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Abstract. Given an open set �, we consider the problem of providing sharp lower bounds
for λ2(�), i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the
nonlinear analogue of the Hong–Krahn–Szego inequality, asserting that the disjoint unions
of two equal balls minimize λ2 among open sets of given measure, we improve this spec-
tral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and
p = ∞ are considered as well.

1. Introduction

In this paper, we are concerned with Dirichlet eigenvalues of the p-Laplace operator

−�pu := −div(|∇u|p−2 ∇u),

where 1 < p < ∞. For every open set � ⊂ R
N having finite measure, these are

defined as the real numbers λ such that the boundary value problem

−�pu = λ |u|p−2 u, in �, u = 0, on ∂�

has non trivial (weak) solutions. In particular, we are mainly focused on the fol-
lowing spectral optimization problem

min{λ2(�) : |�| = c}, (1.1)

where c > 0 is a given number, λ2(·) is the second Dirichlet eigenvalue of the
p-Laplacian and | · | stands for the N -dimensional Lebesgue measure. We will
go back on the question of the well-posedness of this problem in a while, for the
moment let us focus on the particular case p = 2. In this case we are facing the
eigenvalue problem for the usual Laplace operator. As it is well known (see [20]),
Dirichlet eigenvalues form a discrete nondecreasing sequence of positive real num-
bers 0 < λ1(�) ≤ λ2(�) ≤ λ3(�) ≤ · · · , going to ∞, where each eigenvalue
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is counted with its multiplicity. In particular, it is meaningful to speak of a second
eigenvalue so that problem (1.1) is well-posed and we know that its solution is
given by any disjoint union of two balls having measure c/2. Moreover, these are
the only sets which minimize λ2 under volume constraint.

Using the scaling properties both of the eigenvalues of −� and of the Lebesgue
measure, we can reformulate the previous result in scaling invariant form as follows

|�|2/N λ2(�) ≥ 22/N ω
2/N
N λ1(B), (1.2)

with equality if and only if � is a disjoint union of two equal balls. Here and in what
follows, B will always denote a N -dimensional ball of radius one and ωN := |B|.
Observe that for � = B1 ∪ B2, with B1 and B2 disjoint balls having |B1| = |B2|,
the first eigenvalue has multiplicity two, i.e. λ1(�) = λ2(�) and these are equal to
the first eigenvalue of one of the two balls.

This “isoperimetric” property of balls has been discovered (at least) three times:
first by Edgar Krahn [24] in the ’20s, but then the result has been probably neglected,
since in 1955 George Pólya attributes this observation to Peter Szego (see the final
remark of [29]). However, almost in the same years as Pólya’s paper, there appeared
the paper [21] by Imsik Hong, giving once again a proof of this result. It has to
be noticed that Hong’s paper appeared in 1954, just one year before Pólya’s one.
For this reason, in what follows we will refer to (1.2) as the Hong–Krahn–Szego
inequality (HKS inequality for short).

We briefly recall that for successive Dirichlet eigenvalues of the Laplacian,
much less is known. In general existence, regularity and characterization of opti-
mal shapes for a problem like (1.1) are still open issues. As for existence, a general
(positive) answer has been given only very recently, independently by Bucur [9]
and Mazzoleni and Pratelli [26].

For the case of the p-Laplace operator, this is clearly a completely different
story. The nonlinearity of the operator and the lack of an underlying Hilbertian
structure complicate things a lot. For example, though there exists a variational
procedure to produce an infinite sequence of eigenvalues of −�p (the so called
eigenvalues of Ljusternik–Schnirelmann type, see [16,19] for example), up to now
it is not clear whether the resulting variational spectrum coincides with the whole
spectrum of −�p or there exist some other eigenvalues. Negative answers were
given in [6,12] for slightly different nonlinear eigenvalue problems. Moreover, it
is not even known whether or not the collection of the eigenvalues of −�p forms
a discrete set.

This said, while it is easy to define the first eigenvalue λ1, in principle it becomes
quite difficult even to start speaking of the second eigenvalue, the third one and
so on, since discreteness of the spectrum is not guaranteed. However, as it is well
known, it turns out that also in the case of −�p one can speak of a second eingevalue
λ2. This means that there is a gap between λ1 and λ2, as for p = 2. Moreover, this
second eigenvalue is a variational one, which has a mountain-pass characterization
(see Sect. 2 for more details).

The main aim of the present paper is the study of the spectral optimization
problem (1.1) for a general 1 < p < ∞. As we will see, the Hong–Krahn–Szego
inequality still holds in the case of the p-Laplace operator (Theorem 3.2). Namely,
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any disjoint union of two equal balls minimizes the second eigenvalue of −�p

among sets of given measure, that is

|�|p/N λ2(�) ≥ 2p/N ω
p/N
N λ1(B). (1.3)

The proof runs very similarly to the case p = 2 and it is based exactly on the same
two ingredients, which still hold in the nonlinear setting:

• The Faber–Krahn inequality (see next section) for the first eigenvalue of −�p;
• The fact that for a connected open set the only eigenfunction of constant sign

is the first one.

We will then turn our attention to the stability issue. Indeed, when dealing with
shape optimization problems having unique solution (possibly up to some suitable
group of rigid transformations, like rotations or translations, for example), a very
interesting and natural question is to know whether this optimal shape is stable or
not. For example, specializing this question to our problem (1.1), we are interested
in addressing the following issue:

|�0|=c and λ2(�0) � min{λ2(�) : |�| = c} ?	⇒ �0“near ′′ to the optimal shape

In this paper, we give a positive answer to this question, by proving a quantita-
tive version of (1.3). By “quantitative” we mean the following: actually, inequality
(1.3) can be improved by adding a reminder term, which measures (in a suitable
sense) the distance of the generic set � from the “manifold” of optimizers O, i.e.
the collection of all disjoint unions of two equal balls. Then the result we provide
(Theorem 4.2) is an improvement of (1.3) of the type

|�|p/N λ2(�) − 2p/N ω
p/N
N λ1(B) ≥ �(d(�,O)),

where d(·,O) is a suitable “distance” from O and � : [0,∞) → [0,∞) is a con-
tinuous strictly increasing function, with �(0) = 0. More precisely, in Theorem
4.2 we prove a result like this with d equal to the L1 distance of characteristic func-
tions (a variant of the so-called Fraenkel asymmetry, see Sect. 4) and � given by a
power function. This quantitative estimate guarantees that if the second eigenvalue
λ2 of a set � is almost equal to the λ1 of a ball having measure |�|/2, then � is
almost the disjoint union of two equal balls, i.e. we have stability of optimal shapes
for our spectral optimization problem. Our analysis will cover the whole range of
p. Indeed, we will show that the same proof can be adapted to cover the cases
p = 1 and p = ∞ as well, where λ2 becomes the second Cheeger constant and
the second eigenvalue of the ∞-Laplacian, respectively (see Sect. 5 for the precise
definitions). In the case of the first eigenvalue λ1, we recall that quantitative results
of this type have been derived in [18,27,30] (linear case, p = 2) and [4,17] (general
case, 1 < p < ∞).

We point out that though problem (1.1) is a very natural one also for −�p, we
have not been able to find in literature any paper recording a proof of (1.3). Only after
the completion of this work, we found a related recent paper by Kennedy ([23]),
dealing with problem (1.1), but for the second eigenvalue of −�p with Robin
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boundary conditions. For this reason, we decided to write properly the complete
proof of (1.3); on the contrary, the quantitative stability results of Theorem 4.2 and
Theorem 5.2 in this paper are certainly new, though probably not sharp, except for
the case p = ∞ (see the discussion in Sect. 6).

We conclude this introduction with the plan of the paper. In order to make the
work as self-contained as possible, Sect. 2 recalls the basic facts about the first two
eigenvalues of −�p that we will need in the following; in Sect. 3 we prove the
Hong–Krahn–Szego inequality for λ2, while Sect. 4 provides a quantitative version
of the latter, thus extending to the nonlinear case a result recently proven in [8]. In
Sect. 5, for the sake of completeness, we consider the shape optimization problem
(1.1) for the “extremal” cases, i.e. for p = 1 and p = ∞: in this case, the first
two eigenvalues λ1 and λ2 become two purely geometrical objects and we study
stability of optimal shapes for them. Finally, Sect. 6 concludes the paper with some
examples, remarks and conjectures concerning the sharpness of the quantitative
estimates derived in this work.

2. Tools: the first two eigenvalues of −� p

Given an open set � ⊂ R
N having finite measure and p ∈ (1,∞), we define the

L p unitary sphere

Bp(�) = {u ∈ L p(�) : ‖u‖L p(�) = 1},
and we indicate with W 1,p

0 (�) the usual Sobolev space, given by the closure of
C∞

0 (�) with respect to the norm

‖u‖ =
⎛
⎝

∫

�

|∇u(x)|p dx

⎞
⎠

1/p

.

If for a certain λ we have that there exists a non trivial u ∈ W 1,p
0 (�) satisfying

− �pu = λ|u|p−2 u, in �, (2.1)

in a weak sense, i.e.∫

�

〈|∇u(x)|p−2 ∇u(x),∇ϕ(x)〉 dx = λ

∫

�

|u(x)|p−2 u(x) ϕ(x) dx,

for every ϕ ∈ W 1,p
0 (�),

then we call λ a Dirichlet eigenvalue of −�p in �: correspondingly u will be a
Dirichlet eigenfunction of −�p. In particular, observe that for every such a pair
(λ, u) there results ∫

�

|∇u(x)|p dx = λ

∫

�

|u(x)|p dx .

Though we will not need it in the sequel, we recall that it is possible to show the
existence of a diverging sequence of eigenvalues of −�p, see [16,19].
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Remark 2.1 Observe that in general solutions of (2.1) are just in C1,α (see [13]). In
fact, the second derivatives cannot exist in a weak sense either, unless 1 < p ≤ 2
(see [1]). Then eigenfunctions in general are not classical solutions of the equation
(2.1).

The first Dirichlet eigenvalue of the p-Laplacian of a set has the following varia-
tional definition

λ1(�) = min
u∈Bp(�)∩W 1,p

0 (�)

∫
�

|∇u(x)|p dx, (2.2)

i.e. the quantity 1/λ1(�) is the sharp constant in the usual Poincaré inequality∫

�

|u(x)|p dx ≤ C�

∫

�

|∇u(x)|p dx, u ∈ W 1,p
0 (�),

and this in particular implies that λ1(�) > 0.

Remark 2.2 It is easily seen by a standard compactness argument that the mini-
mum in (2.2) is attained, then this λ1(�) is indeed an eigenvalue of −�p, since
(2.1) is precisely the Euler–Lagrange equation for (2.2). The fact that λ1(�) is
the minimal one follows observing that if λ is an eigenvalue with eigenfunction
v ∈ Bp(�) ∩ W 1,p

0 (�), then
∫
�

|∇v(x)|p dx = λ and thus

λ1(�) = min
u∈Bp(�)∩W 1,p

0 (�)

∫

�

|∇u(x)|p dx ≤
∫

�

|∇v(x)|p dx = λ.

The first important result that we need concerns the simplicity of λ1 on a connected
open set.

Theorem 2.3 Let � ⊂ R
N be an open connected set, having |�| < +∞. Then

λ1(�) is simple, i.e. the corresponding eigenfuctions form a 1-dimensional linear
space.

Proof. A very short and elegant proof of this fact can be found in [3]. Their proof
is based on the strict convexity of

∫
�

|∇u|p along curves of the form

σt =
(
(1 − t) u p

0 + t u p
1

) 1
p
, t ∈ [0, 1], (2.3)

for every pair of strictly positive functions u0, u1 ∈ W 1,p
0 (�). Actually, the result

in [3] is stated for the case of � being a bounded set, but it can be easily seen that
this hypothesis plays no role and the same proof still works for � having finite
measure. ��

Throughout the paper, we will use the following convention: when � is a dis-
connected open set, the set of its Dirichlet eigenvalues is made of the collection of
the eigenvalues of its connected components. The eigenvalues are obtained by gath-
ering and ordering increasingly the eigenvalues on the single pieces; correspond-
ingly, each eigenfunction is solution of (2.1) on a certain connected component and
vanishes on the others.

The following result plays a crucial role: it asserts that any eigenfunction having
constant sign is the first one of some connected component of the open set �.
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Theorem 2.4 Let � ⊂ R
N be an open set, having finite measure. Let u ∈ W 1,p

0 (�)

be a Dirichlet eigenfunction relative to some eigenvalue λ. If u has constant sign
in �, then λ = λ1(�0) for some connected component �0 of �, i.e. u is a first
eigenfunction of �0. In particular λ = λ1(�) if � is connected.

Proof. If � is connected, a straightforward proof of this fact has been recently
given by the authors in [7], again based on the convexity of

∫
�

|∇u|p along curves
of the form (2.3).

On the other hand, if � is disconnected, then λ has to be a Dirichlet eigenvalue
of a certain connected component �0; correspondigly u is an eigenfunction of �0,

having constant sign. Then it sufficies to apply the first part to conclude. ��
We give now a precise definition of what we mean by the second eigenvalue of

−�p. This definition keeps into account the multiplicity of the first eigenvalue. As
we will see, this is necessary in order to properly deal with our spectral optimization
problem (1.1).

Definition. Let � be an open set having finite measure. Then its second eigenvalue
is given by

λ2(�) =
⎧⎨
⎩

min{λ > λ1(�) : λ is an eigenvalue } if λ1(�) is simple

λ1(�) otherwise.
(2.4)

When λ1 is simple, some words about the consistency of this definition are in order.
Indeed, using Theorem 2.4 it can be proven that if � is connected, then λ1 is isolated
in the spectrum, the latter being a closed set ([25, Theorem 3]): this shows that the
minimum in (2.4) is well-defined. On the other hand, if � consists of infinitely
many connected components, one only has to check that the collection of the first
eigenvalues on the single components cannot accumulate at any value λ ≥ λ1(�).

This follows by combining the assumption |�| < ∞ and the Faber–Krahn inequal-
ity (see below), which in particular implies that if |E | → 0, then λ1(E) → ∞.

This shows again that the minimum in (2.4) is meaningful.

Remark 2.5 By definition, the nodal domains of an eigenfunction u are the con-
nected components of the sets {x : u(x) > 0} and {x : u(x) < 0}. If � is
connected, we recall that every eigenfunction corresponding to λ2 has exactly two
nodal domains (see [10]), in which case by Theorem 2.4 we can infer

λ2(�) = min{λ > λ1(�) : λ admits a sign-changing eigenfunction}.
For the sake of completeness, we recall that one can give a variational character-
ization also for λ2: in order to introduce it, we need some further notations. Given
a pair of functions u, v ∈ Bp(�) ∩ W 1,p

0 (�), let us denote by ��(u, v) the set of

continuous (in the W 1,p topology) paths in Bp(�) ∩ W 1,p
0 (�) connecting u to v,

i.e.

��(u, v)=
{
γ : [0, 1] → Bp(�) ∩ W 1,p

0 (�) : γ is continuous and γ (0)=u, γ (1)=v
}

.
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Theorem 2.6 Let � ⊂ R
N be an open set having finite measure, not necessarily

connected. Let u1 ∈ Bp(�) ∩ W 1,p
0 (�) be one of its first eigenfunctions. Then

λ2(�) has the following mountain pass characterization

λ2(�) = inf
γ∈��(u1,−u1)

max
u∈γ ([0,1])

∫

�

|∇u(x)|p dx . (2.5)

If λ1(�) is not simple, this characterization is independent of the particular u1 we
choose.

Proof. If � is connected, this has been proven in the paper [11], to which we refer
for the proof. Here, we just show how (2.5) can be extended to the case of general
open sets: anyway, since we will not need this result in the sequel, the uninterested
reader may skip the proof at a first reading.

Let us take � not connected, then the following alternative holds: either λ1(�)

is simple or not. Case λ1 simple: in this case, a first eigenfunction u1 ∈ Bp(�) ∩
W 1,p

0 (�) is unique and let us consider a second eigenfunction u2, still normalized
by ‖u2‖L p(�) = 1.

If u2 is sign-changing, then it is supported on some connected component �0
of � such that λi (�) = λi (�0), i = 1, 2: in particular the mountain pass charac-
terization of λ2(�0) holds, with the maximum performed on the restricted class of
curves ��0(u1,−u1) ⊂ ��(u1,−u1). Thus setting

λ := inf
γ∈��(u1,−u1)

max
u∈γ ([0,1])

∫

�

|∇u(x)|p dx

on the one hand we have λ ≤ λ2(�0) = λ2(�), while on the other hand we get
λ1(�) < λ, since λ gives a Dirichlet eigenvalue of −�p in any case (see [11],
Sect. 2). Summarizing, we obtain λ1(�) < λ ≤ λ2(�) which gives the thesis in
this case, thanks to (2.4).

On the contrary, if λ1(�) is simple but u2 has constant sign, then we have
λ1(�) = λ1(�0) and λ2(�) = λ1(�1), with �0 and �1 distinct connected com-
ponents. We construct a special element of ��(u1,−u1), a continuous path γ

defined as follows

γ (t) = ϕt , with ϕt (x) = cos(π t)u1(x) + t (1 − t)u2(x)

(| cos(π t)|p + t p(1 − t)p)1/p , x ∈ �,

for all t ∈ [0, 1]. It is easy to see that γ has the following properties

γ (t) ∈ Bp(�) ∩ W 1,p
0 (�), for every t ∈ [0, 1], and γ (0) = u1, γ (1) = −u1,

i.e. the curve γ is admissible for the variational problem (2.5). Hence we get

λ ≤ max
t∈[0,1]

∫

�

|∇ϕt (x)|p dx = max
t∈[0,1]

| cos(π t)|p λ1(�0) + t p(1 − t)pλ1(�1)

| cos(π t)|p + t p(1 − t)p

≤ λ1(�1) = λ2(�),
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where we used λ1(�0) < λ1(�1). Thus we get λ1(�) < λ ≤ λ2(�) and we can
conclude as before.

Case λ1 multiple: if � is not connected and its corresponding first eigenvalue
is not simple, we just take two linearly independent first eigenfunctions u1, u2 ∈
Bp(�) ∩ W 1,p

0 (�), which are thus supported on different connected components
of �. Repeating the construction of the curve γ above, we obtain

λ1(�) ≤ λ = inf
γ∈��(u,−u)

max
u∈γ ([0,1])

∫

�

|∇u(x)|p dx ≤ λ1(�),

which shows that λ = λ1(�) = λ2(�). Observe that if we exchange the role of u1
and u2, we still arrive at the same conclusion, thus proving that in this case formula
(2.5) is independent of the choice of the particular first eigenfunction. ��
Remark 2.7 It is useful to recall at this point that usually the variational eigen-
values {λk}k≥1 of −�p are defined through a minimax problem on Bp ∩ W 1,p

0 for
the integral

∫
�

|∇u|p, involving the concept of Krasnosel’skii genus. The previous
result gives in particular that for k = 2 this characterization coincides with the
mountain-pass one given by (2.5).

Finally, since our aim is that of considering a particular class of shape optimiza-
tion problems involving the spectrum of −�p, we conclude this introduction by
recalling some further properties of λ1 and λ2 that we will need in the sequel. In
particular, they are monotone decreasing with respect to set inclusion, while as for
their scaling properties we have

λi (t �) = t−pλi (�), t > 0, i = 1, 2,

which in particular implies that the shape functional � �→ |�|p/N λi (�) is scaling
invariant. Thus the two problems

min{λi (�) : |�| = c} and min |�|p/N λi (�), i = 1, 2,

are equivalent, in the sense that they both provide the same optimal shapes, up to a
scaling. For i = 1, the solution to the previous problem is given by any ball: this is
the celebrated Faber–Krahn inequality. The classical proof combines the Schwarz
symmetrization with the so called Pólya-Szegő principle (see [20, Chap. 3], for
example).

Faber–Krahn Inequality: Let 1 < p < ∞. For every open set � ⊂ R
N having

finite measure, we have

|�|p/N λ1(�) ≥ ω
p/N
N λ1(B), (2.6)

where B is the N-dimensional ball of radius 1 and ωN := |B|. Moreover, equality
sign in (2.6) holds if and only if � is a ball.

In other words, for every c>0 the unique solutions of the following spectral
optimization problem

min{λ1(�) : |�| = c},
are given by balls having measure c.
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3. The Hong–Krahn–Szego inequality

In this section, we are going to prove that the disjoint unions of equal balls are
the only sets minimizing λ2 under volume constraint, i.e. we will prove the Hong–
Krahn–Szego inequality for the p-Laplacian. The key step in the proof is the fol-
lowing technical result: this is an adaptation of a similar result for the linear case
p = 2 (see [8, Lemma 3.1], for example).

Lemma 3.1 Let � ⊂ R
N be an open set with |�| < ∞. Then there exists �+,�−

disjoint subsets of � such that

λ2(�) = max{λ1(�+), λ1(�−)}. (3.1)

Proof. Let us take u1, u2 ∈ Bp(�) ∩ W 1,p
0 (�) a first and second eigenfunction,

respectively: notice that if λ1(�) is not simple, we mean that u1 and u2 are two
linearly independents eigenfunctions corresponding to λ1(�). We can distinguish
two alternatives:

(i) u2 is sign-changing;
(ii) u2 has constant sign in �.

Let us start with (i): in this case, by Remark 2.5 u2 has exactly two nodal domains

�+ = {x ∈ � : u2(x) > 0} and �− = {x ∈ � : u2(x) < 0},

which by definition are connected sets. The restriction of u2 to �+ is an eigen-
function of constant sign for �+, then Theorem 2.4 implies that u2 must be a first
eigenfunction for it. Replacing �+ with �−, the previous observation leads to

λ2(�) = λ1(�−) = λ1(�+).

which implies in particular (3.1) in this case. In case (ii), let us set

�+ = {x ∈ � : |u1(x)| > 0} and �− = {x ∈ � : |u2(x)| > 0}.

Using Theorem 2.4, we have that �+ and �− have to be two distinct connected
components of �: in addition u1, u2 are eigenfunctions (with constant sign) of �+
and �−, respectively. Then

λ1(�−) =
∫

�−

|∇u2(x)|p dx =
∫

�

|∇u2(x)|p = λ2(�).

Clearly, we also have λ1(�+) = λ1(�) ≤ λ2(�), which finally gives (3.1) also in
this case. ��

We are now ready for the main result of this section.
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Theorem 3.2 (HKS inequality for the p-Laplacian) For every � ⊂ R
N open set

having finite measure, we have

|�|p/N λ2(�) ≥ 2p/N ω
p/N
N λ1(B), (3.2)

where B is the N-dimensional ball of radius 1 and ωN := |B|. Moreover, equality
sign in (3.2) holds if and only if � is the disjoint union of two equal balls.

In other words, for every c > 0 the unique solutions of the following spectral
optimization problem

min{λ2(�) : |�| = c},
are given by disjoint unions of two balls, both having measure c/2.

Proof. With the notation of Lemma 3.1, an application of the Faber–Krahn inequal-
ity yields

λ2(�) = max{λ1(�+), λ1(�−)} ≥ max{λ1(B+), λ1(B−)}, (3.3)

where B+, B− are balls such that |B+| = |�+| and |B−| = |�−|. Thanks to the
scaling properties of λ1, we have

λ1(B+) =
(

ωN

|�+|
)p/N

λ1(B) and λ1(B−) =
(

ωN

|�−|
)p/N

λ1(B),

so that from (3.3) we obtain

λ2(�) ≥ ω
p/N
N λ1(B) max{|�+|−p/N , |�−|−p/N }.

Finally, observe that since |�+| + |�−| ≤ |�|, we get

max{|�+|−p/N , |�−|−p/N } ≥
( |�|

2

)−p/N

, (3.4)

which concludes the proof of the inequality.
As for the equality cases, we start observing that we just used two inequalities,

namely (3.3) and (3.4). On the one hand, equality in (3.3) holds if and only if at least
one among the two subsets is a ball, say �+ = B+, with λ1(B+) ≥ λ1(�−); on
the other hand, if equality holds in (3.4) then we must have |�+| = |�−| = |�|/2.

Since �+ and �− have the same measure and the one with the greatest λ1 is a
ball, we can conclude that both have to be a ball, thanks to the equality cases in the
Faber–Krahn inequality. ��

4. The stability issue

We now come to the question of stability for optimal shapes of λ2 under measure
constraint. In particular, we will enforce the lower bound on |�|2/N λ2(�) provided
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by the Hong–Krahn–Szego inequality, by adding a remainder terms in the right-
hand side of (3.2). At this aim, we need to introduce some further tools. Given an
open set � ⊂ R

N having |�| < ∞, its Fraenkel asymmetry is defined by

A(�) = inf

{‖1� − 1B‖L1

|�| : B is a ball such that |B| = |�|
}

.

This is a scaling invariant quantity such that 0 ≤ A(�) < 2, with A(�) = 0 if
and only if � coincides with a ball, up to a set of measure zero. Then we recall the
following quantitative improvement of the Faber–Krahn inequality, proven in [4]
(case N = 2) and [17] (general case). For every � ⊂ R

N open set with |�| < ∞,

we have

|�|p/N λ1(�) ≥ ω
p/N
N λ1(B)

[
1 + γN ,p A(�)κ1

]
, (4.1)

where γN ,p is a constant depending only on N and p and the exponent κ1 =
κ1(N , p) is given by

κ1(N , p) =
{

3, if N = 2,

2 + p, if N ≥ 3.

Remark 4.1 One may ask wheter the exponent κ1 in (4.1) is sharp or not. By intro-
ducing the deficit

F K (�) := |�|p/N λ1(�)

ω
p/N
N λ1(B)

− 1,

one would like to prove the existence of suitable deformations {�ε}ε>0 of a ball B,

such that

lim
ε→0

F K (�ε) = 0 and lim
ε→0

A(�ε)
κ1

F K (�ε)
= � �= {0,+∞}.

i.e. the asymmetry to the power κ1 and the deficit have the same decay rate to zero.
At least in the case p = 2, the answer should be no, since the conjectured sharp
exponent is two (see [5, p. 56]), while κ1(N , 2) ≥ 3. At present, a proof of this fact
still lacks.

In the case of the Hong–Krahn–Szego inequality, the relevant notion of asym-
metry is the Fraenkel 2−asymmetry, introduced in [8]

A2(�)= inf

{‖1� − 1B1∪B2 ‖L1

|�| : B1, B2 balls such that |B1 ∩ B2|=0, |Bi |= |�|
2

, i = 1, 2

}
.

The main result of this section is the following quantitative version of Theorem 3.2.

Theorem 4.2 Let � ⊂ R
N be an open set, with |�| < ∞ and p ∈ (1,∞). Then

|�|p/N λ2(�) ≥ 2p/N ω
p/N
N λ1(B)

[
1 + CN ,p A2(�)κ2

]
, (4.2)

with CN ,p > 0 constant depending on N and p only and κ2 = κ2(N , p) given by

κ2(N , p) = κ1(N , p) · N + 1

2
.
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Proof. Thanks to Lemma 3.1, we have existence of two disjoint sets �+,�− ⊂ �

such that (3.1) holds. We then set

δ+ = |�+| − |�|
2

, δ− = |�−| − |�|
2

,

and we observe that it must be δ+ + δ− ≤ 0, since |�+|+ |�−| ≤ |�|. To simplify
a bit formulas, let us introduce the deficit functional

H K S(�) := |�|p/N λ2(�)

2p/N ω
p/N
N λ1(B)

− 1.

In order to prove (4.2), we just need to show that

H K S(�) ≥ CN ,p max

{
A(�+)κ1 +

∣∣∣∣
δ+
|�|

∣∣∣∣ , A(�−)κ1 +
∣∣∣∣
δ−
|�|

∣∣∣∣
}

, (4.3)

then a simple application of Lemma 4.3 below will conclude the proof. To obtain
(4.3), it will be useful to distinguish between the case p ≤ N and the case p > N .

For both of them, we will in turn treat separately the case where both δ+ and δ− are
non positive and the case where they have opposite sign. Finally, since the quanti-
ties appearing in the right-hand side of (4.3) are all universally bounded, it is not
restrictive to prove (4.3) under the additional assumption

H K S(�) ≤ 1

4
. (4.4)

Indeed, it is straightforward to see that if H K S(�) > 1/4 then (4.3) trivially holds
with constant

CN ,p = 1

2

1

2κ1+1 + 1
> 0.

Case A: p ≤ N . In this case the proof runs very similarly to the linear case p = 2
treated in [8]. We start applying the quantitative Faber–Krahn inequality (4.1) to
�+. If we indicate with B the ball of unit radius, recalling (3.1) and using the
definition of δ+, we find

γN ,p A(�+)κ1 ≤ |�+|p/N λ1(�+)

ω
p/N
N λ1(B)

− 1 ≤ (|�|+2 δ+)p/N λ2(�)

2p/N ω
p/N
N λ1(B)

− 1

Since p ≤ N , the power function t �→ (|�| + t)p/N is concave, thus we have

(|�| + 2δ+)p/N ≤ |�|p/N + 2p

N
|�|p/N δ+

|�| .

Using this information in the previous inequality, we get

γN ,p A(�+)κ1 ≤ H K S(�) + 2p

N

δ+
|�|

|�|p/N λ2(�)

2p/N ω
p/N
N λ1(B)

,
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that we can rewrite as follows

γN ,p A(�+)κ1 ≤ H K S(�) + 2p

N

δ+
|�| (H K S(�) + 1) . (4.5)

Replacing �+ with �−, one obtains a similar estimate for �−.

Case A.1: δ+ and δ− are both non-positive. In this case, it is enough to observe
that H K S(�) ≥ 0 while δ+ ≤ 0, thus from (4.5) we get

γN ,p A(�+)κ1 + 2p

N

|δ+|
|�| ≤ H K S(�).

The same computations with �− in place of �+ yield (4.3).
Case A.2: δ+and δ−have opposite sign. Let us assume for example that δ+ ≥ 0

and δ− ≤ 0: the main difference with the previous case is that now the larger piece
�+ could be so large that the information provided by (3.1) is useless. However,
estimate (4.5) still holds true for both �+ and �−. Using this and the fact that
δ+ + δ− ≤ 0, we can thus infer

H K S(�) ≥ −2p

N

δ−
|�| ≥ 2p

N

δ+
|�| ,

i.e. the deficit is controlling the error term |δ+|/|�|. To finish, we still have to con-
trol the asymmetry of the larger piece �+ in terms of the deficit: it is now sufficient
to introduce the previous information into (4.5), thus getting

γN ,p A(�+)κ1 ≤ H K S(�)(2 + H K S(�)).

Since we are assuming H K S(�) ≤ 1/4, the previous implies that H K S(�) con-
trols A(�+)κ1 , modulo a constant depending only on N and p. These estimates on
�+, together with the validity of (4.5) for �− and with the fact that δ− ≤ 0, ensure
that (4.3) holds also in this case.

Case B: p > N . Let us start once again with �+. Using (3.1) and the quantitative
Faber–Krahn (4.1) as before, we get

H K S(�) ≥ |�|p/N λ1(�+)

2p/N ω
p/N
N λ1(B)

− 1 ≥
[( |�|

2 |�+|
)p/N

(1 + γN ,p A(�+)κ1) − 1

]
.

Then using the definition of δ+ and the convexity of the function t �→ (1+t)p/N

(since p > N ), we have

( |�|
2 |�+|

)p/N

=
(

1 − δ+
|�+|

)p/N

≥ 1 − p

N

δ+
|�+| .

Inserted in the previous estimate, this yields

H K S(�) ≥
[
γN ,p

(
1 − p

N

δ+
|�+|

)
A(�+)κ1 − p

N

δ+
|�+|

]
. (4.6)

In the same way, using �− in place of �+, we obtain a similar estimate for �−.
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Case B.1: δ+and δ−are both non positive. In this case, in (4.6) we can drop the
terms

− p

N

δ+
|�+| γN ,p A(�+)κ1 and − p

N

δ−
|�−| γN ,p A(�−)κ1,

since these are positive, thus we arrive once again at (4.3), keeping into account
that

− δ+
|�+| ≥ − δ+

|�| and − δ−
|�−| ≥ − δ−

|�| .

Case B.2: δ+and δ−have opposite sign. Let us suppose as before that δ+ ≥ 0 and
δ− ≤ 0. Now the main problem is the term in front of the asymmetry A(�+) in
(4.6), which could be negative. Since δ+ + δ− ≤ 0, applying (4.6) to �− we obtain

δ+
|�| ≤ − δ−

|�| ≤ N

p
H K S(�). (4.7)

We then observe that if

δ+ ≤ N

p

|�|
4

, (4.8)

we have
(

1 − p

N

δ+
|�+|

)
≥ 1 − 1

4

|�|
|�+| ≥ 1

2
,

thanks to the fact that |�| ≤ 2 |�+|, which easily follows from the assumption that
δ+ ≥ 0. From (4.6) we can now infer

H K S(�) ≥ γN ,p

2
A(�+)κ1 − p

N

δ+
|�+| ,

then (4.3) follows as before, using (4.7) and the fact that

− δ+
|�+| ≥ −2

δ+
|�| .

This would prove the thesis under the additional hypothesis (4.8): however, if this
is not satisfied, then (4.7) would imply H K S(�) > 1/4, which is in contrast with
our assumption (4.4). ��

The following technical Lemma of geometrical content completes the proof of
Theorem 4.2. This is the same as [8, Lemma 3.3] and we omit the proof.

Lemma 4.3 Let � ⊂ R
N be an open set, with finite measure. For every �+,�− ⊂

� such that |�+ ∩ �−| = 0, we have

A2(�) ≤ CN

(
A(�+) +

∣∣∣∣
1

2
− |�+|

|�|
∣∣∣∣ + A(�−) +

∣∣∣∣
1

2
− |�−|

|�|
∣∣∣∣
)2/(N+1)

,(4.9)

for a suitable dimensional constant CN > 0.
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5. Extremal cases: p=1 and p=∞
To complete the analysis of our spectral optimization problem in the nonlinear set-
ting, it is natural to give a brief look at what happens for (1.1), when p tends to the
extrema of its possible range, i.e. p = 1 and p = ∞. It is known that in these cases,
some shape functionals of geometric flavour appear, in place of the eigenvalues of
an elliptic operator.

To enter more in this question, we need some definitions: for � ⊂ R
N open set

with |�| < ∞, C1(�) and C2(�) stand for the first two Cheeger constants, which
are defined respectively by

C1(�) = inf
E⊂�

P(E)

|E | and

C2(�) = inf

{
t : there exist E1, E2 ⊂ �

such that E1 ∩ E2 = ∅ and max
i=1,2

P(Ei )

|Ei | ≤ t

}
,

where P(E) equals the distributional perimeter of a set E if this is a finite perimeter
sets and is +∞ otherwise. Also, if |E | = 0 we use the convention P(E)/|E | =
+∞.

We denote by �1(�) the inverse of the radius r1 of the largest ball included in
�, while �2(�) will denote the inverse of the largest positive number r2 such that
there exist two disjoint balls of radius r2 contained in �. It is remarkable to notice
that �1 and �2 are indeed two eigenvalues, precisely they coincide with the first
two eigenvalues of the ∞Laplacian (see [22]).

Our interest in these quantities is motivated by the following Theorem, collect-
ing various results about the asymptotic behaviour of λ1 and λ2.

Limiting behaviour of eigenvalues. For every set � ⊂ R
N , there holds

lim
p→1+ λi (�) = Ci (�), i =1, 2 and lim

p→∞ λi (�)1/p =�i (�), i =1, 2.(5.1)

Proof. The first fact is proven in [15] and [28], respectively. For the second, one
can consult [22] and the references therein. ��
Remark 5.1 At this point, one could be tempted to use the previous results for λ1,

in order to improve inequality (4.1). For example, using the subadditivity of the
function t �→ (1 + t)1/p, it is not difficult to see that

lim
p→∞ F K (�)1/p ≥ |�|1/N �1(�)

ω
1/N
N

− 1 ≥ 1

2N
A(�),

where in the last inequality we used the (sharp) quantitative stability estimate1 for
�1 (see [22], Eq. (2.6)). Then one could bravely guess that for p “very large”,
inequality (4.1) has to hold with the exponent κ1(N , p) replaced by p, which is
strictly small if N ≥ 3. This would prove that (4.1) is not sharp, at least for N ≥ 3
and p going to ∞. Needless to say, this argument (and the related one for p → 1)
is only a heuristic one, since these limits are not uniform with respect to the sets �.

1 The relation between the Fraenkel asymmetry α(�) as defined in [22] and our definition
is given by A(�) = 2 α(�). This explains the discrepancy between our constant 1/(2N )

and the constant 1/N that can be found in [22], Eq. (2.6).
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The analogues of problem (1.1) in these extremal cases are the following

min{C2(�) : |�| = c} and min{�2(�) : |�| = c}.
Once again, they both have (unique) solution given by any disjoint union of two
equal balls: for the first one, the reader can see [28, Proposition 3.14], while the sec-
ond is easily derived thanks to the geometrical meaning of �2. In scaling invariant
form, these rewrite as

|�|1/N C2(�) ≥ 21/N Nω
1/N
N and |�|1/N �2(�) ≥ 21/N ω

1/N
N ,

and they both can be improved in a quantitative form, as it is proved in the following.

Theorem 5.2 Let � be an open subset of R
N having finite measure. Then

|�|1/N C2(�) ≥ 21/N N ω
1/N
N

[
1 + hN A2(�)N+1

]
, (5.2)

where the constant hN > 0 only depens on the dimension N . Moreover, for �2 we
have

|�|1/N �2(�) ≥ 21/N ω
1/N
N

[
1 + 1

2N
A2(�)

]
. (5.3)

Proof. To prove (5.2), we start defining

T� =
{

t > 0 : there exist �1,�2 ⊂ � disjoint and s.t. max
i=1,2

P(�i )

|�i | ≤ t

}
.

It is not difficult to see that if � is open, then T� �= ∅, since � contains at least two
disjoint small balls, which are in particular two sets with positive measure and finite
perimeter. Then let us pick up a t ∈ T�. Correspondingly, there exist �t+,�t− ⊂ �

disjoint and such that

t ≥ max

{
P(�t+)

|�t+| ,
P(�t−)

|�t−|
}

≥ max{C1(�
t+), C1(�

t−)}, (5.4)

where we used the straightforward estimate C1(E) ≤ P(E)/|E |, which is valid for
every finite perimeter set E . Now, we introduce the following quantity

D�(t) := |�|1/N max{C1(�
t+), C1(�

t−)}
21/N N ω

1/N
N

− 1,

and we proceed exactly as in Case A of the proof of Theorem 4.2. We only need
to replace H K S(�) by D�(t) and the quantitative Faber–Krahn inequality by the
following (sharp) quantitative Cheeger inequality (see [14]),

|�|1/N C1(�) ≥ N ω
1/N
N

[
1 + γN A(�)2

]
, (5.5)
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where γN > 0 is a constant depending only on the dimension N . In this way, one
arrives at the estimate

D�(t) ≥ hN AN+1
2 (�), for every t ∈ T�,

that is

|�|1/N t

21/N N ω
1/N
N

− 1 ≥ hN AN+1
2 (�), for every t ∈ T�,

thanks to (5.4). Taking the infimum on T� on both sides and using the definition
of second Cheeger constant, we eventually prove the thesis.

In order to prove (5.3), let us take a pair of optimal disjoint balls B(x0, r),

B(x1, r) ⊂ �, whose common radius r is given by

�2(�) = r−1,

and set for simplicity O1 := B(x0, r) ∪ B(x1, r), then obviously we have

|� \ O1| = |�| − 2 ωN r N .

Up to a rigid movement, we can assume that x0 = (M, 0, . . . , 0) and x1 =
(−M, 0, . . . , 0), for some M ≥ r, then for every t ≥ 1 we define the new centers
x0(t) := (M + (t − 1) r, 0, . . . , 0) and x1(t) := ((1 − t) r − M, 0, . . . , 0): observe
that xi (1) = xi , i = 0, 1. Finally, we set

Ot := B(x0(t), t r) ∪ B(x1(t), t r), t ≥ 1,

i.e. for every t ≥ 1 this is a disjoint union of two balls of radius t r and moreover
Ot ⊂ Os if t < s.The latter fact implies that the function t �→ |� ∩ Ot | is increas-
ing, thus t �→ |� \ Ot | is decreasing. We exploit this fact by taking t0 > 1 such
that |Ot0 | = |�|: then we have

|�| − 2 ωN r N = |� \ O1| ≥ |� \ Ot0 | ≥ 1

2
A2(�) |�|,

where in the last inequality we used that Ot0 is admissible for the problem defining
A2(�). From the previous, we easily obtain

|�|
r N

≥ 2 ωN

(1 − 1/2 A2(�))
,

which finally gives (5.3), just by raising both members to the power 1/N , using
the elementary inequality (1 − t)−1/N ≥ 1 + 1/N t for t < 1 and recalling that
r = �2(�)−1. ��

6. Sharpness of the estimates: examples and open problems

In the estimates of Theorems 4.2 and 5.2, we have shown that for every set the
relevant notion of deficit dominates a certain power κ of the asymmetry A2. If in
addition to this, one could prove that for some sets converging to the optimal shape
(i.e. a disjoint union of two equal balls), the deficit and Aκ

2 have the same decay
rate to 0, then these estimates would turn out to be sharp. We devote the last section
to this interesting issue.
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6.1. Quantitative Hong–Krahn–Szego inequality

Here, the question of sharpness is quite a delicate issue. First of all, observe that in
contrast with the case of the Faber–Krahn inequality, the exponent of the asymme-
try κ2 blows up with N . For this reason, one could automatically guess that κ2 is
not the sharp exponent. However, it has to be noticed that this dependence on N is
directly inherited from the geometrical estimate (4.9), which is indeed sharp. Let
us fix a small parameter ε > 0 and consider the following set

�ε = {(x1, x ′) ∈ R
N : (x1 + 1 − ε)2 + |x ′|2 < 1}

∪ {(x1, x ′) ∈ R
N : (x1 − 1 + ε)2 + |x ′|2 < 1},

which is just the union of two balls of radius one, with an overlapping part whose
area is of order ε(N+1)/2. We set

�ε+ = {(x1, x ′) ∈ �ε : x1 ≥ 0} and �ε− = {(x1, x ′) ∈ �ε : x1 ≤ 0},
and it is not difficult to see that A(�ε+) = O(ε(N+1)/2), while on the contrary
A2(�

ε) = O(ε) which means

A2(�
ε)(N+1)/2 � A(�ε).

i.e. both sides in (4.9) are asymptotically equivalent, as the area of the overlapping
region goes to 0 (see [8, Example 3.4], for more details on this example). And
in fact one can use these sets �ε to show that the sharp exponent in (4.2) has to
blow-up with the dimension. Also observe that in the proof of Theorem 4.2, the
precise value of κ1 plays no role, so the same proof actually gives (4.2) with

κ2 = (sharp exponent for (4.1)) × N + 1

2
.

Though we strongly suspect this κ2 not to provide the right decay rate, currently
we are not able to solve this issue, which seems to be quite a changelling one even
for p = 2.

6.2. Second Cheeger constant

Also in this case, the exponent N + 1 in (5.2) seems not to be sharp in the decay
rate of the deficit. In order to shed some light on this fact, we estimate the deficit
for C2 of the same set �ε as before. First of all, thanks to the symmetries of �ε, it
is not difficult to see that C2(�

ε) = C1(�
ε+) = C1(�

ε−). Then we have

hN A2(�
ε)N+1 ≤ |�ε|1/N C2(�

ε)

21/N N ω
1/N
N

− 1 = |�ε|1/N C1(�
ε+)

21/N N ω
1/N
N

− 1

≤ |�ε+|1/N−1 P(�ε+)

N ω
1/N
N

− 1,
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so that the deficit of this inequality is controlled from above by the isoperimetric
deficit of one of the two cut balls. We then estimate the right-hand side in the
previous expression: observe that setting ϑ = arccos(1 − ε), we have for instance

P(�ε+) = NωN + ωN−1

[
(sin ϑ)N−1 − (N − 1)

∫ sin ϑ

0

t N−2

√
1 − t2

d�

]
,

and

|�ε+| = ωN − ωN−1

1∫

cos ϑ

(1 − t2)
N−1

2 dt,

then

P(�ε+) � N ωN − N − 1

N + 1

ωN−1

2
ϑ N+1 and

|�ε+|1/N−1 � ω
1−N

N
N

(
1 + N − 1

N (N + 1)

ωN−1

ωN
ϑ N+1

)
,

from which we can infer

|�ε+|1/N−1 P(�ε+) − N ω1/N � N − 1

N + 1
ωN−1 ω

1−N
N

N ϑ N+1 � cN ε
N+1

2 .

In the end, we get

C1 A2(�
ε)N+1 ≤ |�ε|1/N C2(�

ε) − 21/N N ω
1/N
N ≤ C2 A2(�

ε)
N+1

2 , (6.1)

where we used that A2(�
ε) � ε. Notice that this estimate implies in particular that,

also in this case, the sharp exponent is dimension-dependent and it blows up as N
goes to ∞.

We point out that the previous computations give the correct decay rate to 0 of
the quantity C2(�

ε)−C2(B), which is O(ε(N+1)/2) = O(A2(�ε)
(N+1)/2). Indeed,

from the right-hand side of (6.1) we can promptly infer that

C2(�
ε) = C1(�

ε+) ≤ N + c ε
N+1

2 = C1(B) + c ε
N+1

2 .

Now assume that C1(�
ε+) ≤ C1(B) + ω(ε) for some modulus of continuity ω such

that ω(ε) = o(ε(N+1)/2) as ε goes to zero, in this case we would obtain

0 ≤ |�ε|1/N C1(�
ε+) − 21/N N ω

1/N
N ≤ −K ε

N+1
2 ,

for some constant K > 0 independent of ε. This gives a contradiction, thus proving
that

C2(�
ε) − C2(B) � ε

N+1
2 .
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6.3. Second eigenvalue of −�∞

On the contrary, it is not difficult to see that the quantitative estimate (5.3) is sharp.
By still taking the set �ε as before, we observe that

�2(�
ε) = �1(�

ε+) = 2

2 − ε
� 1 + ε

2
and

|�ε|1/N � ω
1/N
N

(
1 − ωN−1

ωN

2
N+1

2

N (N + 1)
ε

N+1
2

)
,

while A2(�ε) = O(ε) as already observed. Then

|�|1/N �2(�) − ω
1/N
N � A2(�),

proving the sharpness of (5.3). We remark that in this case the sharp exponent does
not depend on the dimension, in contrast with the cases p ∈ [1,∞).
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