Consigli Ricerche

Mzzppings for Con
Ci

idimensional Arrays
ecs

Mappings for Conflict-Free Access of Paths in Bidimensional Arrays,

Circular Lists, and Complete Trees *

Alan A. Bertossi ' and M. Cristina Pinotti
Istituto di Elaborazione dell’ Informazione
National Council of Research
Pisa, ITALY
E-mail: {bertossi@science.unitn.it » pinotti@iei.pi.cnr.it}

Abstract

Since the divergence between the processor speed and the memory access rate is progressively
Increasing, an efficient partition of the main memory into multibanks is useful to improve the overall
system performance. The effectiveness of the multibank partition can be degraded by memory con-
flicts, that oceur when there are many references to the same memory bank while accessing the same
memory pattern. Therefore, mapping schemes are needed to distribute data in such a way that data
can be retrieved via regular patterns without conflicts. In this paper, the problem of conflict-free
access of arbitrary paths in bidimensional arrays, circular lists and complete trees is considered for
the first time and reduced to variants of graph-coloring problems. Balanced and fast mappings are
proposed which require an optimal number of colors (i.e., memory banks). The solution for bidimen-
sional arrays is based on a combinatorial object similar to a Latin Square. The functions that map
an array node or a circular list node to & memory bank can be calculated in constant time. As for
complete trees, the mapping of a tree node to a memory bank takes time that grows logarithmically
with the number of nodes of the tree.

Key Words: Bidimensional array, circular list, complete tree, conflict-free access, mapping scheme,

multibank memory system, path template.

*This work has been supported by the "Provincia Autonoma di Trento” under a research grant.
'On leave from University of Trento, Department of Mathematics, Trento, Itaiy

Running Title: Conflict-Free Access of Paths

Address for Correspondence:

M.C. Pinotti

IEI-CNR

Via 8. Maria, 46

56127 Pisa

ITALY

E-mail: pinotti@iei.pi.cnr.it

List of Footnotes:
This work has been supported by the ”Provincia Autonoma di Trento” under a research grant.

ii

1 Introduction

In recent years, the traditional divergence between the processor speed and the memory access rate is
progressively increasing. Thus, an efficient organization of the main memory is important to achieve
high-speed computations. For this purpose, the main memory can be equipped with cache memories
~ which have about the same cycle time as the processors — or can be partitioned into multibanks.
Since the cost of the cache memory is high and its size is limited, the multibank partition has mostly
been adopted, especially in shared-memory multiprocessors [3]. However, the effectiveness of such a
memory partition can be limited by memory conflicts, that occur when there are many references to
the same memory bank while accessing the same memory pattern. To exploit to the fullest extent the
performance of the multibank partition, mapping schemes can be employed that avoid or minimize the
memory conflicts [15]. Since it is hard to find universal mappings — mappings that minimize conflicts
for arbitrary memory access patterns — several specialized mappings, designed for accessing regular
patterns in specific data structures, have been proposed in the literature (see [12, 2] for a complete list

of references).
In particular, for bidimensional arrays, Budnik and Kuck [7], Balakrishnan et al. [4], Kim and

Prasanna [12], and Das and Sarkar [8] studied mappings that provide conflict-free access to rows,
columns, positive and negative diagonals, subarrays, and distributed subarrays. The techniques used
range from Latin squares to Perfect Latin squares, from linear mappings to quasi-groups [11]. Subse-
quently, mappings for other data structures like complete trees and binomial trees have been devised.
In particular, mappings that provide conflict-free access to complete subtrees, root-to-leaves paths, sub-
levels, and composite patterns obtained by their combination, have been investigated in [8, 9, 1, 10, 14].
The mapping schemes proposed in those papers are optimal, i.e., they use as few memory modules as
possible; balanced, i.e., the nodes of data structures are distributed as evenly as possible among the
banks; fast, i.e., the bank address to which a node is assigned is computed quickly with no knowledge

of the entire structure mapping; and fiezible, ie., they can be used for templates of different size.
In the present paper, optimal, balanced and fast mappings are designed for conflict-free access of

paths in bidimensional arrays, circular lists, and complete trees. With respect to the above mentioned
papers, paths in bidimensional arrays and cireular lists are dealt with for the first time. Moreover, access
to any (not only to root-to-leaves) paths in complete trees is provided. The remainder of this paper
is organized as follows. In Section 2, the conflict-free access problem is formally stated. In Section 3,
the problem of accessing paths in bidimensional arrays is solved. The proposed solution is a variant
of a graph-coloring, which requires an optimal number of colors and is achieved using a combinatorial
object similar to a Latin Square. As a byproduct, the memory bank to which an array node is assigned
is computed in constant time. In Section 4, the problem of accessing paths in circular lists is optimally
solved and the function that maps a circular list node to a memory bank can be calculated in constant
time. In Section 5, the same problem on complete trees is also optimally solved via a variant of a graph-
coloring problem. The time needed to assign a tree node to a memory bank grows logarithmically with
the number of nodes of the tree. Conclusions are offered in Section 6.

2 Conflict-Free Access

When storing a data structure D, represented in general by a graph, on a memory system consisting
of N memory banks, a desirable issue is to map any subset of N arbitrary nodes of D to all the N
different banks. This problem can be viewed as a coloring problem where the distribution of nodes of
D among the banks is done by coloring the nodes with a color from the set {0,1,2,...,N — 1}. Since
it is hard to solve the problem in general, access of regular patterns, called templates, in special data

structures — like bidimensional arrays, circular lists, and complete trees — are considered hereafter.
A template T' is a connected subgraph of D. The occurrences {I1,T%,...,Tm} of T in D are the

template instances. For example, if D is a complete binary tree, then a path of length k£ can be a

template, and all the paths of length &k in D are the template instances.
After coloring D, a conflict occurs if two nodes of a template instance are assigned to the same

memory bank, i.e., they get the same color. An access to a template instance T; results in ¢ conflicts if

¢+ 1 nodes of T; belong to the same memory bank.

Given a memory system with N banks and a template T, the goal is to find a memory mapping
U : D — N that colors the nodes of D in such a way that the number of conflicts for accessing any
instance of T is minimal. In fact, the cost for T; colored according to U, Costy(D,T;, N), is defined as

.....

the overall cost of the mapping U/. That is,
Costy(D,T,N) ¥ max Costy(D,T;, N).

A mapping U is conflict-free for T if Costy (D, T,N) = 0.

Among desirable properties for a conflict-free mapping, a mapping should be balanced, fast, and
optimal. A mapping U is termed balanced if it evenly distributes the nodes of the data structure among
the N memory banks. For a balanced mapping, the memory load is almost the same in all the banks.
A mapping U will be called fast if the color of each node can be computed quickly (possibly in constant
time) without knowledge of the coloring of the entire data structure. Among all possible conflict-free
mappings for a given template of a data structure, the more interesting ones are those that use the
minimum possible number of memory banks. These mappings are called optimal. It is worth to note
that not only the template size but also the overlapping of template instances in the data structure
determine a lower bound on the number of memory banks necessary to guarantee a conflict-free access

scheme. This fact will be more convincing by the argument below for accessing paths in D.
Let Gp = (V, E) be the graph representing the data structure D. The template Py is a path of

length & in D. The template instance Pg[z,y] is the path of length k between two vertices z and y in
V', that is, the sequence = vy, vs,...,vk+1 = ¥ of vertices such that (vp,vpe1) € Efor h=1,2,... k.
The conflicts can be eliminated on Pylz,y] if v1,v2,...,Vk+1 are assigned to all different memory
banks. The conflict-free access to Pi, can be reduced to a classical coloring problem on the associated
graph Gpp, obtained as follows. The vertex set of Gpp, is the same as the vertex set of Gp, while
the edge (r, s} belongs to the edge set of Gpp, iff the distance d.; between the vertices r and s in Gp
satisfies dys < k, where the distance is the length of the shortest path between r and s. Now, colors
must be assigned to the vertices of Gpp, so that every pair of vertices connected by an edge is assigned

2

a couple of different colors and the minimum number of colors is used. Hence, the role of mazimum
cligue in G'pp, is apparent for deriving lower bounds on the conflict-free access on paths. A cligue K
for Gpp, is a subset of the vertices of G Dp, such that for each pair of vertices in K there is an edge.
By well-known graph theoretical results, a clique of size n in the associated graph Gp p, implies that at
least n different colors are needed to color G Dp;- In other words, the size of the largest clique in G DPE.
is a lower bound for the number of memory banks required to access paths of length &£ in D without

conflicts.
On the other hand, the conflict-free access to Py on Gp is equivalent to color the nodes of Gp in

such a way that any two nodes which are at distance % or less apart have assigned different colors.
Unfortunately, this latter coloring problem is NP-complete [13] for general graphs, This justifies the
investigation either for good heuristics for general graphs or optimal algorithms for special classes of
graphs. In the next three sections, optimal mappings for bidimensional arrays, circular lists and complete
binary trees will be derived for conflict-free accessing F.

3 Accessing Paths in Bidimensional Arrays

Let a bidimensional array A4 be the data structure D to be mapped into the multibank memory system.
An array r % ¢ has r rows and ¢ columns, indexed respectively from 0 to r — 1 (from top to bottom)

and from 0 to ¢~ 1 (from left to right), with r and ¢ both greater than 1.
The graph G4 = (V, E) representing A is a mesh, whose vertices correspond to the elements of

A and whose arcs correspond to any pair of adjacent elements of A on the same row or on the same
column. For the sake of simplicity, A will be used instead of G 4 since there is no ambiguity. Thus, a
generic node z of A will be denoted by z = (,7), where 1 is its row index and 7 is its column index.

Lemma 1 At least M = (@%lﬁ] memory banks are required for conflict-free accessing Py, in A.

Proof Consider a generic node z = (4,7) of 4, and its opposite node at distance k on the same
column, ie., y = (¢ — k&, 7). All the nodes of A at distance k or less from both z and y are mutually at
distance k or less, as shown in Figure 1. Therefore, in the associated graph G 4p,, they form a clique,
and they must be assigned to different colors. In details, such a clique, denoted as K 4(z, k), is defined

as follows:

Kala,k)={(i—=k+t,—¢),...,(i—k+tj+1) :ogtstgj} U

(=T w03 [g 5+ FH] =)+ 10 [8])

Summing up over ¢, the size of the clique results to be

14) 5, o (b4 12
Ka{z, k)| = 2t+1 2|z —-t)+1}) = .
Ratehl= S+ 3 (2[5 -0) +1) = | 5]
Hence, at least M = |K4(z, k)| = I-Qﬂ;m-l colors are required. o

:
&

Figure 1: A subset Ka(z,k) of nodes of A that forms a clique in Gap,: (a) k=3, (b) k=4

Below, a conflict-free mapping is given to color all the nodes of an array A using as few colors as in
Lemma 1. Therefore, the mapping is optimal. From now on, the color assigned to node z is denoted

by (z).

Algorithm Array-Coloring (4,k);

OSetM=I-£’°_‘;_1)_2_}andA= E+1 ff k%s even
k if kis odd

e Assign to each node z = (i,5) € 4 the color v(z) = (A + j) mod M.

Intuitively, the above algorithm first covers A with a tessellation of basic sub-arrays of size M x M.
Each basic sub-array S is colored in a Latin Square fashion as follows:

¢ the colors in the first row of S appear from left-to-right in the sequence 0,1,2,...,M - 1;

e the color sequence for a generic row is obtained from the sequence at the previous row by a A
left-cyclic shift.

For k = 3, the coloring of A, decomposed into 6 basic sub-arrays of size M x M, is illustrated in
Figure 2.

Theorem 1 The Array-Coloring mapping is optimal, fast, and balanced.

Proof To prove optimality, it must be shown that the mapping is conflict-free and that the

minimum number of colors is used.

mw-—l-bl—-mmommﬂ.bl—-chmo
DU N o o A oo
pwmwoqu.&.l—-mmommd

oqu.bn—-muomm-)-hn—-mu
N‘vawmwcmm'd-bpo\wom
wOlﬂN\].hl—'O\mOlﬂNﬂrbl—‘O\
U R~ 0w Ot s ety o
meOmN\l-hl—-mmOmN\.;an
-_x-hl—-muOmm-:-hHmwOmN
ORI e wo Uk e gy
l—-O\momN-].b._.mwomM\.l-h
Mq&wmmommthmuom
wOmNNJSHO\wOWN\J-bHO\
-b'—'mwommu.hwmmommq

mwomm-k-bl—-mwomm-.l-bl—-
ﬂﬂmeOmmqvhr—’mmomN
Hmwowwu.npo\mcmmq.h
[R R T | F e L e S]
woqupumwommqapm
BNk rrowo|lmmw N o o
O WOW N o WO W py s
-Jnhl—lu\wOmI\Jq»meuOmN
Hmwolnm'd-hpmmoml\;\l:b
> G O Ut s 2O L Ot p

Figure 2: An array A of size 16 x 24 with a tessellation of 6 sub-arrays of size 8 x 8 colored by the
Array-Coloring algorithm to conflict-free access Ps.

Consider a generic node £ = (g, f) of A and the associated clique K4(z, k), defined in Lemma 1. In
order to prove that the mapping is conflict-free, one only needs to show that all the nodes of K4(z, k),
which are mutually at distance no more than &, are assigned by the Array-Coloring algorithm to different
colors. Formally, consider an arbitrary pair of nodes w = (4,5) and z = (R, £) belonging to Ka(z, k),
such that 4 —h > 0 (if i ~ A < 0, the roles of w and z couid be swapped). Then the mapping is
conflict-free if the Array-Coloring algorithm guarantees that the colors v(w} and ~(z) are different.
Moreover, let o(w, 2) = (y(w) —y(z)) mod M = (3A +7) — (hA + £) mod M be the difference between
the two colors assigned to w and 2. Then, the mapping is conflict-free if the following two conditions
simultaneously hold:

o(w,z) # 0 mod M,
(1)
i—h|+|j £ <k

In order to show that the conditions in (1) hold for any pair of nodes of K alz, k), the two cases k
even and & odd must be distinguished.

When £ is even, one has that M = l—(k';l)r, = &gk“ =5k+1)+£+1and A = k+1. Observe
that o(w,2) < (1~ h)A+|j — 8l < kA +k = k(k + 1) +k < 2M and o{w,z) > =|j — ¢| > —M. Then,
the congruence o(w,z) # 0 mod M is equivalent to o(w, z) # 0 and o(w, 2) # M.

Clearly, o(w,z) = 0 iff (i — h)(k + 1) = |£ ~ 5|, which is verified only if either z = wor £~ j| is a
multiple of £ + 1. But, since £ — j| < % implies o(w, z) # 0, no two distinct nodes of K 4lz, k) can have

the same color.
Thus, it remains to prove that o(w, 2) 3 M. Assume by contradiction that olw,z) = (i —h)k+

1) + |7 — £l = M. Therefore, three cases may occur:

W) i-nelo || -1],
() i—h=| 2],

(i) i~ b =[],

Inw%(moﬁm@=ﬁ4mmmﬂj—ﬁ=an)—ﬁ—hNk+D2ﬂ4—ﬂﬁﬁjmﬂ(h+n>k
which contradicts the fact that Ij — £ < &.

In case (i), o(w, z) can be equal to M if and only if |j — £ = M — E(k + 1) since || = &, that
is, o(w,z) = M ffand only if |j — ¢} = (12? + 1). Thus, in case (ii), for any pair of nodes z and w of
Ka(z, k) which do not satisfy the first condition in (1), it results that j — £ is equal to a positive integer
and precisely, .

j—g='2-+1.

But this violates the second condition in (1) because (i —h)+ (j—£) =&+ E+1=Fk+1.
Finally, in case {iii), o(w,2) = M if and only if |j — £| = M — (% + 1) (k 4 1). That is, for any pair
of nodes z and w of Ka(z,k) not satisfying the first condition in (1), it ylelds j — £ < 0, and, precisely,

gk
j=t=-3.

But again this violates the second condition in (1) because the distance between w and 2 is (i — k) +
J—f=f+1+i=k+1.
In conclusion, for k even, any two nodes whose colors differ exactly by M are k + 1 apart, and their

relative positions are depicted in Figure 3(a).

When k is odd, it foliows that M = [U‘H;)j = kz*g’““ = k& + B2l Moreover, A = k. Observe
that o(w,2) < kA +k = k(k+1) < 2M and o(w,z) > —M. Then, o(w,z) # 0 mod M is again
equivalent to o(w, z) # 0 and o(w,2z) # M.

Clearly, o{w, z) = 0iff (i — h)k = |£— j|, which is verified only if either w = z (i.e., i—h =£—j =0)
ori—h > 1and £— §is a multiple of k. Hence, two distinct nodes of K4(z,k) which have the same

color are at distance {i — h) + £ — j| > k.
It remains to prove that o{w, z) # M. As before, three cases may occur:

() i~helo, | 4|-1],
(i) i—h = [%j
(i) i~ b =[¥£].

Note that 4| = &1 and [4] = &2 + 1.

Repeating the same reasoning done for k even, one can show again that any two nodes whose colors
differ by M are k + 1 apart. Their relative positions are illustrated in Figure 3(b).

So, the Array-Coloring Algorithm is conflict-free. Moreover, since it uses the minimum number of

colors, the proposed mapping is optimal.

®
w2 w21 (k+1);2 (b Dyzel

K2+ 1 (k+1)/2
&2 (ks 1}/2-1

() (b)

Figure 3: Relative positions in A of two nodes which are assigned to the same color: (a) k even, (b) &
odd.

It is easy to see that the time required to color all the n = r¢ nodes of an array is O(n). Moreover,
to color only a single node z = (4, §) of the tree requires only O(1) time, since y(z) = (A + j) mod M,

and hence the mapping is fast.
In order to prove that the mapping is balanced, observe that each color appears once in each sub-row

of size M. Hence, the number m of nodes with the same color verifies rlgl <m<riE o

k. Specifically, it is possible to access without conflicts any horizontal path of length M and any vertical
path of length L = g—cdﬂ%ﬁﬁ because L is the minimum integer such that LA = 0 mod M. Finally,
since the distance between two consecutive nodes on the same diagonal of A is 2, any ng consecutive

elements on a diagonal can be accessed with no conflicts.

4 Accessing Paths in Circular Lists

Let a circuler list C' be the data structure D to be mapped into the multibank memory system. A
circular list of n nodes, indexed consecutively from 0 to n — 1, is a sequence of n nodes such that node
i is connected to both nodes (¢ — 1) mod n and (5 + 1) mod n.

The graph G¢ = (V, E) representing C is a ring, whose vertices correspond to the elements of C
and whose arcs correspond to any pair of adjacent elements of €. For the sake of simplicity, C will be
used instead of G¢ since there is no ambiguity.

n if n<k+1l,
L 2 Let M=
emma £ Le (k+1)+(”—ﬁdni’—:]ﬂl‘! if n>k+1.
+1

At least M memory banks are required for conflict-free accessing Py in C.

Proof For conflict-free accessing Py in C' two nodes with the same color must be at distance at
least k+1. When n < k- 1, all the nodes are mutually at distance less than & and must all be colored
with different colors. When n > & + 1, each color may appear at most ¢ = hﬁl) J times. Therefore,

Figure 4: Conflict-free access to Py in a circular list C of 13 nodes colored by the Circular-List-Coloring
algorithm with M = 7.

at least [%] colors are needed. Observed that n = [-(ki—l)J (k+1)+ (nmod (k + 1)), it follows that at
least M = [2] = (k+1)+ [M@—I memory banks are required. o

1 _UaﬂmJl £
Below, an optimal conflict-free mapping is provided to color all the nodes of a circular list C' using
as few colors as in Lemma 2. As before, the color assigned to node z is denoted by ().

Algorithm Circular-List-Coloring (C, k);

' if n<k+1
t M ==
° Se <k+1)+[n_nfoﬂg%l} Fonskal
k+1)

nmod (M ~1), f nmodM #0

-Set8=sMwhere3:{n .
e if nmod M =90

z mod M H z<8
(-0 mod(M-1) f z>6

¢ Assign to node z € C, the color v(z) = {

Note that a linear (that is, non circular) list L can be optimally colored to conflict-free access Fj with
M’ =k +1 colors, which matches the trivial lower bound given by the number of nodes in P;. In fact,
L can be optimally colored by a naive algorithm which assigns to node = the color y(z} = « mod M".
Such a naive algorithm does not work for circular lists. For example, consider the circular list C of
13 nodes, shown in Figure 4, to be colored to access P;. Applying the naive algorithm with M’ = 5,
only the first 10 nodes can be feasibly colored with 5 colors, but 3 additional colors are then required
for feasibly coloring the last 3 nodes, for a total of 8 colors. In contrast, the optimal Circular-List-

{u))

Figure 5: A circular list C of 17 nodes colored to conflict-free access P3 according to: {a) the Circular-
List-Coloring algorithm (where M = 5), (b) the naive algorithm with M’ = 5.

Coloring algorithm requires 7 colors only. Moreover, it is worth to point out that the naive algorithm

does not always work for circular lists even when applied with M’ = M = (k+1)+ Jrn—zf%‘ij"—ll‘! For
E=sy)

instance, for n = 17 and k = 3, Lemma 2 gives M = 5. Applying the naive algorithm with M’ = 5
to this instance, 15 nodes can be colored using 5 colors, but 2 additional colors are needed for feasibly
coloring the last 2 nodes for & total of 7 colors (as shown in Figure 5(b)). Instead, the optimal coloring
provided by the Circular-List-Coloring algorithm uses only 5 colors, as shown in Figure 5(a). Indeed,
the naive algorithm always produces a feasible (although not necessarily optimal) coloring if applied
using M' = (k +1) + n mod (k +1).

Theorem 2 The Circular-List-Coloring mapping is optimal, fast, and balanced.

Proof To prove optimality, two cases may be distinguished. If n = 0 mod M, Lemma 2 gives
M =k +1 and the Circular-List-Coloring algorithm reuses the same color at distance M. Hence, no
conflict arises. If n 2 0 mod M, Lemma 2 gives M > k 4 2. Two nodes get the same color only if they
are at distances M or M —1, which are both greater than or equal to k+1. Hence, as before, no conflict
arises. Since the algorithm uses as few colors as possible, the mapping is optimal. It is also fast since
each node is colored in constant time. Finally, each color is assigned to exactly { nodes when n is a
multiple of M, ard no more than l- mi%n,e)'! + “maﬁﬁﬁ,m'{ nodes are colored with the same color in

all the other cases. O

It is interesting to note at this point that, given a circular list of n nodes, the minimum number
M = M(n, k) of colors required to conflict-free access F, satisfies the following properties (see Figure 6):

e Upton=2{k+1) -1, M(n,k) = n results, i.e. all the nodes must have different colors. Indeed,
all of them are mutually at distance no more than % and, therefore, they form a clique on the

graph Gep, .

¢ When n > 2(k +1) — 1, M(n,k) depends on both n and %, and, for a fixed k, is not a monotone

- oo =24 s o
8 F o ¢0 000 L2 0GO0Pe ©O00ODC 000GGS O

o ® o L] ° o ¢ o

bt L1 TRV TR TN SN T TV IOV TRV TN N S NN S S

olu
2 46 8 ?U121413152022242628303234353340424448485052545558

Figure 6: The number of colors M (n,6) required to conflict-free access P; when n ranges between 1
and 58.

function of n. In contrast, for arrays and trees {as will be proved in the next section), M depends

only on & and is monotone.

5 Accessing Paths in Complete Trees

Let a rooted complete binary tree B be the data structure to be mapped into the multibank memory
system. The level of node z € B is defined as the number of edges on the path from z to the root,
which is at level 0. The maximum level of the nodes of B is the height of B. Let Levp(i) be the set of

all nodes of B at level 1 > 0.
A complete binary tree of height H is a rooted tree B in which all the leaves are at the same level

and each internal node has exactly 2 children. Thus, Levp(i) contains 2¢ nodes. The A-th ancestor of
the node (Z,4) is the node (i — h, Lﬁi—j), while its children are the nodes (i +1,24) and (¢ + 1,25 -+ 1),

in the left-to-right order.
From now on, the generic node z, which is the j-th node of Levp(i), with j > 0 counting from left

to right, will be denoted by = = (4, §). Therefore, the generic path instance Py[z,y] will be denoted by

Lemma 3 At least M = 213141 4 aol3l — g memory banks are required to conflict-free access Py in B.

Proof Consider a generic node z = (4,5). All the 9l51+1 _ 1 nodes in the subtree S of height | %]

rooted at the [|-th ancestor of z are mutually at distance not greater than k.
In addition, consider the |' | nodes, u1, u2, - c BrE ancestors of z, on the path I of length |'k'| from

the L |-th ancestor of £ up to the k-th ancestor of z. All these nodes are at distance not greater than
k from node z, and together with the nodes of § they are at mutual distance not greater than k.

10

{a)

()

Figure 7: A subset Kg(k) of nodes of B that forms a clique in Gpp,: (a) k=3, (b) k = 4.

Moreover, for 1 €57 < [’“] — 1, consider the 2%+ — 1 nodes in the complete subtree of height
a; =k — L2 1 =7 —1, rooted at the 5’8 child which does not belong to I. Such nodes are at distance
not greater than & from z. Furthermore, these nodes, along with the nodes of S and T , are all together

at mutual distance not greater than k.
Hence, in the associated graph Gp P, there is at least a clique of size

[41-1 [31-2

(2a3+1)_2[Bl+1 _ 1_{_(-{+ z (2h+1)

olbivt 14 (’“]
2

=1

From that, the claim easily follows. Figure 7 shows a subset K (k) of nodes of B which are at pairwise

distance not greater than k, for k = 3 and 4, and hence forms a clique in the associated graph Gpp, .
G

An optimal conflict-free mapping to color a complete binary tree B acts as follows.
A basic subtree Kp(k) defined as in the proof of Lemma 3 is identified and colored, Such a tree is

then overlaid to B in such a way that the uppermost |_ J levels of B coincide with the lowermost [J
levels of Kp(k). Then, the complete coloring of B is produced level by level by assigning to each node

the same color as an already colored node.
Formally, for a given k, define the binary tree Kp(k) as follows:

e Kp(k) has a leftmost path of k£ + 1 nodes.
e the root of Kg(k) has only the left child;

* a complete subtree of height { — 1 is rooted at the right child of the node at level ¢ on the leftmost
path of Kg(k).

11

Figure 8: Coloring of B for conflict-free accessing: (a) Ps, (b) Ps. (Both Kp(3) and Kz(4) are depicted
by dash splines.)

The 2L81+1 + 2781 — 2 nodes of K5(k) must be colored with 215/7% + 27§1 — 2 different colors. Thus,

the uppermost i_%j levels of B are already colored.

For the sake of simplicity, to color the remaining part of B, the levels are counted starting from
the root of Kp(k). That is, the level of the root of B will be renumbered as level I_%J + 1. Now, fixed
z = {0, k), the algorithm to color B acts as follows.

Algorithm Binary-Tree-Coloring (B, k};
o Set M =251 4231 9
e Color Kg(k) with M colors;

e Visit the tree B in breadth first search, and for each node z = (i,j) of B, with
j=k+1,do

— Set 7w = j mod 2I-§J, a = [log{r+1)},d = k-a+land 7= (|_§3'7——1J - 1) mod 2;
— Assign to x the same color as that of the node y = (r, s), where

r=i—§+a

L%J if a=0

and

&]22 47207 4 (wmod 297Y) i a#O

Examples of colorings to conflict-free access P; and Py are illustrated in Figure 8.

12

""""

@o foéfoo 35)

ne3

Figure 9: For k = 6, node z = (4, §) inherits the same color as node y=(r3).

Theorem 3 The Binary-Tree-Coloring mapping is optimal, fast and balanced.

Proof. To prove that the mapping is optimal, it must be shown that it is conflict-free and it uses
as few colors as those given by Lemma 3. First, observe that the ol%] leaves of a subtree of height

[%J are at mutual distance not greater than &, and therefore they must be colored with all different

colors. Thus, let each level of B be partitioned (starting from the leftmost node) into consecutive
blocks of size 205 The block b(i,w), with w > 0, at level i of B consists of the 2L3] consecutive
nodes (z',w?l-%J), (4, w2ls] + Dyeoo, G (w+ 1)2|-%J — 1}, which must all be assigned to a different color.

Consider the node z = (%,) to be colored. The node z = (¢,7) belongs to the block b, = b (z’, l—fgﬂ),
2
and it appears in the (7 + 1)-th position inside the block. Consider the leftmost node z of by, where

z= (z‘, t,TT%_J 2‘-%.‘) Then, a generalization Kp(z,k) of Kp(k) can be defined depending on z.
2

Kp(z,k) includes the following nodes of B;

e the nodes on the path I of length £ from the father of z up to the (k + 1)-th ancestor of z;

e for l_%"’J +2 < g £ k, the nodes of the complete binary tree Sy of height & — ¢ rooted at the child,
which does not belong to T, of the g-th ancestor of z;

* the nodes of the complete binary tree S of height [%J rooted at the (I_%J + 1)—th ancestor of z.
It is crucial to note that all the following nodes are at distance k + 1 from all the nodes in by
(i) the root of Kp(z, k),

(ii) the leaves of S, with l_%J +2< g <k,

13

(iii) the leaves of S, which are not parents of any node in b;.

The nodes of by = b (i, I—T_JQJ)
2
nodes of Kpg(z,k) specified in (i), (ii), and (iii) above, and considered by increasing level and from left
to right, as illustrated in Figures 10 and 11 for k& even and odd, respectively. In particular,

¢ z = (z', {-[%TJ) is assigned to the same color as the root of Kg{z,%), which is the (k + 1)-th
2

ancestor of z;

are colored from left to right copying the same colors used in the

o for k> g > || +2, the 2% nodes of b, (i, | FJ2ls] + 20— 14 1),... (5, L4284 oh-a
1 4+ 2F=9), are assigned to the same colors as the leaves of the tree S;.

Observe that the number of nodes colored with the two steps above is 1 + Eﬁ:__L e ok-q — o[§1-1,
—Lz

When % is odd, this is enough to color the entire block since ol$1-1 = olg)+1-1 —2lf] I fact, the
set of nodes of Kg(z, k) specified in (iii) above is empty for k& odd. In contrast, when % is even, only
the first half of the block has been colored since 2[31-1 = al2]-1, Thus, to color the second half of
the block, one further step is required, which uses the colors of the nodes of Kp(z,k&) specified in (iii)

above:

¢ The rightmost 9L8)-1 nodes of b, are assigned to the same colors as the rightmost (resp., leftmost)
P
2L51-1 leaves of the complete binary {ree rooted at (H;-J + 1)-th ancestor of z, depending on the

fact that the [%J-th ancestor of z is a left (vesp., right) child of its father.

In order to prove that the mapping is conflict-free, an inductive reasoning on the level ¢ of the tree
is followed. The basis for the induction is i = k&, when the tree coincides with K (k) and it is colored,
by definition, with all different colors. For 1 > k, consider a generic node z = (¢, 7), its block & and
its leftmost node 2. By inductive hypothesis, all the nodes in the tree up to level ¢ — 1 are colored in a
conflict-free manner, but with color repetitions. In particular, the subtree Kg(z, k&) is conflict-free and
since its nodes are mutually at distance at most & they must have been assigned to all different colors.
The algorithm colors b, copying the colors of some nodes in Kg(z, k), specified in (i), (ii), and (iii),
which are exactly at distance k + 1 from the nodes of b,. Therefore, there are no color repetitions in b,
and no conflict can arise. Note that nodes in different blocks at level ¢ may inherit the same color, but
since any two nodes in different blocks are at distance at least £+ 1 no conflict can arise. Therefore, all
the nodes in the tree up to level ¢ are colored in a conflict-free manner.

Finally, since the tree is colored with the colors of K(k), whose number equals the lower bound of
Lemma 3, the tree-coloring mapping is optimal.

It is easy to see that the time required to color all the n nodes of a tree is O(n). However, to color
only a single node z of the tree requires only O(logn) time since, in the worst case, all the nodes along

a path from z up to the root must have been colored.
One can readily see that, if the height H of the tree B is a multiple of &, then the nodes of B can be

partitioned into m = {2—{%'—1] subsets, each of which induces a copy of Kg(k). Therefore, each color

is used m times, and the mapping is balanced. .

14

&

¥

. (P[5 3[E 535
NEd .

Figure 10: The generalization Kz(2,6) of K5(6) for the node z. The root of K 5(z,6), the leaves of the
subtrees Sg, S5, and the rightmost leaves of § are used to color the nodes in the block b,.

Figure 11: The generalization Kpg(z,5) of Kp(5) for the node z. The root of K 5(%,5) and the leaves of
the subtrees Sy and S5 are used to color the nodes in the block b,

15

The results shown for binary trees can be extended to a g-ary tree @), with ¢ > 2.

Corollary 1 At least

x
s+ 1 g (312 her _ [E]+1 _ (57 _
g2 g 1 g2 1+g'71 —¢
N .
g—1 2 () i§) g—1 g—1
memory modules are reguired to conflict-free access Py in a g-ary tree Q. a

Similarly to the binary case, for a given &, define a g-ary tree Kg?(k) as follows:

o K (k) has a leftmost path of & + 1 nodes;
e the root of K} (k) has only the leftmost child;

e a complete subtree of height i — 1 is rooted at the g — 1 rightmost children of the node at level 4
on the leftmost path of K (k).

Such a K, é(k) is then overlaid to @ in such a way that the uppermost I_%J levels of @ coincide with

the lowermost [%J levels of Kg?(k). Then, the complete coloring of @ is produced level by level by

assigning to each node the same color as an already colored node.
For the sake of simplicity, to color the remaining part of @), the levels are again counted starting

from the root of Kgg(k) That is, the level of the root of @ will be renumbered as level EJ + 1. Now,
the algorithm to color @ is the following:

Algorithm g-ary-Tree-Coloring (@, k);

LEi+1_1 M8,
g-T ’

o Color K} (k) with M colors;

¢ Set M=1+12

o Visit the tree () in breadth first search, and for each node = = (¢,4) of @, with 7 > £ + 1,
do:

— Set 1r=jm0dqlﬂ, a=[log,(r+1)],6=k-a+land = (|_35]“_1J +1) mod g;
— Assign to = the same color as that of the node y = (r, s), where
r=i{—40+o

HJ if a=0

g

and

ij;J g% + g%+ (7 mod q""‘l) f a#0

By a reasoning similar to that employed for complete binary trees, the optimality of the g-ary-Tree-

Coloring Algorithm easily follows.

16

6 Conclusions

In this paper, the problem of conflict-free accessing arbitrary paths P, in particular data structures,
such as bidimensional arrays, circular lists and complete trees, has been considered for the first time
and reduced to variants of graph-coloring problems. Optimal, fast and balanced mappings have been
proposed. Indeed, the memory bank to which a node is assigned is computed in constant time for arrays
and circular lists, while it is computed in logarithmic time for complete trees. However, it remains as

an open question whether a tree node can be assigned to a memory bank in constant time.
On the other hand, the conflict-free access to P, on an arbitrary data structure D is NP-complete

[13], and this justifies the investigation of good heuristics. This problem is equivalent to the classical
node coloring problem in the associated graph Gp p,- Therefore, it can be solved by the most effective
coloring heuristic known so far, that is, the saturation-degree heuristic [6], which works as follows. Let
N(z) be the neighborhood of node z in the associated graph Gp p,. At each iteration, the saturation-
degree heuristic selects the node z to be colored as one with the largest number of different colors
already assigned in N(z). Ties between nodes are broken by preferring the node = with the largest
number of colored nodes in N(z). Once selected, node z is assigned the lowest color not yet assigned
in N(z).

As experimentally proved in [5}, the saturation-degree heuristic is especially effective when the
minimum number of colors is given by the size of the largest clique K of Gpp,. Therefore, it should
work efficiently also for the conflict-free access problem, and, in particular, for d-dimensional arrays
as well as for generic, i.e. not necessarily complete, trees. Indeed, it is expected in such cases that
the minimum number of required memory banks be equal to the lower bound given by the size of the
largest clique K of Gpp,, as happened for bidimensional arrays and complete trees. Unfortunately,
the resulting coloring is not guaranteed to be optimal, fast or balanced. Moreover, it is still an open
question to determine whether the problem of conflict-free accessing paths on d-dimensional arrays and

generic trees is NP-complete.
Finelly, in a more practical perspective, the number of memory banks available could be fixed to a

constant i, depending on the memory configuration. Then, if the number of memory modules M (k)
required for a given P is larger than u, no conflict-free access is possible. However, assume that Py is
the longest path that can be accessed without conflicts using u memory banks, i.e. M (k") < p. Then,
accessing Py, no more than]'k—k,] conflicts may arise. Hence, the proposed mappings are scalable.

Acknowledgement

The authors are grateful to Richard Tan for his helpful comments, and to Thomas McCormick for having provided the
reference [13].

17

References
1]

[2]

(3]

[11]
(12)

[13]

V. Auletta, S. K. Das, M. C. Pinotti, and V. Scarano, “Toward a Universal Mapping Algorithm for Accessing Trees
in Parallel Memory Systems”, Proceedings of IEEE Int'l Parallel Processing Symposium, Orlando, pp. 447-454, Apr.
1998.

V. Auletta, A. De Vivo, V. Scarano, “Multiple Template Access of Trees in Parallel Memory Systems”. Journal of
Paroliel and Distributed Computing, Vol. 49, 1998, pp. 22-39.

G.E. Blelloch, P.B. Gibbons, Y. Mattias and M. Zagha, *Accounting for Memory Bank Contention and Delay in
High-Bandwidth Multiprocessors”, IEEF Trans. on Parallel and Distrib. Systems, Vol. 8, 1997, pp. 943-958.

M. Balakrishnan, R. Jain, and C.5. Raghavendra, “On Array Storage for Conflict-Free Memory Access for Parallel
Processors”, in Proc. Int.’] Conf. on Parallel Processing, Vol. 1, 1988, pp. 103-107.

R. Battiti, A.A. Bertossi, M.A. Bonucceili, “Assigning Codes in Wireless Networks: Bounds and Scaling Properties”,
Wireless Networks, Vol. 5, 1999, pp. 195-200.

D. Brélaz, “New Methods to Color the Vertices of & Graph”, Communications of ACM, Vol. 22, 1979, pp. 251-256.
P. Budnik, D.J. Kuck, “The Organization and Use of Parallel Memories”. IEEE Trans Comput., Vol. 20, 1971, pp.
1566-1569.

S. K. Das and F. Sarkar, “Conflict-Free Data Access of Arrays and Trees in Parallel Memory Systems”, Proc. of the
Sizth IEEE Symposium on Parallel and Disiributed Processing, Dallas, TX, Oct. 1994, pp. 377-384.

S. K. Das, F. Sarkar and M. C. Pirotti, “Parallel Priority Queues in Distributed Memory Hypercubes®, IEEE
Transactions on Parellel and Distributed Systems, Vol. 7, 1996, pp. 555-564.

S.K. Das and M.C. Pinotti, “Load Balanced Mapping of Data Structures in Parallel Memory Modules for Fast and
Conflict-Free Templates Access” Proc. 5th Int, Workshop on Algorithms and Date Structures (WADS’97) Halifax
NS, Aug. 1997, LNCS 1272, {Eds. Dehne, Rau-Chaplin, Sack, Tamassia), pp. 272-281.

J. Denes, and A. D. Keedwell, Lotin Squares and Their Applications, Academic Press, New York, 1974.

K. Kim, V.K. Prasanna, “Latin Squares for Parallel Array Access”, IEEE Tronsactions on Parallel and Distributed
Systems, Vol. 4, 1993, pp. 361-370.

5.T. McCormick, “Optimal Approximation of Sparse Hessians and its Equivalence to a Graph Coloring Problem”,
Mathematical Programming, Vol. 26, 1983, pp. 153-171.

M. C. Pinotti, S. K. Das, and F. Sarkar, “Conflict-Free Template Access in k-ary and Binomial Trees”, Proceedings
of ACM-Int’l Conference on Supercomputing, Wein, Austria, July 7-11, 1997,

H.D. Shapiro, “Theoretical Limitations on the Efficient Use of Parallel Memories”, IEEE Trans. on Computers, Vol.
27, 1978, pp. 421-428,

18

