
OpeNER and PANACEA: Web Services for the CLARIN Research
Infrastructure

Davide Albanesi
Istituto di Linguistica Computazionale

“A. Zampolli” (CNR-ILC)
Via G. Moruzzi, 1 - 56124 Pisa (ITALY)

Riccardo Del Gratta
Istituto di Linguistica Computazionale

“A. Zampolli” (CNR-ILC)
Via G. Moruzzi, 1 - 56124 Pisa (ITALY)

name.surname@ilc.cnr.it

Abstract

This paper describes the necessary steps for the integration of OpeNer and PANACEA Web
Services within the CLARIN research infrastructure. The original Web Services are wrapped into
a framework and re-implemented as REST APIs to be further exploited through both Language
Resource Switchboard and WebLicht and made available for the CLARIN community.

1 Introduction and motivation

OpeNer and PANACEA1 were two European projects funded within the 7th Framework Program and
covering 4 years of research initiatives on Language Resources and Technologies (LRT). OpeNer de-
veloped some Natural Language Processing (NLP) tools in order “to detect [. . .] entity mentions [. . .]”,
by “[. . .] performing sentiment analysis and opinion detection on” specific textual resources, especially
in reviews for hotel accommodations and tourism at a large. Such tools were designed to be easily cus-
tomizable for Academia, Research and Small and Medium Enterprises. The exhaustive list of services
and lexicons developed by OpeNer as well as of the European languages covered are available at their of-
ficial github.2 The PANACEA project addressed “the most critical aspect of Machine Translation (MT):
the so called language resource bottleneck.” PANACEA developed a set of linguistic resources, more
precisely “a ‘factory’ of Language Resources (LRs) in the form of a production line [. . .]”, to auto-
mate the stages for “[. . .] acquisition, production, maintenance and updating of the language resources
required by machine translation”. The platform created in the framework of PANACEA is a virtual
and distributed environment where various interoperable components can be concatenated to create spe-
cific workflows to produce several language resources in various languages. The services developed in
PANACEA are of great importance for Academia, Research and Small and Medium Enterprises, espe-
cially the ones focused on MT and related technologies. OpeNer and PANACEA share many aspects:
from the creation of annotated corpora and lexicons to the development of web tools and services used to
analyze and build them up to the focus on specific communities. They also share the concept of interop-
erability as the use of the Kyoto Annotation Format (KAF) (Bosma et al., 2009) in OpeNer,3 the Graph
Annotation Format (GrAF)(Ide and Suderman, 2007) in PANACEA4 and the Lexical Markup Frame-
work (LMF) (?) in both of them states. Data and tools interoperability is a strategic goal in CLARIN. 5

And, within CLARIN, initiatives such as the Language Resource Switchboard (LRS) (Zinn, 2018) and
WebLicht (Hinrichs et al., 2010) openly go towards methodologies and “systems” addressing interoper-
ability issues between language tools and language resources. These initiatives are central in CLARIN
which therefore becomes the ideal environment for the tools and Web Services offered by OpeNer and
PANACEA. Lastly, the services developed within both projects and the results achieved play a key role
for the CLARIN community as well. Indeed, on the one hand, the Virtual Language Observatory (VLO)6

1Respectively http://www.opener-project.eu/ and http://www.panacea-lr.eu/
2https://github.com/opener-project
3https://github.com/opener-project/kaf/wiki/KAF-structure-overview
4http://www.panacea-lr.eu/system/graf/graf-TO2_documentation_v1.pdf
5See, for instance

https://www.clarin.eu/event/2019/parlaformat-workshop, https://www.clarin.eu/event/
2017/clarin-workshop-towards-interoperability-lexico-semantic-resources among others.

6https://vlo.clarin.eu/

http://www.opener-project.eu/
http://www.panacea-lr.eu/
https://github.com/opener-project
https://github.com/opener-project/kaf/wiki/KAF-structure-overview
http://www.panacea-lr.eu/system/graf/graf-TO2_documentation_v1.pdf
https://www.clarin.eu/event/2019/parlaformat-workshop
https://www.clarin.eu/event/2017/clarin-workshop-towards-interoperability-lexico-semantic-resources
https://www.clarin.eu/event/2017/clarin-workshop-towards-interoperability-lexico-semantic-resources
https://vlo.clarin.eu/

contains several LRs but only some specific tools for Sentiment Analysis, while, on the other hand, many
LRT are available for MT. This clearly means that the latter community is already in the CLARIN com-
munity, while the former one should be helped to get more involved. It is a matter of fact that the more
the tools are published and used in and through CLARIN, the more they will have an impact on the com-
munity, and this community will tend to grow. However, it is obvious that the community involvement
can not be managed only from the technological point of view, but a political point of view is needed as
well.

2 Current Architecture and Common Aspects

ILC4CLARIN, hosted at the National Council of Research (CNR) “Institute for Computational Linguis-
tics A. Zampolli” in Pisa, is the first and leading CLARIN B-centre of Italian Consortium, CLARIN-IT.7

ILC4CLARIN is already offering some of the PANACEA Web Services through a man-machine inter-
action available at https://ilc4clarin.ilc.cnr.it/en/services/, while OpeNer Web
Services are offered through a local installation.

Tokenizer http://opener.ilc4clarin.ilc.cnr.it/tokenizer Pos Tagger http://opener.ilc4clarin.ilc.cnr.it/pos-tagger
Kaf2Json http://opener.ilc4clarin.ilc.cnr.it/kaf2json

Table 1: OpeNer Endpoints

In addition, the initial implementation of the tools has many common aspects, such as, for instance, the
following:i) many tools in OpeNer and PANACEA are command line tool. To wrap command line tools,
OpeNer uses Ruby8 and builds REST Web Services, while PANACEA uses Soaplab9 and offers SOAP
Web Services; ii) OpeNer offers both POST and GET API; iii) PANACEA offers SOAP Web Services
through a Web Interface; iv) simple pipelines are available in OpeNer, while a workflow engine10 is
used in PANACEA; v) Kyoto Annotation Format (KAF), Lexical Markup Framework (LMF) and Graph
Annotation Format (GrAF) guarantee the interoperability among data and services at different levels.
Although their architectures differ, both foster interoperability as it is shown in the Figures 1 and 2.

Figure 1: OpeNer Architecture Figure 2: PANACEA Architecture

The images reported above show that the tools are ready to be inserted into workflows but, when it comes
to fully satisfy the requirements of Language Resource Switchboard (LRS) and WebLicht, we need to

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

7In order https://ilc4clarin.ilc.cnr.it/, http://www.ilc.cnr.it/en/, https://www.
clarin-it.it

8See https://rubyonrails.org/
9Soaplab is described at http://soaplab.sourceforge.net/soaplab2/

10See Taverna, www.taverna.org.uk

https://ilc4clarin.ilc.cnr.it/en/services/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://ilc4clarin.ilc.cnr.it/
http://www.ilc.cnr.it/en/
https://www.clarin-it.it
https://www.clarin-it.it
https://rubyonrails.org/
http://soaplab.sourceforge.net/soaplab2/
www.taverna.org.uk

create new wrappers around the available tools so that we can correctly manage REST APIs that are able
to “consume” and/or produce different formats. LRS does not require that the handled tools have specific
output formats but, in any case, it requires the tools are able to read texts from URLs, uploaded files, or
simple input boxes, while WebLicht accepts tools able to read and write the TCF format. 11

3 Moving OpeNer and PANACEA into CLARIN

In this section we describe the strategy used to integrate OpeNer and PANACEA Web Services into
the CLARIN infrastructure. This initiative is carried out by the development team at the ILC4CLARIN
centre.

3.1 Technical Implementation
Firstly, we have to consider that OpeNer offers REST Web Services (by default managed by APIs), while
PANACEA offers SOAP ones. This means that the former is easily wrapped into a REST context, while
the latter needs to be managed with some SOAP APIs before being inserted in a REST context. We have
two alternatives: either i) to use the SOAP APIs provided by SoapLab; 12 or ii) to start from the origi-
nal command line programs and use a different framework to transform these scripts into REST APIs.
Both alternatives have their pros and cons. The first one forces the development team to code a shell
around SOAP Web Services so that they can be “executed” by a software program and not just by a web
interface (as it is the current case). Fortunately, the SoapLab APIs do exactly this: they provide meth-
ods to access Web Services in a simple way, without the burden of a SOAP implementation. Anyway,
they are an additional piece of software to manage: the compatibility with existing libraries, methods
that become deprecated and must be replaced, security flaws . . . must be addressed. The second option
needed to replicate (in a sense) what was already obtained through SoapLab. For instance, a framework
like CLAM13 allows developers to transform command line programs into REST Web Services; and this
would align the PANACEA and OpeNer Web Services. However, there would be a duplication in terms
of both service endpoints and machines for hosting them. We simply considered this alternative non-
economic (at least from our point of view), so we opted for alternative i). There are several strategies for
implementing REST services; the majority follows the JAX-RS14 specifications. We decided to use the
DropWizard15 framework which was described to the second author directly by the WebLicht develop-
ers during a hackaton16 held in Ljubljana in 2016. This framework combines an HTTP server (Jetty), a
library for JAX-RS (Jersey), a “lingua franca” (Json17) and many other useful development tools. Fur-
thermore, DropWizard is very useful for decoupling the basic implementation (the actual piece of code
performimg the operations) from how the code and the results of the operations are managed through the
HTTP protocol. It is easy to understand that the situation of the PANACEA and OpeNer Web Services
is exactly the following one: a core part (SOAP and REST Services respectively) and a wrapper that
makes them accessible to programs through the HTTP protocol. In conclusion, DropWizard is a frame-
work which helps to decouple the core tools from the corresponding web resources, as it is described in
Listing 1.

11The TCF format is described at https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.
php/The_TCF_Format

12Java implementation in taverna-soaplab-client from the maven repository http://www.mygrid.org.uk/maven/
repository/

13https://proycon.github.io/clam/
14https://jcp.org/en/jsr/detail?id=339
15http://www.dropwizard.io/1.3.4/docs/
16http://www.clarin.si/info/events/mcat-workshop/
17In order https://www.eclipse.org/jetty/, https://jersey.github.io, https://www.json.

org/

https: / /weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/The_TCF_Format
https: / /weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/The_TCF_Format
http://www.mygrid.org.uk/maven/repository/
http://www.mygrid.org.uk/maven/repository/
https://proycon.github.io/clam/
https://jcp.org/en/jsr/detail?id=339
http://www.dropwizard.io/1.3.4/docs/
http://www.clarin.si/info/events/mcat-workshop/
https://www.eclipse.org/jetty/
https://jersey.github.io
https://www.json.org/
https://www.json.org/

/∗ ∗
∗ T h i s i s an example code which u s e s dropwizard , j e t t y and w e b l i c h t a p i t o i n c l u d e
∗ a core t o o l as a web s e r v i c e r e s o u r c e .
∗∗ ∗ a l o t o f o t h e r i m p o r t s ∗ /

import i o . d r o p w i z a r d . C o n f i g u r a t i o n ;
/∗ ∗
∗ t h e r e s o u r c e f o r TCF i s s o m e t h i n g as
∗ /
@Consumes (TEXT_TCF_XML)
@Produces (TEXT_TCF_XML)
p u b l i c S t r e a m i n g O u t p u t myexample (f i n a l I n p u t S t r e a m t e x t) {

Ou tpu tS t r eam tempOutpu tData = n u l l ;
.
/∗ c a l l t h e core ∗ /
c a l l t h e s e r v i c e (lang , t e x t , s o m e _ o t h e r _ p a r a m e t e r s , t empOutpu tData) ;
.

}
/∗ ∗ t h e core where t h e a c t u a l t o o l i s e x e c u t e d ∗ /
p u b l i c vo id c a l l t h e s e r v i c e (S t r i n g lang , Map map , I n p u t S t r e a m i , Ou tpu tS t r eam o) {

MyTool t o o l = new MyTool () ;
Tex tCorpusS t r eamed t e x t C o r p u s = n u l l ;
. . . .
t o o l . doSomething (t e x t C o r p u s) ;

. . .
}

Listing 1: DropWizard integration

In Listing 2, a Jersey client executes the OpeNer web Service at one of its endpoint (endpoints are
listed in Table 1) and returns the response.
/∗ i m p o r t j e r s e y s t u f f ∗ /
p u b l i c doSomething (. . .) {

c l i e n t = C l i e n t . c r e a t e () ;
webResource = c l i e n t . r e s o u r c e (URL_ENDPOINT) ;
r e s p o n s e = webResource . t y p e (MediaType . APPLICATION_FORM_URLENCODED)

. p o s t (C l i e n t R e s p o n s e . c l a s s , formData) ;
o u t p u t = r e s p o n s e . g e t E n t i t y (S t r i n g . c l a s s) ;
s e t O u t p u t S t r e a m (o u t p u t) ;

. . . .
}

Listing 2: Opener Snippet

/∗ i m p o r t s o a p l a b a p i s t u f f ∗ /
p u b l i c doSomething (. . .) {

S o a p l a b B a s e C l i e n t c l i e n t = g e t C l i e n t (SERVICE_ENDPOINT) ;
SoaplabMap r e s u l t s = c l i e n t .

runAndWaitFor (SoaplabMap . fromMap (g e t I n p u t s ())) ;
.

Map o u t p u t s = SoaplabMap . toMap (r e s u l t s) ;
/∗ manage o u t p u t s and f o r m a t ∗ /
. . . .

}

Listing 3: Panacea Snippet

Listing 3 is quite similar to 2 but, in the latter, a client based on SoapLab APIs is respon-
sible for executing the SOAP Web Service at the SERVICE_ENDPOINT. Soaplab APIs return
the response that contains the analyzed text. The full code is available at https://github.
com/cnr-ilc/linguistic-tools-for-weblicht/tree/master/OpeNerServices
and https://github.com/cnr-ilc/linguistic-tools-for-weblicht/tree/
master/PanaceaServices

However, in both examples, the response contains the analyzed text in the tool native format, which
is KAF for OpeNer tools but can be any format for PANACEA ones. This is a PANACEA specific fea-
ture: actually, SoapLab simply wraps the original tools and produces the native output format, requiring
only the implementation of converters to switch from one format to another.18 Our implementation is

18For example, the Freeling service returns a tabbed file which must be converted to other formats such as TCF, KAF . . .

https://github.com/cnr-ilc/linguistic-tools-for-weblicht/tree/master/OpeNerServices
https://github.com/cnr-ilc/linguistic-tools-for-weblicht/tree/master/OpeNerServices
https://github.com/cnr-ilc/linguistic-tools-for-weblicht/tree/master/PanaceaServices
https://github.com/cnr-ilc/linguistic-tools-for-weblicht/tree/master/PanaceaServices

not limited to simply wrap the offered Web Services;additional endpoints have been added to manage
different input and output formats. This is required to fully integrate our tools in both Language Resource
Switchboard and WebLicht. Since input and output formats can be plain texts, TCF and KAF documents,
the following POST and GET19 Web Services “consume” plain, TCF and KAF documents to produce
TCF, TAB (tabbed) and KAF valid documents:

POST Plain texts openerservice/tokenizer/runservice, panaceaservice/freeling_it/runservice

POST TCF and KAF documents openerservice/tokenizer/[tcf|kaf]/runservice, panaceaservice/freel-
ing_it/[tcf|kaf]/runservice

GET Plain texts openerservice/tokenizer/lrs, panaceaservice/freeling_it/lrs

GET TCF and KAF documents openerservice/tokenizer/[tcf|kaf]/lrs, panaceaservice/freel-
ing_it/[tcf|kaf]/lrs

4 Conclusion and Future Work

In this paper we described an initiative carried out at ILC4CLARIN, which aims at integrating Web
Services from PANACEA and OpeNer into the CLARIN infrastructure. The overall strategy is to wrap
existing Web Services within REST APIs, so that both Language Resource Switchboard and WebLicht
can exploit the new services. We have included only Freeling for Italian from the PANACEA set of Web
Services and a basic tokenizer from OpeNer one. However, this work helped us to structure the various
building blocks (see the github repository) so that other services can be easily wrapped, being them from
PANACEA or OpeNer.

Truth be told, ILC4CLARIN already offers a tokenizer 20, which is a Java porting of the original
OpeNer tokenizer. This service is in WebLicht 21 and was successfully tested for Language Resource
Switchboard. So, what are the reasons that led us to use a different strategy? For PANACEA nothing dif-
ferent had to be done while, for OpeNer, the use of the java porting technique required that every original
service was rewritten in Java, regardless of the original programming language. This was essentially the
motivation that led us to decide to wrap the original services instead of rewriting them.

ILC4CLARIN uses dockers22 for the services it offers and publishes the images in dockerhub23. We
will follow this trend for the new services as well.

References
[Bosma et al.2009] Bosma W., Vossen P., Soroa A., Rigau G., Tesconi M., Marchetti A., Monachini M. and

Aliprandi C. 2009. KAF: A Generic Semantic Annotation Format. In Proceedings of the GL2009 Workshop on
Semantic Annotation.

[Ide and Suderman2007] Ide N. and Suderman K. 2007. GrAF: A Graph-based Format for Linguistic Annota-
tions. In Proceedings of the Linguistic Annotation Workshop, LAW ’07, pages 1-8. Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Hinrichs et al.2010] Hinrichs M., Zastrow T. and Hinrichs E. 2010. WebLicht: Web-based LRT Services in a
Distributed eScience Infrastructure. In Nicoletta Calzolari (Conference Chair) at al., editors Proceedings of
the Seventh International Conference on Language Resources and Evaluation. Valletta, Malta, May 19-21.
European Language Resources Association (ELRA).

[Zinn2018] Zinn C. 2018. The Language Resource Switchboard. Comput. Linguist., 44(4):631-639.

[Chandra et al.1981] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. 1981. Alternation. Journal of
the Association for Computing Machinery, 28(1):114–133.

19GET endpoints have been set up for eventual integration into Language Resource Switchboard (LRS)
20https://ilc4clarin.ilc.cnr.it/services/ltfw-it/
21http://hdl.handle.net/20.500.11752/ILC-85@format=cmdi
22We use rancher (version 1 (https://rancher.com/)) to manage docker images and composition
23https://hub.docker.com/r/cnrilc/ltfw

https://ilc4clarin.ilc.cnr.it/services/ltfw-it/
http://hdl.handle.net/20.500.11752/ILC-85@format=cmdi
https://rancher.com/
https://hub.docker.com/r/cnrilc/ltfw

	Introduction and motivation
	Current Architecture and Common Aspects
	Moving OpeNer and PANACEA into CLARIN
	Technical Implementation

	Conclusion and Future Work

