – 3. 11

[Pel10] PELLACINI F.: envylight: An interface for editing natural illumi-
nation. ACM Trans. Graph. 29, 4 (July 2010), 34:1–34:8. 3

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image editing.
ACM Trans. Graph. 22, 3 (July 2003), 313–318. 3, 4

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:
The state of the art in interactive global illumination. Computer Graphics
Forum 31, 1 (2012), 160–188. 2

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEIDEL H.-P.,
KAUTZ J., DACHSBACHER C.: Micro-rendering for scalable, parallel
final gathering. ACM Trans. Graph. 28, 5 (Dec. 2009), 132:1–132:8. 3,
6, 11, 12

[RPAC17] RHEE T., PETIKAM L., ALLEN B., CHALMERS A.: MR360:
mixed reality rendering for 360Âř panoramic videos. IEEE Trans. Vis.
Comput. Graph. 23, 4 (2017), 1379–1388. 3

[RTS∗07] REMPEL A. G., TRENTACOSTE M., SEETZEN H., YOUNG
H. D., HEIDRICH W., WHITEHEAD L., WARD G.: Ldr2hdr: On-the-
fly reverse tone mapping of legacy video and photographs. ACM Trans.
Graph. 26, 3 (2007), 39. 2

[RWP∗10] REINHARD E., WARD G., PATTANAIK S. N., DEBEVEC
P. E., HEIDRICH W.: High Dynamic Range Imaging - Acquisition, Dis-
play, and Image-Based Lighting (2. ed.). Academic Press, 2010. 2

[SF16] SCHÃŰNBERGER J. L., FRAHM J. M.: Structure-from-motion
revisited. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2016), pp. 4104–4113. 3, 9

[SL17] SILVENNOINEN A., LEHTINEN J.: Real-time global illumination
by precomputed local reconstruction from sparse radiance probes. ACM
Transactions on Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (Nov.
2017), 230:1–230:13. 2

[Tab12] TABELLION E.: Point-based global illumination directional im-
portance mapping. In ACM SIGGRAPH Talk (2012). 3

[UKL∗13] UNGER J., KRONANDER J., LARSSON P., GUSTAVSON S.,
LÖW J., YNNERMAN A.: Spatially varying image based lighting using
hdr-video. Computers and Graphics 37, 7 (November 2013). 3

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612.
11

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A scalable approach
to illumination. ACM Trans. Graph. 24, 3 (2005), 1098–1107. 2

[WHB∗13] WANG B., HUANG J., BUCHHOLZ B., MENG X.,
BOUBEKEUR T.: Factorized point based global illumination. Computer
Graphics Forum 32, 4 (2013), 117–123. 3, 7

[WMB15] WANG B., MENG X., BOUBEKEUR T.: Wavelet point-based
global illumination. Computer Graphics Forum 34, 4 (2015), 143–153.
3

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE K. E.:
Microfacet models for refraction through rough surfaces. In Proceedings
of the 18th Eurographics Conference on Rendering Techniques (2007),
EGSR’07, Eurographics Association, pp. 195–206. 10

[WSG∗16] WHELAN T., SALAS-MORENO R. F., GLOCKER B., DAVI-
SON A. J., LEUTENEGGER S.: Elasticfusion: Real-time dense SLAM
and light source estimation. I. J. Robotics Res. 35, 14 (2016), 1697–1716.
3

[WWZ∗07] WANG L., WEI L.-Y., ZHOU K., GUO B., SHUM H.-Y.:
High dynamic range image hallucination. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 Sketches (2007), ACM, p. 72. 2

[ZCC16] ZHANG E., COHEN M. F., CURLESS B.: Emptying, refurnish-
ing, and relighting indoor spaces. ACM Trans. Graph. 35, 6 (Nov. 2016),
174:1–174:14. 3

M. Sabbadin et al. / HDR Expansion for Relighting 15

SPONZA ATRIUM BUILDING

GROUNDTRUTH LDR GROUNDTRUTH LDR GROUNDTRUTH LDR

PMATCHRGB PMATCHLUM PMATCHRGB PMATCHLUM PMATCHRGB PMATCHLUM

ENDORGB ENDOLUM ENDORGB ENDOLUM ENDORGB ENDOLUM

EILERRGB EILERLUM EILERRGB EILERLUM EILERRGB EILERLUM

LANDIS LANDISPC LANDIS LANDISPC LANDIS LANDISPC

BANTERLE BANTERLEPC BANTERLE BANTERLEPC BANTERLE BANTERLEPC

Figure 12: Comparison of the renderings using the point cloud expanded with the method tested in Section 6.2 for the scene SPONZA,
ATRIUM and BUILDING. The figure shows also the renderings obtained with the ground truth cloud (GROUNDTRUTH) and with the LDR
cloud (LDR) and the panorama of the point cloud from the point of view of the object centroid.

16 M. Sabbadin et al. / HDR Expansion for Relighting

SPONZA ATRIUM BUILDING

GROUNDTRUTH LDR GROUNDTRUTH LDR GROUNDTRUTH LDR

PMATCHRGB PMATCHLUM PMATCHRGB PMATCHLUM PMATCHRGB PMATCHLUM

ENDORGB ENDOLUM ENDORGB ENDOLUM ENDORGB ENDOLUM

EILERRGB EILERLUM EILERRGB EILERLUM EILERRGB EILERLUM

LANDIS LANDISPC LANDIS LANDISPC LANDIS LANDISPC

BANTERLE BANTERLEPC BANTERLE BANTERLEPC BANTERLE BANTERLEPC

Figure 13: Comparison of the renderings using the point cloud expanded with the method tested in Section 6.2 for the scene SPONZA,
ATRIUM and BUILDING. The figure shows also the renderings obtained with the ground truth cloud (GROUNDTRUTH) and with the LDR
cloud (LDR) and the panorama of the point cloud from the point of view of the object centroid.

M. Sabbadin et al. / HDR Expansion for Relighting 17

Ground Truth Environment Map Hybrid PBGI Diff EnvMap Diff PBGI

D
iff

us
iv

e

RMSE 0.0483 RMSE 0.0383

R
ou

gh
ne

ss
0.

5

RMSE 0.0361 RMSE 0.0286

R
ou

gh
ne

ss
0.

4

RMSE 0.0457 RMSE 0.0335

R
ou

gh
ne

ss
0.

3

RMSE 0.0589 RMSE 0.0478

R
ou

gh
ne

ss
0.

2

RMSE 0.0783 RMSE 0.0776

R
ou

gh
ne

ss
0.

1

RMSE 0.1110 RMSE 0.1342

Figure 14: Comparison of the Hybrid PBGI rendering with a path tracing and the classical environment mapping. The last two columns
show the difference map from the path tracing result of the environment mapping and the proposed PBGI approach with the relative RMS
error. The difference is on the luminance channel. For each column, we show the object varying the roughness parameter of the GGX BRDF.

