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Abstract
Several systems display an equilibrium condensation transition, where a finite fraction of
a conserved quantity is spatially localized. The presence of two conservation laws may
induce the emergence of such transition in an out-of-equilibrium setup, where boundaries
are attached to different and subcritical heat baths. We study this phenomenon in a class of
stochastic lattice models, where the local energy is a general convex function of the local
mass, mass and energy being both globally conserved in the isolated system. We obtain
exact results for the nonequilibrium steady state (spatial profiles, mass and energy currents,
Onsager coefficients) and we highlight important differences between equilibrium and out-
of-equilibrium condensation.

Keywords Localization/condensation in real space · Boundary-driven systems · Coupled
transport processes · Onsager coefficients · Nonequilibrium steady state

1 Introduction

Condensation transitions have been extensively studied in the last decades and they can
correspond to rather different processes: they can be understood as localization processes
where a macroscopic fraction of a conserved quantity is concentrated in a finite region of
space, but they might also indicate a large deviation phenomenon where a single random
variable gives a finite contribution to the constrained sum of many variables. From a physical
point of view, condensation processes can be related to phenomena ranging from aggrega-
tion/fragmentation [1, 2] to localization in propagating light [3, 4], from discrete solitons
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in Bose–Einstein condensates [5] to the formation of jamming in driven flows [6, 7], from
wealth condensation in social economy [8] to localization phenomena in networks [9, 10].

Conservation laws are known to play a crucial role for equilibrium condensation transi-
tions. As an example, a class of condensation models which has played a relevant role in the
advancement of this field is that of mass-transfer models with a factorized steady state.1 Let
us suppose that a conserved quantity X = ∑N

i=1 xi is shared among N sites i , each xi being
distributed according to some function f (x). If f (x) decays slower than exponentially, a
condensation process occurs as a cooperative effect above a certain critical value X/N > xc.
In [11] it was shown that the presence of additional conservation laws can enforce con-
densation even with light-tailed distributions, exhibiting exponentially or faster decays. The
opposite outcome can occur with fat-tailed distributions, i.e. the suppression of a condensed
phase that was originally present with a smaller number of conservation laws.

A much less explored field concerns the study of condensation phenomena in steady
out-of-equilibrium conditions. Specifically, we refer to the typical transport setup in which
two external reservoirs with thermodynamic parameters RL and RR are in contact at the
left and right boundaries of the system, respectively (see Fig. 1). The bulk dynamics is
assumed to be local, reversible and constrained by a certain number ν ≥ 1 of independent
conservation laws,while irreversibility is induced solely by boundary forceswhenRL �= RR .
In this case, the resulting nonequilibrium stationary state (NESS) breaks time reversal and
ν stationary conserved currents flow through the system. The occurrence of condensation
in these conditions displays interesting features that crucially depend on the number of
conservation laws. In systems with ν = 1, condensation appears only if a boundary reservoir
imposes overcritical conditions [12]. This fact can be easily understood because a locally
conserved observable, O , should have a spatially monotonous profile O(i) varying between
the values O(1) = OL and O(N ) = OR imposed by the reservoirs: therefore, if OL,R are
subcritical, the whole system is.

Recent studies of some of us for a specific model with ν = 2 [13, 14] have shown that
in this case a condensed state may arise in the bulk of the system even in the presence
of subcritical boundary conditions, provided that RL �= RR .2 The origin of this peculiar
behavior can be traced back to the coupled transport between the two stationary currents and
it is the result of a sort of extreme Joule effect. For example, if a linear conductor is subject to
a temperature gradient and to an electric potential gradient, the heating induced by the Joule
effect in the bulk of the sample may induce a non monotonous profile of the temperature. In
our case we have a coupled transport of mass and energy and the “Joule” effect is extreme
because the system can even attain overcritical conditions in the bulk while the boundaries
are maintained below the condensation threshold.

In Ref. [14] the focus was the determination of the Onsager coefficients in the homoge-
neous phase, which allowed to show that steady, not condensed profiles can be forced to enter
the localization region. In Ref. [13] out-of-equilibrium condensation appeared from numer-
ics. In this work wemake two important steps forward: we provide a detailed analytical study
of the nonequilibrium steady state andwe consider a broad class of condensationmodels with
ν = 2, which includes the model studied in [13, 14] but also other models studied previously
at equilibrium [11, 16, 17], therefore offering a unified vision of their properties. This class

1 In many cases the system is at/out-of equilibrium according to the symmetry/asymmetry of the transfer
process, but the factorized state, therefore the nature of the phase transition, does not change.
2 Previously, this possibility had appeared in a different out-of-equilibrium setup, where one of the two
subcritical reservoirs was replaced by a dissipator [15].
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Fig. 1 The non equilibrium setup: a chain of N sites attached at its ends with two external reservoirs with
thermodynamic parameters RL and RR . Each reservoir exchanges mass (a) and energy (h) with the chain,

whose corresponding fluxes are denoted by j (L,R)
a,h , see Sect. 3

of models and their equilibrium phase diagrams are defined and discussed in Sect. 2, which
therefore generalizes known results for specific models.

In Sect. 3 we discuss the out-of-equilibrium setup and the different types of reservoirs
that can be employed. This section allows the non specialist reader to gain confidence with
the algorithms used throughout our work.

In Sect. 4 we present the core of our new results: the exact nonequilibrium spatial profiles
of mass and energy, Eq. (17), and the parametric profile, Eq. (18), which is exactly linear. All
these results do not depend on the specific model in the class here considered and, impor-
tantly, hold also in the regime of nonequilibrium condensation. Next, we provide an analytic
expression for the currents, Eqs. (25–26), and of the Onsager coefficients Li j , Eq. (32). It
is worth stressing that the local currents will be shown to display a “universal” dependence
on the mass and energy gradients, while Li j are model-dependent due to their dependence
on the gradients of the grandcanonical parameters, temperature and chemical potential. We
also find an explicit expression for the Seebeck coefficient S close to the critical line and we
show that S �= 0, thereby indicating the presence of thermodiffusive coupling in the sense
of linear irreversible thermodynamics [18].

In Sect. 5 we discuss the differences between equilibrium and out-of-equilibrium conden-
sation. This part is supported by the simulation of a specific model, see Figs. 7, 8 and 9, and
by analytical considerations, valid for any model, see Eq. (37) and below. In practice, the
nonequilibrium setup induces the birth and growth of peaks. If peaks can diffuse, they are
destined to die when they attain the subcritical regions: this is the dynamical process at the
origin of the NESS.

In Sect. 6 we present a final discussion about nonequilibrium condensation and the role
of a possible pinning of energy peaks.

2 TheModels and Their Equilibrium Properties

The class of models we are going to study is defined on a one-dimensional lattice of sites
labeled by i = 1, . . . , N , where N is the system size. On each site it is defined a non-negative
real variable ci ≥ 0, here called “local mass” and subject to a stochastic evolution. Another
observable called “local energy” is defined through the relation εi = F(ci ), where F(c) is a
convex function. The total mass A = ∑

i ci ≡ Na and the total energy H = ∑
i εi ≡ Nh

are exactly conserved. We can assume without loss of generality that F(0) = 0.
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Fig. 2 Equilibrium phase diagrams for F(c) = c2 (top panel) and for F(c) = − ln(1 + c) (bottom panel).
The grey regions are forbidden: h < hGS(a) = F(a) and h > hM(a) = N−1F(Na) (for N = 81). The
dashed lines, hC(a) = ∫ ∞

0 dxF(ax)e−x (see the main text), separate the homogeneous (white) phase from
the condensed (dotted) phase. The latter cannot be described in the grandcanonical ensemble

Because of the convexity of F(c), if yi are positive quantities such that
∑

i yi = 1, it must
be

F

(
∑

i

yi ci

)

≤
∑

i

yi F(ci ). (1)

Choosing yi = 1/N , we obtain F(a) ≤ h. Therefore, the region below hGS(a) = F(a) is
forbidden. The curve h = F(a) corresponds to masses ci that are all the same and it is the
ground state (zero-temperature) curve.

Similarly, using the superadditivity property of a convex function vanishing at the origin,

∑

i

F(ci ) ≤ F

(
∑

i

ci

)

, (2)

we find that H ≤ F(A), i.e., h ≤ hM(a) ≡ 1
N F(Na). For F(c) = cα (with α > 1 so as to

ensure convexity) this means hM(a) = Nα−1hGS(a), a curve which flattens to the vertical axis
in the limit N → ∞. For F(c) = − ln(1 + c), hM(a) = −N−1 ln(1 + Na), which flattens
to the horizontal axis. The curve hM(a) corresponds to all mass localized in a single site k,
ci = Aδi,k .

In the region between the curves hGS(a) and hM(a) there exists a third curve hC(a) sepa-
rating the homogeneous from the condensed phase and corresponding to an infinite, positive
temperature. Here we limit to derive it in a simple and non-formal way, putting the details of
the calculations in Appendix A. In the grandcanonical ensemble the weight of the configu-
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ration {ci } is proportional to e−β[H(ci )−μA(ci )], where β is the inverse temperature and μ the
chemical potential. Moreover, the equilibrium measure factorizes in the product of single-
particle distributions ρ(c) = z(μ, β)−1e−β[F(c)−μc], where z(μ, β) = ∫ ∞

0 dc e−β[F(c)−μc]
is the (single particle) partition function. The infinite-temperature limit is consistently
obtained letting β → 0+ with βμ finite in order to enforce finite mass densities [19]. In
this limit, imposing 〈c〉ρ = a, where 〈·〉ρ is the average over the distribution ρ, implies that
the equilibrium distribution decays exponentially, ρ(c) = (1/a)e−c/a and that βμ = −1/a.
The corresponding average value of the energy is

hC(a) = 〈F(c)〉 =
∫ ∞

0
dcF(c)ρ(c) =

∫ ∞

0
dxF(ax)e−x . (3)

It is straightforward to prove that

hC

(
ya1 + (1 − y)a2

) ≤ yhC(a1) + (1 − y)hc(a2), (4)

therefore proving that hC(a) is convex aswell. For F(c) = cα , we obtain hC(a) = Γ (α+1)aα ;
for F(c) = − ln(1 + c), we obtain hC(a) = −e1/a E1(1/a), where E1(x) = ∫ ∞

x du e−u/u
is the exponential integral function. In Fig. 2 we plot the phase diagrams: the upper panel
refers to F(c) = c2, corresponding to the case studied in Refs. [13, 14]; the lower panel
refers to F(c) = − ln(1 + c) and corresponds to the case studied in Ref. [17]. The critical
curves hC(a) are plotted as dashed lines. In the rest of the article we will focus on a positive
F(c), with special emphasis on F(c) = cα , a case studied in Refs. [11, 16].

A rigorous treatment of the grandcanonical ensemble, via Laplace transform and saddle
point method, see Appendix A, shows that a solution for Eq. (44) exists only for real positive
β values, i.e. for energy densities below the critical line hC(a). For h > hC the saddle-point
solution breaks down, implying that the grand-canonical ensemble is not defined in this
region. The microcanonical partition function Ω(a, h) can instead be estimated by means of
large-deviations techniques [20–22], which account for the fact that typical configurations
are here characterized by a macroscopic fraction of the total energy h concentrated on a
single lattice site. In fact, the value h = hC identifies a phase transition from a homogeneous
to a localized phase. More precisely, for h > hC a localized phase is developed, with a
macroscopic amount of energy (h − hC)N condensed on few (eventually one) lattice sites. A
perfect localization is attained only in the thermodynamic limit, where the equilibrium state
consists of a single peak superposed to an extensive background lying on the critical line
h = hC and whose mass is distributed exponentially.

Estimates of the microcanonical entropy S(a, h) = ln[Ω(a, h)] in the condensed
region [23] (from now on we limit to F(c) = cα , see Eq. 40) show that for finite excess
energies h − hC,

S(a, h) 
 S0(a) − [(h − hC)N ]1/α . (5)

Here S0(a) is the contribution of the critical background, while the second term is the effect
of the condensate. Thermodynamically, the condensed phase is therefore characterized by a
negative microcanonical inverse temperature

βm = ∂S(a, h)

∂(Nh)

 − 1

α
[(h − hC)N ] 1

α
−1 , (6)

which vanishes in the thermodynamic limit (let us remind that α > 1). For α = 2, the
most studied case, the fact that for finite N , above hC the entropy decreases with increasing
the energy can be understood in terms of the effective number K (h, N ) of sites hosting the
condensate [24]. Upon increasing h, the extra energy is more and more localized, K (h, N )
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decreases and the entropy decreases as well, leading to a negative derivative ∂S/∂h. In the
thermodynamic limit, however, K (h, N ) = 1 as soon as h > hC and adding energy simply
adds energy to the single peak, keeping unchanged the entropy. This heuristically justifies
the result that βm = 0 in the whole condensed phase for N → ∞.

A finite N also affects the condensation scenario, as the “true” localization transition is
shifted above the critical line by an amount δN ∼ N (1−α)/(2α−1) for large N .3 In the
corresponding intermediate range of energies, hC < h < hC + δN , usually referred to
as “pseudo-condensate” region, spatial localization is practically suppressed by finite-size
fluctuations and the resulting density profiles are effectively delocalized.

This scenario is also visible through the proper order parameter of the transition, the so
called energy participation ratio,4

Y2(N ) =
〈∑

i ε
2
i

〉

(hN )2
, (7)

where 〈·〉 represents an ensemble average. For homogeneous states (h < hC), all sites carry
an energy contribution εi ∼ h, therefore the numerator is extensive and Y2 vanishes in the
thermodynamic limit as N−1. In the fully localized region, the numerator in (7) is dominated
by the site k hosting thewhole extra energy, εk = (h−hC)N . As a result, in the thermodynamic
limitY2 converges to a constant:Y2 = (h−hC)

2/h2. Finally, in the pseudo-condensate region,
the participation ratio is expected to vanish again as 1/N due to the delocalized nature of
this region. We will come back to this when discussing the nonequilibrium localization.

It is worth stressing that our class of models is of interest both in itself and as a limit of
more complicated models. In fact, the Discrete Nonlinear Schrödinger (DNLS) equation [25]
(a Hamiltonian model ubiquitous in physics) displays a non-Gibbsian phase where there is
the spontaneous formation of localized excitations. This model has two conserved quantities,
the total energy H and the total mass A = ∑

i ci (also called norm in such a context), where
ci is the square modulus of a complex wave amplitude. In proximity of the transition line
between the homogeneous and the localized phase, local energies are well approximated
by a function of local masses, thereby H = ∑

i F(ci ) [26]. In particular, the most studied
model, the cubic DNLS equation [15, 19, 23, 26–28], corresponds to F(c) = c2 and it is
of interest for different domains, ranging from optics to cold atoms [25]. However, also the
DNLS equations corresponding to F(c) = cα (nonlinearity of arbitrary order [16]) and to
F(c) = − ln(1+ c) (saturable nonlinearity [17]) have been studied. The models F(c) = cα

have been studied in [11] and they are also related to the dynamics of polydisperse hard
spheres [29] and to the distribution of entanglement entropy in a random pure state [30].
Finally, at equilibrium these models are also related to the wide class of the Zero Range
Processes [31], where a single conservation law is present, but a fraction of the mass ci is
transferred from a site i to another site j with a rate depending on ci .

3 Microscopic Dynamics, Nonequilibrium Setup, Heat Baths

Studying dynamics, either at global equilibrium or in an out-of-equilibrium setup, requires to
define some kinetic conservative rules which satisfy detailed balance in the bulk and which

3 This result originates from a matching condition between the usual Gaussian scaling of the microcanonical
entropy at the critical point hC, S(a, h) ∼ (h − hC)

2N and the large-deviation scaling of S(a, h) in Eq. (5),
see [23].
4 In the literature this quantity is also called inverse participation ratio.
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are properly modified at boundaries to take into account the possible coupling with heat
baths.

The simplest way to satisfy the two conservation rules and the detailed balance condition is
to consider a local, stochastic update algorithm: we choose randomly a triplet of consecutive
sites (i − 1, i, i + 1) with local masses (ci−1, ci , ci+1), and we update it to a new triplet
(c′

i−1, c
′
i , c

′
i+1) such that (i) the sum of the three masses and the sum of the local energies are

conserved; (ii) the probability of the transition {c} → {c′} is the same of the inverse transition
{c′} → {c}. The case where the local energy is the square of the local mass, F(c) = c2,
is particularly simple to simulate because the two constraints ci−1 + ci + ci+1 = M =
c′
i−1 + c′

i + c′
i+1 and c

2
i−1 + c2i + c2i+1 = E = (c′

i−1)
2 + (c′

i )
2 + (c′

i+1)
2 define respectively a

plane and a sphere in a three-dimensional space, whose intersection lies on a circle [27, 30,
32, 33]. The accessible mass triplet (c′

i−1, c
′
i , c

′
i+1) is therefore parameterized by an angle,

and the detailed balance condition is easily ensured by picking a random angle extracted
from a uniform probability distribution.5

Depending on the initial masses of the triplet, since ci ≥ 0, the physically accessible states
can form either a full circle or the union of three disjoint arcs [32]. In the latter case, occurring
when the mass of a site in the chosen triplet is significantly larger than the other ones, the
final state is chosen in any of the three available arcs. This update allows peaks to freely
diffuse in the lattice [13]. For F(c) �= c2 the solution of the two constraints equations no
longer lies on a circle and a uniform sampling of the microcanonical manifold would require
the explicit parametrization of the intersection curve. In this manuscript we limit numerical
simulations to the case F(c) = c2.

Let us now discuss how to couple the system to two heat baths imposing thermodynamic
parametersRL = (βL , μL) andRR = (βR, μR) at the left and right chain ends, respectively.
If RL = RR , the system attains an equilibrium state, while for RL �= RR , the system
eventually relaxes to an out-of-equilibrium steady state, whose main features will be found
analytically in the next section. We will employ models of reservoirs allowing to thermalize
the system in any point (a, h) of the homogeneous phase, hGS(a) ≤ h ≤ hC(a).6 To study in
detail the dynamics of the nonequilibrium setup, we will use critical heat baths, i.e. reservoirs
imposing critical conditions at the chain ends, hC(aL) and hC(aR), with aL �= aR . This setup
allows to obtain a NESS which is entirely contained in the condensed phase.

Evolution proceeds as follows. We choose at random a site j = 1, . . . , N . If an inner site
is chosen, j = 2, . . . , N − 1, then the triplet centered in j , (c j−1, c j , c j+1) is updated with
the dynamic rule defined above. Conversely, if an outer site j = 1, N is chosen, then we
only update the local mass c j of that site to a new one c′

j dependent on the thermodynamic
parameters chosen as boundary conditions. Boundary updates can be implemented according
to a Metropolis grand-canonical rule applied to random perturbations of the initial state
c j [13]. In this paper we consider a more effective strategy that consists in directly imposing
the equilibrium mass distribution at the chain ends. In the following we will make explicit
reference to the left end, where the imposed distribution on the lattice site c1 is ρL(c1) =
z(μL , βL)−1 exp [−βL (F(c1) − μLc1)]. Analogous procedure and definitions hold for the
site j = N and are readily obtained by replacing c1 → cN and L → R. This method allows
for efficient numerical simulations and it is also useful for the analytical treatment of the
nonequilibrium state.

5 For different F(c) the intersection between the two surfaces is no more a circle and the its parametrization
is far from simple, making time consuming the single evolution of the dynamics.
6 This corresponds to βL , βR ≥ 0 and ensures that the chain edges are always in the homogeneous region.
Accordingly, localized states can emerge only in the bulk as a genuine nonequilibrium effect [13].
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We remark that, for each boundary site, reservoir updates occur on average once every
N random updates of the whole lattice, which implies that the reservoir efficiency is finite.
As a result, usual boundary discontinuities (Kapitza resistance) [34] manifest themselves
at the chain ends in steady nonequilibrium conditions. In practice, the actual distributions
of c1 and cN are found to be slightly different from ρL(c1) and ρR(cN ), respectively. We
have verified that this effect has negligible impact on the macroscopic steady state and that it
vanishes in the thermodynamic limit. Boundary discontinuities can be eliminated by adding
the constraint that every time c1, cN change with the triplet update they are immediately
replaced by new values extracted from the bath distributions. We will refer to this boundary
rule as heat baths with “infinite efficiency”, since the ends of the chain are immediately
thermalized every time they are moved away from the equilibrium distribution. Finally, as
usual for Monte Carlo simulations, time is measured in Monte Carlo units, that corresponds
to N evolutionary elementary steps.

We can quantify the rate of exchange of mass and energy from the reservoirs to the chain
with the appropriate definitions of mass and energy fluxes. For the left boundary, we define7

j (L)
a = 1

τ

∑

tk≤τ

δc1(tk)

j (L)
h = 1

τ

∑

tk≤τ

δε1(tk),
(8)

where δc1(tk) and δε1(tk) = δF(c1(tk)) represent respectively the variations of the mass
and energy on the first site produced by a reservoir update occurring at time tk . Analogous
definitions hold for the right boundary and steady transport conditions are attained when
j (L)
a = − j (R)

a and j (L)
h = − j (R)

h .
The time τ appearing in Eq. (8) must formally diverge to obtain steady state currents

and the formalism of next Section explains how time averages can be replaced by ensemble
averages. If we are interested to the relaxation process towards the steady state, the currents
are determined numerically using a large but finite τ .

4 The Nonequilibrium Steady State: Exact Spatial Profiles and Currents

In this Section we derive analytical results for some relevant observables characterizing the
NESS, namely average spatial profiles of mass and energies (ai and hi ) and their corre-
sponding parametric profiles (hi (ai )), mass and energy currents ( ja and jh), and Onsager
coefficients.

Let us consider the evolution of the triplet of neighbouring sites centered in i , Ti =
(i − 1, i, i + 1), with local masses (ci−1, ci , ci+1). The mass triplet after the update, T ′

i =
(c′

i−1, c
′
i , c

′
i+1), is chosen with the constraint that

c′
i−1 + c′

i + c′
i+1 = M = ci−1 + ci + ci+1 (9a)

ε′
i−1 + ε′

i + ε′
i+1 = E = εi−1 + εi + εi+1, (9b)

where εi = F(ci ). Solutions of Eq. (9) are a one-parameter family of states T ′
i (θ) = G(Ti , θ),

where G(·, θ) is a suitable one-to-one transformation mapping Ti to T ′
i and θ is a real param-

eter. For F(c) = c2, θ is an angle [32].

7 The quantities appearing in the summations are evaluated every time that site i = 1 is chosen. On average,
this happens every Monte Carlo step.
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Total variations of mass and energy of site i , δci = (c′
i − ci ) and δεi = (ε′

i − εi ), involve
the dynamics of three different triplets, namely Ti and Ti±1. In addition, two different kinds
of averages must be taken into account: first the average over θ for a fixed Ti , indicated with
the symbol (· · · ), and second the average over the distribution of initial ci , indicated with
〈(· · · )〉.

Since Eq. (9) are invariant under any permutation of the final masses or energies of the
triplet, the average over θ is the same for the three sites:

c′
i = c′

i−1 = c′
i+1 = M

3
, (10a)

ε′
i = ε′

i−1 = ε′
i+1 = E

3
, (10b)

therefore giving, for local masses in triplet Ti
(
δci

)
Ti

= 1
3 (ci−1 + ci + ci+1) − ci = 1

3 (ci−1 − 2ci + ci+1). (11)

If the system is in a steady state, the average over the initial distribution implies that
average masses 〈ci 〉 appearing in the right-hand side of Eq. (11) can be replaced by their
stationary values ai . Finally, summing over all triplets involving site i , we obtain

〈δci 〉tot = 1

3
(ai−2 + 2ai−1 − 6ai + 2ai+1 + ai+2) (3 ≤ i ≤ N − 2). (12)

For sites i = 2 and i = N − 1, each of which contained in only two triplets, the total
average mass variation is instead given by

〈δc2〉tot = 1

3
(a1 − 4a2 + 2a3 + a4)

〈δcN−1〉tot = 1

3
(aN − 4aN−1 + 2aN−2 + aN−3).

(13)

Clearly, Eqs. (12) and (13) are also valid for the energy profiles, provided that ci is replaced
by εi and ai by hi .

The hypothesis of stationarity implies that total average variations of mass and energy
vanish, 〈δci 〉tot = 〈δεi 〉tot = 0, therefore from Eqs. (12) and (13) we obtain a system of
N − 2 linear coupled equations for the spatial mass profile,

a1 − 4a2 + 2a3 + a4 = 0

ai−2 + 2ai−1 − 6ai + 2ai+1 + ai+2 = 0 (3 ≤ i ≤ N − 2)

aN − 4aN−1 + 2aN−2 + aN−3 = 0. (14)

An identical (and independent) system of equations is valid for the energies hi .
The missing two equations depend on the coupling with heat baths, see Sect. 3. If they

have “infinite efficiency” (IE), mass boundary conditions are

a1 = aL , aN = aR (IE baths) , (15)

where the mass parameters aL and aR are completely defined through equilibrium grand-
canonical relations respectively by (μL , βL ) and (μR, βR), see Eq. (44) in Appendix A. In
the presence of heat baths with “finite efficiency” (FE), additional equations obtained from
the average mass variation on sites i = 1, N must be considered, explicitly 〈δc1,N 〉tot =
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Fig. 3 Parametric profiles with different boundary conditions (Li − Ri ) and different system sizes Ni , see
the legend. The dotted line and the dashed red line are, respectively, the ground state line and the critical
line, for F(c) = c2. The first setup (i = 1) corresponds to IE baths, both located in the homogeneous region
(aL = 0.5, hL = 0.41, aR = 6, hR = 66). The second setup (i = 2) corresponds to FE critical baths. The
third setup (i = 3) corresponds to FE baths, both located on the ground-state curve. Data have been obtained
numerically and they coincide with the expected analytical expressions

〈δc1,N 〉T2,N−1 + (aL,R − a1,N ) = 0, from which we get

3aL − 5a1 + a2 + a3 = 0

3aR − 5aN + aN−1 + aN−2 = 0
(FE baths). (16)

Again, analogous equations for the energy hold replacing aL,R by hL,R and ai by hi .
Once the boundary conditions have been chosen, average spatial profiles of mass ai and

energy hi of the stationary state can be obtained by solving the two systems of equations,
whose solutions can be expressed in the following form

ai = aL + Ai (aR − aL) (17a)

hi = hL + Ai (hR − hL). (17b)

The real coefficients Ai , which take values between 0 and 1, are the same for mass and energy
because aL,R and hL,R do not explicitly appear in the equations: coefficients Ai depend only
on the position i and the size N of the system. Furthermore, since the systems of equations
are invariant under the exchange L → R and i → N +1− i , we have that Ai = 1− AN+1−i .
Explicit expressions for Ai are derived in Appendix B.

A first implication of Eq. (17) is that parametric profiles are perfectly linear independently
on the boundary parameters and on the system size. In fact, we obtain that points (ai , hi ) are
arranged along the straight line

h(a) = hL + hR − hL
aR − aL

(a − aL), (18)

as shown in Fig. 3, where we plot the parametric curves for three different nonequilibrium
setups. We remark that the spatial and parametric profiles do not depend on the choice of
F(c), but only on the location of the baths parameters in the (a, h) plane, on the finite/infinite
efficiency of the baths themselves, and on the size N .

While parametric profiles are linear for any N , spatial profiles are affected by boundary
resistance effects, so that ai and hi are linear only for large N . However, as shown in Fig. 4
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Fig. 4 Model F(c) = c2. Analytical and numerical spatial profiles of mass (bottom panel) and energy (top
panel), for N = 16 and boundary conditions on the critical line hC = 2a2. “Finite efficiency” (FE) reservoirs
are employed with aL = 1 and aR = 5

it is apparent that even for a value of N as small as 16, heat baths modify very weakly the
linear profile.

Let us now determine the mass and energy currents in the NESS. Using Eqs. (8), (17),
and (49), currents for FE baths read

j (L)
a = 〈δc1〉 = aL − a1 = −A1(aR − aL) (19)

j (L)
h = 〈δε1〉 = hL − h1 = −A1(hR − hL) (20)

j (R)
a = 〈δcN 〉 = aR − aN = A1(aR − aL) = − j (L)

a (21)

j (R)
h = 〈δεN 〉 = hR − hN = A1(hR − hL) = − j (L)

h . (22)

Similar calculations for IE reservoirs give

j (L)
a = −1

3
(A2 + A3)(aR − aL) (23)

j (L)
h = −1

3
(A2 + A3)(hR − hL). (24)

In the limit of large N , for FE baths, A1 ∼ 2/N , and for IE baths, (A2 + A3)/3 ∼ 2/N ,
so that ja,h do not depend on the efficiency of the reservoirs and we obtain

ja = j (L)
a = − j (R)

a 
 − 2

N
(aR − aL) 
 −2∂xa (25)

jh = j (L)
h = − j (R)

h 
 − 2

N
(hR − hL) 
 −2∂xh. (26)

The 1/N dependence of stationary currents on boundary imbalances of mass and energy
in Eqs. (25) and (26) shows that transport is always diffusive, irrespective of possible con-
densation processes occurring in the lattice. This result is less straightforward than one can
imagine [15].
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Fig. 5 Model F(c) = c2. Evolution of the relative asymmetry of the energy flux ΔJh(τ ) for a system of size
N = 8192. The system is in contact with FE reservoirs imposing boundary conditions on the critical line,
with aL = 1, aR = 5. Inset: evolution of the relative asymmetry of the mass flux, ΔJa(τ )

Numerical simulations confirm the above predictions. As a first test, we verified the con-
vergence to a NESS for a system driven in the localized region of parameters. In Fig. 5 we
plot the evolution of the relative asymmetry of the left/right currents of mass and energy,
namely

ΔJa,h(τ ) = (| j (R)
a,h (τ )| − | j (L)

a,h (τ )|)
(| j (R)

a,h (τ )| + | j (L)
a,h (τ )|)

, (27)

which must vanish in a NESS. The figure shows that the asymmetry of the energy current
ΔJh (main panel) vanishes much more slowly than the corresponding mass asymmetry ΔJa
(inset). This is due to the fact that when the parametric curve overpasses the critical line and
enters the condensed region, emerging peaks localize energy, not mass.8 A more detailed
discussion of the localization properties in the NESS is contained in Sect. 5.

In Fig. 6 we show the behavior of energy currents for different system sizes N in the
long-time limit τ  1. The good agreement between numerics (symbols) and the stationary
analytical expression (full lines) attests that a NESS has always been attained in simulations,
while the comparison with the asymptotic expressions for large N (dashed lines) shows that
as for the currents the thermodynamic limit is attained already for relatively small sizes.

Finally, the knowledge of explicit expressions relating stationary currents to macroscopic
mass and energy gradients, see Eqs. (25) and (26), allows us to derive complete information
on transport coefficients in the linear-response regime, which can be expressed in terms of
Onsager coefficients [35]. More precisely, we can rewrite Eqs. (25, 26) in the form

ja = Caa∂xa + Cah∂xh

jh = Cha∂xa + Chh∂xh,
(28)

with constant coefficients

Caa = Chh = −2

Cah = Cha = 0 .
(29)

We recall that Onsager coefficients are properly defined in terms of gradients of β and
m = βμ [14]

ja = −Laa ∂xm + Lah∂xβ (30)

jh = −Lha ∂xm + Lhh∂xβ. (31)

8 This is true for a positive F(c), see the last section for a comment on this when F(c) is negative.
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Fig. 6 Stationary energy currents versus N . Boundary conditions are obtained with FE critical heat baths
imposing parameters aL = 1 and different values of aR , see legend. Full symbols indicate the values of the
fluxes obtained numerically for a total simulation time τ = 6.6× 109. Solid lines indicate the exact analytical
analytical expression, see Eq. (20). Dashed lines are the asymptotic expressions | jh | = 2

N (hR − hL ), see
Eq. (26)

Therefore, passing from (a, h) to (m, β) we obtain

Laa = 2∂ma Lah = −2∂βa, (32)

Lha = 2∂mh Lhh = −2∂βh,

where the derivatives appearing in Li j can be derived from equilibrium relations a = a(m, β)

and h = h(m, β), see Eq. (44). As expected, the Onsager coefficients in Eq. (32) satisfy the
celebrated Onsager reciprocity relations, Lah = Lha . Indeed, recalling the grand-canonical
relations a = ∂m log z and h = −∂β log z, see Appendix A, the equality of off-diagonal
coefficients follows from ∂m∂β log z = ∂β∂m log z and from the regularity of the partition
function z(m, β) in the homogeneous region. In this respect, it is worth noticing that the
above derivation of transport coefficients is necessarily restricted to the homogeneous region
β ≥ 0, as it requires the existence of the grand-canonical ensemble. Although the problem
of energy transport at negative absolute temperatures was recently explored in [36, 37], we
do not expect straightforward generalizations for β < 0 for the class of condensation models
here studied. The main reason is that such a program would require to connect the system to
negative-temperature reservoirs, thereby typically resulting in condensation instabilities and
absence of stationary conditions.

It is interesting to work out the limit of vanishing β of Li j in Eq. (32) for the class of
models F(c) = cα . In this case the critical curve is hC(a) = Γ (1+ α)aα and we obtain (see
Appendix C)

Laa = 2a2 Lah = 2αΓ (α + 1)aα+1,

Lha = 2αΓ (α + 1)aα+1 Lhh = 2
[
Γ (2α + 1) − Γ 2(α + 1)

]
a2α. (33)

Therefore, all Onsager coefficients are well defined and positive even on the critical line.
Moreover, from the definition of the Seebeck coefficient [18]

S ≡ β
Lah

Laa
− m , (34)

we obtain that on the critical line, S = −m = 1/a. Since S �= 0, we can conclude that mass
and energy currents in α-models are coupled in the usual sense of irreversible thermody-
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namics. These results generalize the study of Ref. [14] on Onsager coefficients, which was
restricted to the case α = 2.

5 Statistical and Dynamical Properties of Nonequilibrium
Condensation

In this section we discuss in more detail the out-of-equilibrium condensation process and we
compare it with the analog phenomenon occurring at equilibrium. For simplicity we refer to
the class F(c) = cα .

Equilibrium condensation can only appear in the microcanonical statistical ensemble,
because the region above the critical line, h > hC(a), cannot be described in terms of the
grand canonical ensemble. The equilibrium condensed phase is therefore characterized by
the exact conservation of the energy density h, which can be decomposed as the sum of the
critical energy density hC plus an extra energy density Δ = h − hC. The former is uniformly
distributed in the whole system, according to an exponential distribution of the mass; the
latter is localized on a not-extensive number of sites, K (N ,Δ) [24]. In the thermodynamic
limit, K (N → ∞,Δ) → 1 independently on Δ: only one site hosts the entire extra-
energy, giving rise to a Dirac-delta peak in the energy distribution p(ε), for ε = ΔN :
p(ε) = pc(ε)+ 1

N δ(ε −ΔN ). The critical energy density pc(ε) is explicitly found from the
relation pc(ε)dε = ρc(c)dc, where ε = F(c) and ρc(c) = (1/a)e−c/a . For F(c) = cα ,

pc(ε) = exp
( − ε1/α/a

)

aαε1−1/α . (35)

For finite N , the condensate contribution to pc(ε) broadens to a finite-height bump, see
the inset of Fig. 8, where we show the numerical equilibrium energy distributions in the
condensed region for α = 2 and different sizes N . More generally, finite-size effects were
found to deeply modify the equilibrium localization scenario expected in the thermodynamic
limit [11, 23, 24]. Among the most important effects, there is the emergence of a “pseudo-
localized” region above the critical line hC(a) in which the system is effectively delocalized.

Coming now to the out-of-equilibrium setup with critical heat baths, we can argue that
dynamical evolution proceeds repeatedly through the onset of travelling peaks that are even-
tually destroyed at the chain ends, as their presence is not compatible with heat baths at
positive or infinite temperature. This is clearly shown in Fig. 7, where we plot the time
dependence of position (upper panel) and energy (lower panel) of the highest peak detected
in the chain at various times during a long evolution. The steady state thereby manifests itself
as a balance of the creation and death processes of such peaks. Therefore, if tp(N ) is the
typical lifetime of a peak, a NESS establishes only on timescales t  tp(N ). On timescales
shorter or of the order of tp(N ) the system is not stationary: there is an unbalance of left and
right currents which induces the growth of the travelling peaks, which appears to be linear in
time. From Fig. 7 we have also clear numerical evidence that tp(N ) increases as N 2, see the
inset of the bottom panel: this result signals a symmetric spatial diffusion process of peaks.
In fact, we have not found evidence of drifts towards a specific side of the chain. Neverthe-
less, we expect that such unbiased diffusion is not universal, as it eventually depends on the
underlying microscopic dynamical rule: an example showing biased diffusion of peaks in
out-of-equilibrium conditions was found in [15] for the deterministic DNLS equation.

At first glance, the emerging picture of an out-of-equilibrium condensed phase originated
by traveling peaks superposed to a delocalized background might appears comparable to
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Fig. 7 Top panel: Evolution of the main peak’s position x∗(t), after a transient τ0 = 108, on a system with
size N = 8192. The two horizontal dashed lines indicate the borders of the system, which interacts with two
critical heat baths imposing aL = 1 and aR = 5. Bottom panel: the energy E∗(t) of the main peak (lower
curve) and the energy of the second highest peak, vertically translated to make it evident. In the inset we plot
the mean lifetime tp of peaks as a function of the system size N . The power-law fit, tp 
 0.025N2.01, reveals
the diffusive character of their motion

the equilibrium one. On the other hand, a closer inspection reveals an important difference,
because in the NESS peaks are repeatedly created in the bulk and destroyed at the system’s
boundaries and their energy increases in time until they disappear, while in equilibrium con-
ditions their energy simply fluctuates around an average value. Therefore, in nonequilibrium
conditions a single site experiences the passage of peaks of variable heights, even if the num-
ber of peaks which are present in the system at a given time is of order one. The above picture
of peaks diffusing and carrying extra energy with respect to the average local critical energy
can be quantitatively supported, firstly, by a numerical evaluation of the average energy trans-
ported by peaks; secondly, by an alternative derivation, within a continuum approximation,
of the parametric curve of the NESS.

The global extra energy is the sum Eex = ∑
i (hi −hC(i)), where hi is the average energy

of site i and hC(i) = hC(ai ) is the critical energy corresponding to the average mass of site
i . We claim that Eex corresponds to the time average of the energy of traveling peaks. As a
numerical test, we can refer to the setup of Fig. 7 and limit ourselves to the two highest peaks
shown in the bottom panel. Remembering that for large N , ai and hi are linear profiles and
that hc(i) = 2a2i , we obtain

Eex 

∫ N

0
dx 2(aR − a(x))(a(x) − aL) 
 4.37 × 105, (36)

where a(x) = aL + x
N (aR − aL), aL = 1, aR = 5, and N = 8192. On the other hand, the

time-average energies of themain and second peak are respectively 3.94×105 and 0.38×105.
Their sum is 4.32 × 105, in fairly good agreement with the value of Eex found in Eq. (36).

Passing to a continuum description, it is also possible to evaluate the spatial density of
the extra energy, Δ(x) = h(x) − hC(x), which is supposed to satisfy a stationary, diffusion

123



119 Page 16 of 27 M. Giusfredi et al.

Fig. 8 Main: nonequilibrium setup with critical baths imposing aL = 1 and aR = 5. We plot the stationary
energy distribution p(ε) for the central site of systems with increasing size N . The size is chosen so that its
average mass is a = 3 and its average energy is h = 26. The NESS state has been sampled for times much
larger than the typical peak’s lifetime tp(N ). For comparison, in the inset we plot the equilibrium energy
distribution for the same values of a and h. The full black line is the critical distribution Eq. (35) for α = 2
and a = 3. The vertical dotted lines locate the expected energy of the condensate, equal to (h − hC(a))N

equation of the following form,

D
d2Δ(x)

dx2
+ I (x) = 0, (37)

where D = 2 is the diffusion coefficient of peaks, derived in Appendix D, and I (x) is a
source term accounting for energy injection, determined assuming a “critical” background.
If a(x) is the average mass density at site x , the energy background is hC(a(x)), and I (x) is
determined through the total variation of energy at the site i located in x , once we average
over all moves involving site i ,9

〈δεi 〉tot = 1

3
(hi−2 + 2hi−1 − 6hi + 2hi+1 + hi+2). (38)

In the steady state the left hand side vanishes, which imposes the equation determining the
spatial profile hi . Here instead we suppose that hi is the local, critical energy, so that the
right-hand side does not vanish and the left-hand side is exactly the source term I (x). Passing
from discrete to continuous, we obtain I (x) = 2d2hC(x)/dx2, and Eq. (37) reads

2
d2

dx2
[Δ(x) + hC(x)] = 0, (39)

which must be solved with absorbing boundary conditions Δ(0) = Δ(L) = 0. We therefore
obtain that Δ(x) + hC(x) has a linear profile passing from the values imposed by critical
baths, in agreement with the exact, discrete microscopic description discussed in Sect. 4.

The different dynamical behavior of equilibrium and out-of-equilibrium condensation
manifests itself also in the stationary energy distribution, p(ε) on a single site. A comparison
of the two regimes is shown in Fig. 8, where we plot the equilibrium (inset) and out-of-
equilibrium (main panel) energy distributions corresponding to the same values of mass

9 See Eq. (12), replacing ci with εi and ai with hi .
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Fig. 9 Participation ratio Y2 vs system size N for a NESS obtained with critical heat baths imposing aL = 1
and different values of aR (see legend). Y2 is obtained numerically from a temporal average over a time

τ = 6.6 × 109. The uncertainty on Y2 is computed as the standard deviation σ =
√

Y 2
2 − Y2

2
, divided by√

τ/τac , where τac is the autocorrelation time of the signal Y2(t). The dashed line is a reference power-law
decay ∼ 1/N

and energy densities. The equilibrium distribution has the expected N−dependent form: for
ε � NΔ, p(ε) 
 pc(ε), with pc(ε) given in Eq. (35), while, for larger energies, p(ε)
displays a bump around ε = NΔ. The width of the bump progressively decreases upon
increasing N . On the other hand, the nonequilibrium distribution does not display any bump:
it is a monotonically decreasing function, which however extends over increasingly larger
energies for increasing N .

The lack of the condensation bump in the NESS energy distribution affects also the
behavior of the participation ratioY2(N ) defined in Eq. (7), which is the usual order parameter
for the condensation transition. In equilibriumconditions and for finite sizes,Y2(N ) displays a
minimumwhenplotted versus N , for sufficiently small values ofΔ = h−hc. Such aminimum
originates essentially from the fact that the condensate is localized on a small number of
sites and that the extra energy is constant in time, apart from statistical fluctuations [24].
The regime of nonequilibrium condensation is shown in Fig. 9, where we plot Y2(N ) for
different nonequilibrium critical boundary conditions with fixed aL = 1 and different aR .
We always find that Y2 decreases monotonically with N and we attribute this feature to the
peculiar dynamics of growth and absorption of travelling peaks. Although we explored the
phenomenon for relatively large sizes and times, numerics by itself is not conclusive and
further efforts would be in order to clarify asymptotic behaviors, in particular to understand
how Y2(N → ∞) depends on aL,R when (aR − aL) → 0, the nonequilibrium equivalent of
Δ → 0 for equilibrium systems.

6 A Critical Summary

We have analyzed the phenomenon of nonequilibrium condensation in a class of open lattice
models with two conservation laws steadily driven by boundary reservoirs. Qualitatively new
features were foundwith respect to the usual condensation transition occurring in equilibrium
conditions. The most important one is that nonequilibrium condensation can appear even if
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reservoirs, by themselves, would locally keep the system in the homogeneous phase. This
feature is due to the existence of two independent conserved quantities (mass and energy)
which determine twomacroscopic currents, whose coupling produces a sort of extreme Joule
effect [14].

The nonequilibriumcondensationmechanismdoes notmanifest itselfwith a lower number
of conserved quantities. In fact, if only one conservation law is present and both reservoirs are
(sub)critical, then the whole system lies in the homogeneous phase. As a simple argument, let
us consider an energy-conserving system in contact with heat baths at inverse temperatures
βL and βR , with βL,R > βc. We assume here that βc is the critical value separating the
homogeneous phase (for β ≥ βc) from the localized one (for β < βc). If transport is
diffusive, the positivity of heat conductivity κ and the Fourier law κdβ(x)/dx = const imply
that steady temperature profiles β(x) are always monotonic. Therefore β(x) ≥ βc in the
whole system. The same conclusion remains valid even in the presence of space-dependent
conductivity κ(x).

It is worthy of note that the out-of-equilibrium condensate is qualitatively different from
the equilibrium one. The latter requires to be in the microcanonical ensemble, i.e. to have
a perfect conservation of mass and energy. For h > hC(a) and large N , the system can be
depicted as a background at critical energy density with the addition of one or more peaks
collecting an extra-energy equal to (h − hC(a))N . This feature is reflected in the marginal
energydistribution p(ε)on a single site,which displays a high-energybumpas a characteristic
signature of the condensed state. In the out-of-equilibrium condensation, the energy of peaks
increases in time (because energy is pumped in the system) until peaks disappear at the
system boundaries. Therefore a lattice site i experiences peaks of all energies, so that there
is no bump in p(ε). Furthermore, the order parameter Y2(N ) (participation ratio) is expected
not to have a minimum with respect to N . In this regard, we recall that the non-monotonic
behavior of Y2(N ) in equilibrium conditions provides a practical and unambiguous criterion
for distinguishing finite-size localized states from delocalized ones, the separation point
being precisely the minimum value of Y2(N ) [24]. The monotonic trend of Y2(N ) observed
in nonequilibrium conditions prevents such a clear separation.

The above scenario is valid for a wide class of lattice models where masses ci are con-
tinuous, positive variables and local energies are εi = F(ci ). Many of our results have been
found analytically and they apply to any convex function F(c). Among the main results,
we have provided a complete characterization of nonequilibrium profiles and stationary cur-
rents which are valid both in the homogeneous region and in the localized one. Moreover,
we have derived Onsager coefficients and shown that the Seebeck coefficient is finite and
nonvanishing on the critical line.

At the macroscopic level, localized NESS are profitably described in terms of a non-
homogeneous diffusion equation for the excess energy field Δ(x) with respect to the local
critical energy density hC(x), Eq. (37). In particular, we obtain that Δ(x) is such that Δ(x)+
hC(x) is a linear function in x , see Eq. (39), which implies that the profiles of Δ(x) and
hC(x) have opposite curvatures. Phenomenologically, the concave shape of Δ(x) for convex
F(c) could be interpreted as a manifestation of a Joule heating effect, whereby the lattice
is “hotter” in the bulk than at the boundaries. It is interesting to note that the source term
accounting for energy injection is I (x) = 2d2hC (x)/dx2, which is constant for the model
F(c) = c2. This is the reason why in this model the energy E∗(t) of a peak increases linearly
in time, with a constant slope, independent of the peak, see Fig. 7. For different models, the
x−dependence of the source termmakes the growth rate of its energy, dE∗/dt , dependent on
the peak position, so that E∗(t) is no more a linear function. In spite of this the overall picture
of nonequilibrium condensation is the same: out-of-equilibrium conditions pump energy in
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the system inducing the birth of peaks and the increase of their energy, while they diffuse.
Once a peak attains a (sub)critical boundary, it disappears.

The class of models F(c) = cα , with α > 1, plays a special role because its equilibrium
properties have been studied in some details. In particular it has been shown [11, 23] they
are equivalent to models where only the mass A = ∑

i ci is conserved, but variables ci are
distributed according to f (c) ∼ exp(−c1/α). If such models are driven out-of-equilibrium,
they do not show any nonequilibrium condensation, as argued here above.

Models where F(c) can be negative have not been discussed in detail. We limit to observe
that a negative, strictly convex function F(c) requires that limc→∞ |F(c)|/c = 0, which
means that the localization process involves the mass, not the energy. We remark that this is
precisely what happens in the case of the DNLS equation with a saturable nonlinearity [17],
a model which can be traced back to the case F(c) = − ln(1 + c).

Finally, it is interesting to discuss the role of peak diffusion, a key element to obtain
parametric linear profiles and to obtain a NESS even when the critical line hC(a) is crossed.
Let us consider the limiting case in which peak diffusion is suppressed: this scenario can be
obtained by constraining the search of the solutions of Eq. (9). Let us discuss explicitly the
model F(c) = c2, in which case the new triplet must be chosen in the intersection between a
plane and a sphere. The condition of positive masses, ci ≥ 0, implies that such intersection
may not be a full circle, but the union of three disconnected arcs of circle: this occurs if one
of the three masses is much larger than the other two, which is the typical scenario in the
condensed region, when the triplet includes a peak. In these cases we may suppress peak
diffusion imposing the search of the new triplet in the same arc of circle, a constraint which
does not break detailed balance. In fact, equilibrium properties in the presence or in the
absence of such additional constraint are the same [32].

When the system is out-of-equilibrium, driven by boundaries, the above constraint is rel-
evant because enforcing it makes Eq. (10) no more valid. However, the relevance of the
constraint depends on temperature, because at β → +∞ the system is perfectly homoge-
neous and the constraint does not apply: we expect its effects are more and more visible with
decreasing β. In fact, the most striking effect of suppressed diffusion occurs in nonequilib-
rium condensation, hence β(x) < 0, where immobile peaks are unable to discharge their
energy, which therefore continues to grow indefinitely: this process prevents a steady state
from being reached [24].

We conclude by observing that our approach to determine the NESS profiles (spatial and
parametric profiles) can be easily extended to a stripe or to a two-dimensional system. In
this case we have local masses ci j and local energies εi j = F(ci j ), where i = 1, . . . , N and
j = 1, . . . , L . If sites (1, j) are attached to the reservoir RL and sites (N , j) are attached
to the reservoirRR , we can apply the same method. We expect to find an analytical solution
for the spatial profiles either for small L or for periodic boundary conditions in the direction
perpendicular to the currents.

A Equilibrium Properties: Microcanonical And Grand-Canonical
Descriptions

In the context of equilibrium statistical mechanics, the condensation phenomenon in models
with two conservation laws has been understood from the properties of the microcanonical
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partition function (we assume a convex and positive F(c)),

Ω(A, H) =
∫ ∞

0

∏

i

dci δ

(

H −
∑

i

F(ci )

)

δ

(

A −
∑

i

ci

)

. (40)

It was shown [11, 23] that Ω(A, H) can be conveniently obtained by computing its Laplace
transform Z(m, β) with respect to A = Na and H = Nh, followed by an inverse Laplace
transform. Here m and β are real variables conjugate to A and H , respectively. Explicitly,
we write the function Z(m, β) as

Z(m, β) =
∫ ∞

0
d A

∫ ∞

0
dH Ω(A, H)e−βH+mA . (41)

Remarkably, Z(m, β) takes the factorized form

Z(m, β) =
[∫ ∞

0
dc e−βF(c)+mc

]N

≡ [z(m, β)]N , (42)

with β > 0. The Laplace inversion formula thereby writes

Ω(A, H) =
∫ m0+i∞

m0−i∞
dm

2π i

∫ β0+i∞

β0−i∞
dβ

2π i
e(−mNa+βNh)Z(m, β) , (43)

where the parameters m0 and β0 define an integration contour free from singularities. In
the large N limit, the integral in Eq. (43) can be finally evaluated using the saddle-point
approximation, solving the following equations

a = ∂ ln [z(m, β)]

∂m
=

∫ ∞
0 dc c e(−βF(c)+mc)

z(m, β)

h = −∂ ln [z(m, β)]

∂β
=

∫ ∞
0 dc F(c) e(−βF(c)+mc)

z(m, β)
(44)

From a physical point of view, the above procedure defines the standard grand-canonical
approach, where Z(m, β) is the grand-canonical partition function, β > 0 is the inverse
temperature and m = βμ defines implicitly the chemical potential μ. From the analytic
properties of Z(m, β) and from Eq. (43), it follows that a solution for saddle-point equa-
tions (44) exists only for real positive β values, or equivalently for h < hC, see Appendix A.2.
This solution provides a one-to-one mapping between parameters (β > 0, μ) and (a, h). The
following two subsections show the explicit solution for the two relevant limits β → +∞
and β → 0. For h > hC (condensed region) Eq. (44) has no solutions and the estimation of
the microcanonical partition function Ω(a, h) requires large-deviations techniques [11].

A.1 Limitˇ → +∞ (Ground State)

In order to obtain a non vanishing partition function, it is necessary to assume μ > 0, in
which case

z(μ, β) →
∫ c∗

0
dceβ(μc−F(c)), (45)

where μc∗ = F(c∗). The maximum of the exponent is in cM , defined by μ = F ′(cM ),
and a(β → +∞, μ) → cM , h(β → +∞, μ) → F(cM ). Therefore, the line h = F(a)

is the ground state of the system, as anticipated in the main text by the consideration that it
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corresponds to a perfectly homogeneous state, ci ≡ a. The above treatment also implies that
the chemical potential on the ground state is μ = F ′(a).

A.2 Limitˇ → 0

In this case the grand-canonical weight is proportional to eβμc, which requires βμ ≡ m →
−γ , with γ > 0. We then get z(β → 0, μ) = γ −1, a(β → 0, μ) = γ −1, and h(β →
0, μ) = γ

∫ ∞
0 dc F(c)e−γ c. Therefore, the critical line is

hC(a) =
∫ ∞

0
dxF(ax)e−x . (46)

On this line, the chemical potential diverges according to the relation μ → −1/(aβ).

B Calculation of the Ai Coefficients

Let us consider the system of equations

a1 = aL (47a)

a1 − 4a2 + 2a3 + a4 = 0 (47b)

ai−2 + 2ai+1 − 6ai + 2ai+1 + ai = 0 3 ≤ i ≤ N − 2 (47c)

aN − 4aN−1 + 2aN−2 + aN−3 = 0 (47d)

aN = aR, (47e)

Since the system is linearwith N independent equations and N unknowns ai , if the solution
exists, it is unique. We can rewrite the unknowns ai in the form

ai = aL + Ai (aR − aL). (48)

The system (47) is invariant under the exchange L → R, i → N + 1− i , so we can look
for a solution with the same symmetry, thus imposing

AN+1−i = 1 − Ai . (49)

Then we can consider an equivalent system of N independent equations obtained either by
summing or subtracting the equations which are mapped into each other with the transforma-
tion L → R, i → N + 1− i , i.e. the first and last equation, the second and penultimate, the
third and third last, and so on. It can be easily demonstrated that all the ai that satisfy Eq. (49)
are already a solution of all the equations obtained summing the equations: for example,
summing Eq. (47b) with Eq. (47d), and replacing ai with (48) we get

a1 − 4a2 + 2a3 + a4 + aN − 4aN−1 + 2aN−2 + aN−3

=
(
A1 + AN − 4(A2 + AN−1) + 2(A3 + AN−2)

+ A4 + AN−3

)
(aR − aL) = (1 − 4 + 2 + 1)(aR − aL) = 0

(50)
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The equations obtained instead from the differences, rewritten in terms of the Ai coefficients,
become

A1 = 0 (51a)

A1 − 4A2 + 2A3 + A4 = 0 (51b)

Ai−2 + 2Ai+1 − 6Ai + 2Ai+1 + Ai = 0 (51c)

with 3 ≤ i ≤ N/2 if N is even, and 3 ≤ i ≤ (N −1)/2 if N is odd. The system of equations
to solve has therefore been halved compared to the starting one. From this point on let’s focus
only on the even case, with N = 2m.

From Eq. (51c) with i = m we can obtain Am−2 as a function of Am−1, Am , Am+1, Am+2,

Am−2 = −2Am−1 + 6Am − 2Am+1 − Am+2, (52)

which replaced in Eq. (51c) with i = m − 1 gives Am−3 as a function of Am−1, Am , Am+1,
Am+2. Repeating the substitutions iteratively, we can write Ai in the form

Ai = −gm−i+2Am−1 + fm−i+2Am − em−i+2Am+1 − dm−i+2Am+2 (53)

where the coefficients dn, en, fn, gn are defined by the recurrence relation

Xn+4 = −2Xn+3 + 6Xn+2 − 2Xn+1 − Xn, (54)

with the following starting values

d0 = −1, d1 = 0, d2 = 0, d3 = 0

e0 = 0, e1 = −1, e2 = 0, e3 = 0

f0 = 0, f1 = 0, f2 = 1, f3 = 0

g0 = 0, g1 = 0, g2 = 0, g3 = −1.

(55)

By using Eq. (49), Am+1 = 1 − Am , and Am+2 = 1 − Am−1, so we can rewrite (51) as

Ai = αi Am−1 + βi Am − γi , (56)

where

αi = dm−i+2 − gm−i+2 = (d − g)m−i+2

βi = ( f + e)m−i+2

γi = (e + d)m−i+2.

(57)

By imposing A1 = 0, from Eq. (56) with i = 1 we obtain

Am = γ1 − α1Am−1

β1
, (58)

which can be replaced in (56) that becomes

Ai = Bi Am−1 − Ci , (59)

where
Bi = αi − α1βi/β1, Ci = γi − γ1βi/β1. (60)

Finally, replacing the Ai from (59) in (51b), we obtain

Am−1 = 4C2 − 2C3 − C4

4B2 − 2B3 − B4
. (61)
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Once replaced in (59), it determines the solution to the system of Eq. (51). The coefficients
Ai for i > m are obtained from those with i ≤ m using Eq. (49).

The case with N odd, N = 2m + 1, can be analyzed with the same procedure, obtaining
Eq. (53) and from this the solution expressed in the form (59), with the same definitions of
Bi and Ci from (60), but with

αi = −gm−i+2,

βi = ( f + d)m−i+2,

γi = (e/2 + d)m−i+2.

(62)

Similarly, we can also solve the system of equations associated with the case of the heat
baths with “finite” efficiency, which correspond to replacing the border condition

A1 = 0 → −5A1 + A2 + A3 = 0. (63)

Also in this case the solution takes the form (59), but with

Am−1 = C1 − 4C2 + 2C3 + C4

B1 − 4B2 + 2B3 + B4
, (64)

Bi =
(

αi − βi
α3 + α2 − 5α1

β3 + β2 − 5β1

)

, (65)

Ci =
(

γi − βi
γ3 + γ2 − 5γ1
β3 + β2 − 5β1

)

, (66)

where αi , βi , γi are defined as (60) with N even and as (57) with N odd.

B.1 Closed-Form Expressions for d, e, f, g

The coefficients dn, en, fn, gn can be expressed in a closed form solving the recursion relation
(54). If we consider Xn = xn , it satisfies Eq. (54) if x is a solution of

x4 + 2x3 − 6x2 + 2x + 1 = 0. (67)

The roots of this polynomial equation are

x1 = x2 = 1, x3 = −2 + √
3 ≡ φ, x4 = −2 − √

3 ≡ ψ. (68)

A general solution Xn of the recursion relation (54) is therefore obtained from the roots
xi by considering a linear combination of xni . Since the root x1 = 1 occurs 2 times, nxn1 = n
is added to the linear combination, so the general solution of (54) is

Xn = w1 + w2n + w3φ
n + w4ψ

n, (69)

where the coefficients wi are determined imposing the initial conditions of the recurrence.
For dn , en , fn , gn this conditions are the ones in (55), from which we can finally obtain the
closed form expressions

dn = (6n − 12 + (−12 + 7
√
3)ψn − (12 + 7

√
3)φn)/36

en = (6n − 14 + (7 − 4
√
3)ψn − (7 + 4

√
3)φn)/12

fn = (6n − 4 − φψn + ψφn)/12

gn = (6 − 6n + (−3 + 2
√
3)ψn − (3 + 2

√
3)φn)/36.

(70)
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With this expressions we can therefore obtain a closed form for the coefficients Ai . For
example, in the case with the heat baths with finite efficiency and even size N = 2m, A1 can
be expressed as

A1 = 4
√
3 − 6 − φ2m(6 + 4

√
3)

(4
√
3 − 6)m + 5

√
3 − 6 − φ2m((6 + 4

√
3)m + 5

√
3 + 6)

, (71)

that for large N , since |φ| = 2 − √
3 < 1, can be approximated with A1 ≈ 1/m = 2/N .

C Onsager Coefficients

To obtain the expressions for the Onsager coefficients in the class of models with local energy
εi = cα

i , it is useful to define

I (k) =
∫ ∞

0
xk exp(−βxα + mx)dx . (72)

With this notation, I (0) is equal to the partition function z(m, β), and the k−th moment 〈ck〉
is

〈ck〉 = 1

z(β,m)

∫ ∞

0
xk exp(−βxα + mx)dx = I (k)

I (0)
. (73)

In particular, we have

a = I (1)

I (0)
, h = I (α)

I (0)
. (74)

By deriving I (k) with respect to β and m, we obtain

∂m I (k) =
∫ ∞

0
xk+1 exp(−βxα + mx)dx = I (k + 1)

∂β I (k) = −
∫ ∞

0
xk+α exp(−βxα + mx)dx = −I (k + α).

(75)

TheOnsager coefficients can be obtained considering the derivatives of a and h. For example,
to obtain Laa , we need to calculate

∂ma = ∂m
I (1)

I (0)
= I (2)

I (0)
− I 2(1)

I 2(0)
, (76)

and in a similar way we can calculate all the other derivatives to obtain

Laa = 2∂ma = 2
(
I (2)I (0) − I 2(1)

)
/I 2(0)

Lah = −2∂βa = 2
(
I (α + 1)I (0) − I (α)I (1)

)
/I 2(0)

Lha = 2∂mh = Lah

Lhh = −2∂βh = 2
(
I (2α)I (0) − I 2(α)

)
/I 2(0)

(77)

If we now want the coefficients Li j on the critical line h = Γ (α + 1), lets consider the
limit β → 0, m → −1/a, in which I (k) becomes

lim
β→0+ I (k) = Γ (k + 1)ak+1. (78)
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Therefore, the Onsager coefficients in this limit become

Laa = 2a2, Lhh = 2
(
Γ (2α + 1) − Γ 2(α + 1)

)
a2α (79)

Lah = Lha = 2(Γ (α + 2) − Γ (α + 1))aα+1

= 2αΓ (α + 1)aα+1. (80)

D The Diffusion CoefficientD

The diffusion coefficient D of the models with the evolution rule defined in Sect. 3 can be
obtained making the expression for the probability P(x, t) to find a breather on site x at time
t continuous in space and time, so that it can be expressed as a diffusion equation:

∂P(x, t)

∂t
= D

∂2

∂x2
P(x, t). (81)

In the evolution algorithm, which updates the triplets Ti = (i − 1, i, i + 1) with i chosen at
random, the only triplets that allow the breather’s movement are Tx , Tx−1 and Tx+1, which
can be chosen with probability 1/N . In these cases, after the update the energy peak can
be found with probability 1/3 in any one of the sites of the chosen triplet. For example, the
breather can reach x − 2 only when Tx−1 is chosen, but each one of Tx−1, Tx , Tx+1 allow it
to remain in the initial position x . The breather also remains in x if the other triplets of which
it is not part are chosen. Therefore, the probability to find the breather in x at time t + 1 is
given by

P(x, t + 1) = 1

N

(

P(x, t) + 2

3
(P(x − 1, t) + P(x + 1, t))

+ 1

3
(P(x − 2, t) + P(x + 2, t))

)

+ N − 3

N
P(x, t).

(82)

Lets Taylor expand (82) to the first order in δt , the time increment for a single triplet update:
by subtracting P(x, t) from both members and then dividing by δt we obtain

∂P(x, t)

∂t
= 1

Nδt

(
2

3
(P(x − 1, t) + P(x + 1, t))

+ 1

3
(P(x − 2, t) + P(x + 2, t)) − 2P(x, t)

)

.

(83)

We can then Taylor expand (83) to the second order in space x , the first non vanishing order,
from which we get

∂P(x, t)

∂t
= 2δx2

Nδt

∂2P(x, t)

∂x2
= D

∂2P(x, t)

∂x2
, (84)

where δx = 1 is the distance between two adjacent sites. Time is measured in Monte Carlo
steps δτ , that corresponds to N moves that increase time by δt , thus δτ = Nδt = 1. The
diffusion coefficient D is then is given by

D = 2(δx)2

δτ
= 2. (85)

Funding Open access funding provided by Consiglio Nazionale Delle Ricerche (CNR) within the CRUI-
CARE Agreement.

123



119 Page 26 of 27 M. Giusfredi et al.

Data Availability The authors declare that the data supporting the findings of this study are available within
the paper. Row data sets generated during the current study are available from the corresponding author on
reasonable request.

Declarations

Conflict of interest We declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Eggers, J.: Sand as Maxwell’s demon. Phys. Rev. Lett. 83(25), 5322 (1999)
2. Iyer,C.,Das,A.,Barma,M.:Coarsening, condensates, and extremes in aggregation-fragmentationmodels.

Phys. Rev. E 107(1), 014122 (2023)
3. Eisenberg, H., Silberberg, Y., Morandotti, R., Boyd, A., Aitchison, J.: Discrete spatial optical solitons in

waveguide arrays. Phys. Rev. Lett. 81(16), 3383 (1998)
4. Russell, P.S.J., Chen, Y.: Localization of light in multi-helical arrays of discrete coupled waveguides.

Laser Photon. Rev. 17(3), 2200570 (2023)
5. Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys.

Rev. Lett. 86(11), 2353 (2001)
6. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related

systems. Phys. Rep. 329(4–6), 199 (2000)
7. Soh, H., Ha, M., Jeong, H.: Jamming and condensation in one-dimensional driven flow. Phys. Rev. E

97(3), 032120 (2018)
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