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Reaction fronts in persistent random walks with demographic stochasticity
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Standard reaction-diffusion systems are characterized by infinite velocities and no persistence in the movement
of individuals, two conditions that are violated when considering living organisms. Here we consider a discrete
particle model in which individuals move following a persistent random walk with finite speed and grow with
logistic dynamics. We show that, when the number of individuals is very large, the individual-based model is well
described by the continuous reactive Cattaneo equation (RCE), but for smaller values of the carrying capacity
important finite-population effects arise. The effects of fluctuations on the propagation speed are investigated
both considering the RCE with a cutoff in the reaction term and by means of numerical simulations of the
individual-based model. Finally, a more general Lévy walk process for the transport of individuals is examined
and an expression for the front speed of the resulting traveling wave is proposed.
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I. INTRODUCTION

The spreading of reactive quantities, such as, e.g., biolog-
ical populations or chemicals, is often conveniently modeled
by means of reaction-diffusion (RD) equations. This approach
finds application in fields as diverse as combustion [1], ge-
netics [2–4], epidemics’ spreading [5], and ecology [6]. By
representing transport through standard diffusion, RD descrip-
tions allow for the instantaneous spreading of the transported
species over arbitrarily large distances from their original
location (albeit with a very small probability). From the
point of view of the individual reactive entities these features
translate into motions with infinite velocity and no inertia.
These assumptions are not realistic and seem particularly
problematic in biology [7–10]. In fact, all organisms displace
themselves at a finite velocity, with persistent movements (i.e.,
with some inertia to change velocity), at least over short time
intervals [6,7,11–13].

Using a continuous field description, suitable general-
izations of RD models have been proposed to remedy the
above mentioned unphysical features in different contexts
(see [10,14–17], and [18] for a review). In the framework
of population dynamics such theoretical approaches have
proven useful to interpret previously controversial data about
the spread of virus infections [19] and human population
invasions [20].

Here, we consider a system of individuals that move in
a correlated way with a finite speed, and that reproduce (or
die) with prescribed reaction kinetics. Our main goal is to
gain insights into the way the population spreads in space
under the combined action of the generalized diffusive process
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and reaction, as well as to assess the role of demographic
stochasticity, namely the fluctuations in the number of indi-
viduals associated with the discrete and stochastic nature of
the population, whose importance is well known [21]. We will
particularly focus on the speed of invasion into an unoccupied
environment, starting from a localized source, in the different
dynamical regimes of the system.

As for the generalized diffusive dynamics we consider
a simple model in which the particles travel for a certain
time maintaining their (finite) velocity and then change it
randomly. This kind of model is rather flexible as, properly
choosing the distribution of travel durations, it can reproduce
several transport processes, including Lévy walks [22]. For
the reaction, we consider a logistic growth model, which is
the simplest possible mathematical description accounting for
reproduction and death due to competition for resources, and
it also applies to simple autocatalytic chemical reactions [5].

This choice is further motivated by the fact that, in the con-
text of RD processes of the pulled kind [23], this corresponds
to the prototypical Fisher-Kolmogorov-Petrovskii-Piskunov
(FKPP) model [2,24], for which the effects of discreteness
on propagating fronts (i.e., traveling wave solutions) have
been shown to be well captured by the introduction of a
small-density cutoff in the reaction term [25]; further studies
indeed proved that the cutoff idea is not an approximation for
RD models including a stochastic term [26,27]. The stochas-
tic term in RD systems typically has a phenomenological
origin; however, for specific models, it is possible to derive
it from an individual based dynamics [28]. In the presence
of stochastic dynamics due to particle discreteness or to an
explicit random term in the continuous equation, fluctuations
play an important role in the front evolution leading, e.g.,
to the diffusive wandering of the front [29,30]. In this work
we will limit our analysis to the effects of discreteness on
the average front speed, leaving the problem of the front
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position’s fluctuations (and the related diffusion coefficient)
to possible future investigations.

The article is organized as follows. In Sec. II we introduce
the stochastic model for the transport and reaction dynamics
of particles. In Sec. III we investigate the continuous limit
of the particle model and show that it corresponds to the
reaction Cattaneo equation (RCE) [11,31]. We first discuss
front propagation in the RCE for both small and large reaction
rates corresponding to a RD-like and to a ballistic regime
of propagation, and then examine the effect of truncating
the reaction term at small densities in both regimes so as to
mimic, within the continuum framework, the effect of demo-
graphic stochasticity [25]. In Sec. IV we numerically study
the stochastic particle model introduced in Sec. II to quantify
the demographic stochasticity effects and compare it with the
continuum description. We will see that the phenomenology
of the individual-based system in the ballistic regime is richer
than in the continuous description. Finally, in Sec. V we
present a preliminary study of the particle model in which the
transport process is generalized to a Lévy walk, with particles’
velocities persisting for random durations distributed accord-
ing to a fat-tailed probability density function. Discussions
and conclusions are presented in Sec. VI. In Appendix A we
generalize the derivation of Ref. [25] to the case of the RCE
with a cutoff. In Appendix B we present an exact solution of
the stochastic logistic dynamics in the absence of transport
processes.

II. MODEL

We consider a stochastic model of a population of in-
dividuals that perform a persistent random walk and that
reproduce or die with density dependent rates. For simplicity,
we consider a one-dimensional system. In the following we
separately describe how individuals move in space and their
reaction dynamics.

Particle transport. Each individual moves independently
from the others by maintaining its velocity v, extracted with
probability p(v)dv, for a walk lasting a time T , which can
also be a random variable, independent of v, chosen with
probability P (T )dT . Assuming that 〈v2〉 and 〈T 2〉 are finite
and that 〈v〉 = 0, one has that at short times the motion
is ballistic while asymptotically it becomes diffusive. The
diffusion coefficient may be obtained with a simple argument
as follows [32]. Let us denote with ti = ∑i

k=1 Tk the sequence
of times at which a new velocity, vi , is chosen and let wt be
the number of walks up to time t . Then the position, x(t ),
of the particle at time t can be written as x(t ) = ∑wt

i=1 viTi ,
where x(0) = 0 without loss of generality. Since the random
variables are all independent, for the dispersion of the position
we can write

〈x(t )2〉 =
〈

wt∑
i=1

v2
i T

2
i

〉
= 〈v2〉〈T 2〉wt = 〈v2〉 〈T

2〉
〈T 〉 t, (1)

where we used that
∑wt

i=1 Ti = t = wt 〈T 〉, which holds for
wt � 1. The above equation displays a diffusive behavior
〈x2(t )〉 = 2Dt with diffusion coefficient

D = 〈v2〉
2

〈T 2〉
〈T 〉 . (2)

In the present model the velocity distribution is assumed to
be p(v) = 1

2δ(v + u) + 1
2δ(u − v), while for the walk dura-

tion we take P (T ) = δ(T − 1), i.e., the walk time is fixed to
T = 1. With these choices Eq. (2) implies that the diffusion
coefficient is equal to D = u2/2. We stress that the results
we are going to present are robust and independent of the
specific choices of P (T ) and p(v) (as confirmed by tests done
with exponentially distributed times and Gaussian distributed
velocities, not shown) provided the motion is asymptotically
diffusive, i.e., when T and v have finite variance and there
is no correlation between them. In Sec. V we will consider a
more general distribution for the time duration to account for
the possibility of Lévy walks.

Reaction dynamics. When dealing with a particle descrip-
tion, in principle, one has to consider the reaction among par-
ticles which are within a certain interaction distance, R. This
kind of approach requires one to follow the particles and, at
each time step, to perform the reaction for all particles falling
inside the interaction distance. This is quite expensive from
a computational point of view. To ease the computation we
used a modification of the approach proposed in [33,34]. The
domain of size L is divided in L/R bins of size R. The number
of particles ni (t ), whose positions at time t fall in the ith bin
(i = 1, . . . , L/R), is evolved according to the rate equations:

ni (t + dt ) → ni (t ) + 1 w.p. rni (t ) dt, (3)

ni (t + dt ) → ni (t ) − 1 w.p. rni (t )2/(NR) dt, (4)

ni (t + dt ) → ni (t ) otherwise, (5)

where N is the density of carrying capacity, i.e., in each bin
the expected number of individuals is Np = NR. Neglecting
particle migration in and out of the bin, the above rates ensure
that dni/dt = rni (1 − ni/Np ) plus a zero average stochastic
term, i.e., they reproduce the logistic growth dynamics. From
an algorithmic point of view, birth (3) and death (4) events are
implemented by choosing a random individual among the ni

present in the ith bin and cloning or removing it, respectively.
In the case of birth, the cloned individual is initialized at the
same position of the parent with velocity v and walk time
T randomly extracted according to the chosen probability
distributions.

In our simulations we initialize the population by seeding
ten bins around the center of the domain (L/2) with Np/2
particles uniformly distributed within each bin. The numerical
integration is carried on until one particle reaches a boundary
(at x = 0 or x = L) so as to avoid boundary effects. The time
step dt has to be chosen in such a way that the probabilities
on the right-hand side (RHS) of Eqs. (3)–(5) are much smaller
than 1. As for the system size, we used L = (105 − 106) R in
order to ensure reliable estimates of the propagation speed.
Finally, we fixed R = 0.1 and checked that all the results are
not influenced by this choice.

III. CONTINUUM LIMIT: THE REACTIVE CATTANEO
EQUATION (RCE)

When the population is very large, i.e., in the limit of large
carrying capacity N → ∞, the stochastic model presented
in the previous section is expected to follow the reactive
Cattaneo equation (RCE) [10,18]. The RCE can be obtained
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starting from different microscopic models as reviewed in
[18], and following this paper we specialize the derivation to
our model. Denoting with n(x, t ) the density of particles [35]
at time t and at position x, we can write

n(x, t + T ) = 1
2n(x − uT , t ) + 1

2n(x + uT , t )

+ [n(x, t + T ) − n(x, t )]r , (6)

where the first two terms account for the transport process and
the last term stands for the variation of the number of particles
due to the reaction. At long times t � T and large distances
x � uT , upon expanding (6) up to second order one obtains
the following equation:

T

2
∂2
t n + ∂tn = u2 T

2
∂2
xn + T

2
∂tF (n) + F (n), (7)

where F (n) stands for [∂tn]r . Equation (7) can then be rewrit-
ten in the standard form of the RCE [18]:

τ∂2
t n + [1 − τF ′(n)]∂tn = D∂2

xn + F (n), (8)

where τ = T/2 and D = τu2; F ′ denotes the first derivative
with respect to the argument. Fixing T = 1 as in our model
τ = 1/2 and D = u2/2, consistent with (2), and given the
reaction kinetics (3)–(5), the reaction term F (n) has the usual
logistic form F (n) = rn(1 − n).

The RCE has been considered in several previous studies
(see, e.g., Refs. [10,16,18]). It is not difficult to derive the
expression for the asymptotic front speed (see, for example,
Ref. [18]). Using arguments similar to those of Brunet and
Derrida [25] it is also possible (as shown in Appendix A)
to analytically investigate how the front speed changes in
the presence of a reaction cutoff mimicking the effect of
population discreteness. Both these aspects will be considered
in the following subsections, in particular, the latter will be
the guideline for interpreting the results of simulations of the
stochastic model introduced in Sec. II.

To ease the forthcoming analysis it is useful to rewrite (8)
in a nondimensional form by introducing x̃ = x

√
r/D and

t̃ = rt , where r ≡ F ′(0). In these variables (8) reads (tildes
suppressed)

a∂2
t n + [1 − af ′(n)]∂tn = ∂2

xn + f (n), (9)

where f (n) = F (n)/r = n(1 − n) and a = rτ . Notice that
for a = 0 the above equation recovers the standard FKPP
model ∂tn = ∂2

xn + f (n) [24].

A. Front speed from linear analysis

The basic phenomenology of Eq. (9) can be understood
assuming a traveling wave solution n(x, t ) = h(z), with z =
x − vf t , and linearizing around h ≈ 0 (see also [18]), which
is the standard procedure to investigate pulled fronts [23]. The
linearization of Eq. (9) yields(

1 − av2
f

)
h

′′ + vf (1 − a)h
′ + h = 0. (10)

Assuming an exponential leading edge h(z) ∼ exp(−λz) the
characteristic equation is obtained and its solution provides

the dispersion relation

vf (λ) = −(1 − a) +
√

(1 + a)2 + 4aλ2

2aλ
. (11)

The plus sign in front of the square root is due to our
choice z = x − vf t , with vf > 0, corresponding to left-to-
right propagation. Notice that Eq. (11) has an asymptote
vf (λ) = 1/

√
a for λ → ∞ corresponding to the ballistic

speed vf = u in physical units. This is physically sound, as
the front speed cannot exceed the particle’s velocity u. For
a < 1, vf (λ) has a minimum

v0 = v(λ0) = 2

1 + a
for λ0 = 1 + a

1 − a
(12)

that, for sufficiently localized initial conditions (i.e., decaying
faster than exponentially, as usual in the FKPP problem [23]),
is the selected speed of the traveling front. The minimum
disappears in favor of the asymptote 1/

√
a when a � 1.

Summarizing, in physical units the front speed is given by

v0 =
{

2u
√

rτ

1+rτ
if rτ < 1,

u if rτ � 1.
(13)

Notice that for a = rτ → 0 one gets back the FKPP re-
sult vFKPP

f = 2
√

Dr = 2u
√

rτ , while for rτ > 1v0 < vFKPP
f

always. When rτ � 1 the minimal speed from the dispersion
relation is always realized at vf = u with λ → ∞ so that the
front is expected to evolve ballistically with the intrinsic speed
of the particles and with a very steep (more than exponential)
front. To the best of our knowledge Eq. (13) was first derived
in [10] using a different method; the procedure followed here
is rather standard for the FKPP equation [23,36] and has been
already used for the RCE [18].

B. Effects of a cutoff on the front speed

Following the approach of Brunet and Derrida [25], let
us now modify (9) by assuming that the reaction takes
place only if n > ε, with ε a given threshold mimicking
the effect of discreteness of the population. This amounts to
replacing the reaction term with fε (n) = f (n)cε (n), where
cε (n) → 0 when n � ε. Following [25] we take cε (n) =
�(n − ε), where � is the Heaviside step function.

It is worth remarking that, strictly speaking, even if the
original reaction dynamics is pulled, the cutoff, removing the
unstable fixed point at θ = 0, induces a transition to a weakly
pushed dynamics; see the review [30] for a more detailed
discussion. Similar considerations apply to discrete particle
models.

To study the effect of the cutoff in the RCE we distinguish
two cases depending on whether a = rτ is smaller or larger
than 1.

When a = rτ < 1, the RCE recovers the basic phe-
nomenology of the FKPP dynamics and, generalizing the
derivation of Ref. [25] (see Appendix A), one finds that the
front speed, vf , is given by

vf = v0 − 1

2
v′′(λ0)

π2λ2
0

(log ε)2
, (14)
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FIG. 1. Front speed vf vs the cutoff value ε for the RCE with
τ = 1/2, u = 1 and (a) r = 0.01 and (b) r = 0.1. The solid black
curves show the theoretical prediction (14). In particular, the constant
A = v′′(λ0)(π 2λ2

0/2) in front of (log ε)−2 takes the values A = 0.68
and 1.72 for r = 0.01 and r = 0.1, respectively. The insets show the
same data plotting v0 − vf against (log ε)−2 to highlight the logarith-
mic correction; the solid lines are again the theoretical predictions.

where v′′ denotes the second derivative of the dispersion
relation (11), log is the natural logarithm, and λ0 and v0 are
given in Eq. (12).

The validity of (14) is confirmed in Fig. 1 where we show
the results from numerical simulations of (8) for a = rτ =
0.005 and 0.05 as a function of the cutoff ε. The asymptotic
front speed, vf , in Fig. 1 is obtained by extrapolating the
long-time behavior of the instantaneous front speed defined
as vf (t ) = 1

2∂t

∫ L

0 n(x, t )dx, which provides an estimate of
the bulk reaction speed [37]. The factor 1/2 is due to the front
propagating in both directions.

Conversely, when a = rτ > 1, as discussed below
Eq. (11), the selected front speed goes to the ballistic value
corresponding to an infinitely steep (i.e., λ → ∞) front; con-
sequently the leading edge is no more exponential and the
approach of Ref. [25] cannot be used anymore. An infinitely
sharp front implies that the leading edge plays no role in
determining the front speed so that the front dynamics is not,
strictly speaking, of the pulled type. Moreover, a small cutoff ε

in the reaction dynamics should not influence the front speed,
i.e., the velocity becomes independent of the cutoff and equal
to the maximal allowed velocity vf = u.
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FIG. 2. Instantaneous front speed vf (t ), as defined in main text,
vs time for the RCE with τ = u = 1, r = 2 and with a Gaussian
initial condition. From top to bottom: without the cutoff (black curve)
and for three different values of the cutoff ε = 10−4, 10−3, 10−2 (red
curves). The dashed horizontal line stands for the ballistic speed
u = 1.

We tested the above considerations by resorting to numer-
ical simulations of the RCE with and without cutoff on the
reaction dynamics. In order to have a stable and robust numer-
ical scheme we transformed the original RCE in a system of
two first order partial differential equations whose dynamics
follow the characteristic functions of the linear wave equation
associated to the RCE [38]. Then we used Roe’s first-order
upwind scheme [39] for the numerical integration of the PDE
system. As for the initial condition, we have chosen it to
be localized around the center of the system, using different
shapes. The simulations stop whenever n(0, t ) or n(L, t ) is
different from zero to avoid boundary effects.

Figure 2 displays the numerically observed behavior of the
front speed as a function of time for the RCE with different
values of the cutoff ε, when a = rτ = 2, and for an initially
Gaussian front. As expected, at long times, the front speed
approaches the asymptotic speed u independent of the value
of the cutoff. It is worth noting that the asymptotic speed is
approached from greater values. Moreover, while with the
cutoff the limiting value vf = u is quickly reached, in its
absence the convergence is rather slow. However, we found
that the details of the time convergence to the asymptotic
speed in the absence of the cutoff strongly depend on the
initial condition, as clearly shown in Fig. 3. In particular,
for initial conditions of the form n(x, 0) = exp(−|x − L/2|q )
whose steepness is controlled by q, the trend toward the
ballistic speed is found to be well described by a power law
vf (t ) − u ∼ t−s(q ), with s(q ) being an increasing function of
q (see the inset of Fig. 3). In other terms, at increasing the
steepness of the initial condition the overshoot of the front
velocity above u becomes less and less pronounced and the
convergence to the ballistic value quicker and quicker. In the
limit of a truly discontinuous initial condition, i.e., a step
function, the front speed very rapidly converges to u. These
findings may deserve further investigations that go beyond the
scope of the present work.
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FIG. 3. Instantaneous front speed vf (t ), as defined in main text,
vs time for the RCE without cutoff, with τ = u = 1, r = 2, and
different initial conditions, from top to bottom: n(x, 0) = exp(−|x −
L/2|q ) with q = 2, 2.5, 3, and 4 (green curves) and for the Heav-
iside step function n(x, 0) = �(ξ − |x − L/2|) with ξ = 1 and 2
(blue curves). The inset shows vf (t ) − u vs 1/t , to illustrate the
power-law trend toward the ballistic speed in the case of exponential
initial condition (as an example the dashed lines display the power
law behavior t−0.55 associated to q = 2) and a very fast convergence
in the case of a step function initial condition. The width ξ of the
initial condition is found to affect the transient: the larger ξ , the
smaller the overshoot. The presented results are independent of r

(for r � 1.5).

IV. EFFECTS OF DEMOGRAPHIC STOCHASTICITY

In this section we consider the stochastic individual-based
model introduced in Sec. II in order to study how changes in
the carrying capacity, and thus the fluctuations of the number
of individuals, influence the front speed, having as a guiding
line the results obtained in the continuum limit (Sec. III).

Before starting with the analysis, a comment about the
definition of the front speed in the discrete case is in order. A
first and natural definition can be given in terms of the growth
rate of the total number of particles in the systems NT (t ) that,
within our model, corresponds to the sum of the number of
particles in all the bins in which the domain is discretized, i.e.,
NT (t ) = ∑L/R

i=1 ni (t ). By analogy with the definition of the
front speed given at the end of the previous section in the case
of a continuous system [37], we can define the instantaneous
front speed as

vb
f (t ) = 1

2N

dNT (t )

dt
, (15)

which expresses the velocity as a bulk property. The word
bulk refers to the fact that due to the space average we
capture only the large scale properties referring to the whole
particle system. The factor 1/2 accounts again for the fact
that propagation occurs in both directions and we recall that
N = Np/R is the density of carrying capacity, where R is the
bin size and Np is the carrying capacity in a bin.

However, it is also possible to define the front speed in
terms of the positions of the extremal particles. Denoting with
xm(t ) and xM (t ) the position of the left and rightmost particle,

10-1

100

10-2 10-1 100

v f
b

r

FIG. 4. Bulk front speed vb
f vs r for the stochastic particle model

with Np = 100 and u = 1, compared with Eq. (13) (solid line) and
the FKPP front speed v

FKPP

f = 2
√

rD (dashed line).

respectively, we can define the extremal velocity as

ve
f (t ) = xM (t ) − xm(t )

2t
. (16)

This definition does not probe a bulk property of the traveling
front but only concerns the behavior of its edges. In both
cases, the asymptotic (long time) front speed, which is the
quantity we are interested in, can be obtained extrapolat-
ing the constant behavior in the limit of long times, i.e.,
vf = limt→∞ vf (t ). Numerically this is done by means of
a linear fit of the long time behavior of NT (t )/(2N ) and
[xM (t ) − xm(t )]/2, respectively. As we will see the two def-
initions may not always lead to the same asymptotic front
speed. The above result is at odds with the continuous case,
where the bulk and extremal speeds always coincide. In that
case the former is defined as at the end of the previous section,
while the latter can be defined by introducing a threshold value
on the particle density.

Let us now discuss the main numerical results. First of
all, we measured the asymptotic front speed upon fixing
the carrying capacity and varying the reaction rate r , to
test whether the continuum-limit prediction (13) catches the
behavior of the individual-based model. In Fig. 4 we show
the bulk front speed, vb

f , obtained using the definition (15)
[indistinguishable results are obtained using Eq. (16)]. As one
can see, Eq. (13) well captures the behavior of vb

f , confirming
that the RCE indeed provides the continuum limit of the
system under consideration. The front speed of the FKPP
model also appears to be a good approximation for rτ � 1
(see the dashed line in the plot). However, small deviations
(here hidden by the scale of the graph) are present. These
are due to the fluctuations of the number of individuals that
are unavoidable in the discrete case. In the following we
study in detail how such fluctuations affect the front speed.
Knowing from the study of the RCE with a cutoff that the two
regimes rτ < 1 and rτ > 1 are different we will discuss them
separately.
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FIG. 5. Front speed vb
f vs 1/N = R/Np as obtained from sim-

ulations of the stochastic model with u = 1 and (a) r = 0.01 and
(b) r = 0.1. The solid curve is obtained by fitting the expression
vb

f = v0 − A[log(1/N )]−2, where we fixed A according to Eq. (14)
and fitted v0; the latter resulted to be 4% higher than the continuum-
limit value (13). The insets show the same data plotting v0 − vb

f

against [log(1/N )]−2 to highlight the logarithmic correction. We
show the average over 10 simulations with different realizations of
the noise and error bars represent the maximal deviation from the
mean.

A. Low reaction rates

For low reaction rates, rτ < 1, as discussed in Sec. III,
the RCE behaves essentially as a standard RD system and
the effect of a cutoff, ε, on the reaction is well described by
the results of Brunet and Derrida [25] (see Fig. 1), originally
derived for FKPP-like dynamics. Hence we should expect
that changing the carrying capacity in the stochastic model
should have an effect similar to that of varying the cutoff
in the RCE and, thus, that the front speed should behave
according to the prediction (14) with ε ∼ 1/N = R/Np. This
is confirmed in Fig. 5 which shows the bulk front speed, vb

f , as
a function of 1/N for the same reaction rates as those chosen
for the RCE (Fig. 1). The prediction (14) is quantitatively well
verified but for a small difference in the value of the N → ∞
velocity; indeed the fitted value of the velocity differs from the
theoretical value (13) by 4%. Equivalent results are obtained
using the extremal velocity (16), at least for large N .
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FIG. 6. Bulk front speed vb
f vs Np for r = 4 and u = 1 obtained

by simulations of the particle model (symbols). The solid curve
shows the functional form (17) with C = 1.31 as obtained by a best
fit procedure. The agreement between (17) and the data is very good,
as also shown in the inset, where u − vb

f is plotted against 1/Np for
both the numerical data (symbol) and the behavior (17) (solid line).

B. High reaction rates

We now turn to the case rτ > 1. In this regime, for the
continuous model, the front speed is unaffected by a cutoff
in the reaction term (Fig. 2). For the individual-based model,
instead, simulations show that the effect of fluctuations on
the front speed depends on the definition adopted for vf .
The bulk speed (15) displays a dependence on the carrying
capacity Np, while the speed based on the evolution of the
front edges (16) is consistent with the results of the continuum
limit and gives vf = u independent of the carrying capacity
Np: the rightmost and leftmost front edges asymptotically
move ballistically into the unoccupied regions ahead of them.

Conversely, as shown in Fig. 6, the bulk front speed, vb
f ,

obtained as the long time limit behavior of (15), displays
a nontrivial dependence of the front speed on the carrying
capacity Np. In particular, we found

vb
f = u

(
1 − C

Np

)
(17)

to hold, with a high degree of accuracy for large Np.
Clearly we cannot use the continuum theory to explain

such a behavior, and the possible explanation must rely on the
particle nature of the system, in particular on the stochastic
nature of the reaction term that could impact the effective
value of the carrying capacity in the bulk. Indeed, at long
times the total number of particles is expected to evolve as
NT (t ) = 2〈n(Np )〉ve

f t/R. In other words, at long times NT

will be simply the number of invaded bins 2ve
f t/R (we thus

used the definition based on the extremal bins, neglecting the
fact that they may not have reached the maximal capacity
yet, which is a good approximation at long times) times the
average number of individuals in each bin 〈n(Np )〉. Now,
using that ve

f = u we have NT = 2〈n(Np )〉ut/R that, using
(15) and recalling that Np = NR, means that the measured
bulk velocity will be

vb
f = 〈n(Np )〉

Np

u . (18)

012404-6



REACTION FRONTS IN PERSISTENT RANDOM WALKS … PHYSICAL REVIEW E 99, 012404 (2019)

The above formula would give vb
f = u only if 〈n(Np )〉 = Np

in the bulk bins. Therefore, the numerical data shown in Fig. 6
provides a strong indication that the expectation 〈n(Np )〉 =
Np is violated.

In Appendix B, for stochastic logistic kinetics without
transport, we show that the average number of individuals,
〈n(Np )〉, at equilibrium can be computed analytically; see
Eq. (B4). In particular, when Np � 1 we have that 〈n(Np )〉 ≈
Np − 1. Plugging this asymptotic expression in (18) yields
the heuristic formula (17) with C = 1, not far from the value
C ≈ 1.31 obtained from a best fit of the numerical data.
Clearly, under the action of transport mechanisms the number
of particles in the bin will depend not only on the reaction
dynamics inside the bin but also on the migration from and
toward neighboring bins. Most likely, the fluctuations induced
by the transport process are responsible for the deviation of C

from 1.
We conclude this section noticing that similar corrections

to the front speed due to the fact that in the bulk 〈n(Np )〉 
= Np

should be present also for rτ < 1. However, they are much
smaller than the effects discussed in the previous section.
Indeed small differences of the bulk velocity from the front
speed based on the extremal particles, when rτ < 1, can be
detected only for small values of Np (not shown), where they
are stronger.

V. EXTENSION TO LEVY WALKS

The model presented in Sec. II can be easily generalized
in order to account for more general transport processes, such
as Lévy walks [22], that can model the transport properties
of several biological populations [40–43], simply modifying
the distribution of the walk durations. For instance, with the
choice

P (T ) = (α − 1)T −α�(T − 1) , (19)

at varying the value of α different transport processes can
be obtained. Indeed the second moment of the displacement
behaves as [44]

〈x2(t )〉 ∼

⎧⎪⎨
⎪⎩

t2, 1 < α < 2,

t4−α, 2 < α < 3,

t, α > 3,

(20)

i.e., it is ballistic, superdiffusive, or diffusive depending on α.
Notice that the persistent random walk previously investigated
is retrieved in the limit α → ∞. When α > 3, the diffusive
motion stems from the fact that 〈T 2〉 is finite and according to
Eq. (2) the diffusion coefficient is equal to

D = u2

2

〈T 2〉
〈T 〉 = u2

2

α − 2

α − 3
. (21)

However, even if the diffusion coefficient is well defined
for α > 3, this does not mean that the underlying pro-
cess is diffusive in a standard way, i.e., it is not true that
〈x2q〉 ∼ tq as expected for a standard diffusive process; see
[32,44] for a discussion. As a consequence, in the case α < ∞
the continuum limit of discrete stochastic reactive models,
like ours, is nontrivial and can be defined only in the form
of an integrodifferential equation with a kernel describing
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FIG. 7. Front speed vs α for various values of r , with u = 1 and
Np = 100. Solid lines represent the approximation (22).

the transport process [45–47]. However, it is still possible
to provide an approximate expression for the front speed by
appropriately generalizing the results of the previous sections,
when the mean square particle displacement has a diffusive
behavior (i.e., for α > 3).

Before discussing this point, let us mention that when
α < 3 it is physically reasonable to expect that vf ≈ u, be-
sides possible finite Np corrections (Sec. IV B). This result
finds analytical support in Ref. [46] in the strong ballistic case
(α < 2). When the transport process is superdiffusive (2 <

α < 3), it should similarly hold, due to the large statistical
weight of events characterized by particles keeping their
velocity for a very long time. In both cases, tests in numerical
simulations of the discrete model confirm the expectation
vf ≈ u but for finite-Np corrections of the type discussed in
Sec. IV B (results not shown).

Let us now focus on the range 3 < α < ∞, where the mo-
tion is diffusive with diffusion coefficient given by Eq. (21).
In this case, the phenomenology of front propagation should
not be too different from the one described by the RCE (see
Sec. III A). In other terms we can conjecture that, when r

is sufficiently small, the continuum front speed is given by
v0 = 2

√
D(α)r/[1 + rτ (α)], with D(α) as from Eq. (21) and

τ (α) = 〈T 〉/2 = (α − 1)/[2(α − 2)], while vf = u for large
enough r . Hence, substituting the expression of D(α) and
rearranging the terms, the front speed should be given by

v0 =
{

2u
√

rτ

1+rτ

√
〈T 2〉
〈T 〉2 if rτ < 1,

u if rτ � 1,
(22)

in close analogy with Eq. (13), apart from a finite α correc-
tion controlled by the ratio 〈T 2〉/〈T 〉2 = (α − 2)2/[(α − 3)
(α − 1)] and the fact that now τ depends on α.

To test the validity of prediction (22), we measured the bulk
front speed in numerical simulations of the stochastic particle
model with the walk-duration probability density function
(19) for several values of α and r , with Np = 100 and u = 1.
The results are reported in Fig. 7, where the continuous lines
represent the prediction (22). We can first remark that, for any
fixed α, the front speed tends to the ballistic velocity u with
growing r and the convergence is faster the smaller α. As
for the dependency on α at fixed r , the theoretical prediction
describes fairly well the numerical data when α and r are such
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that rτ (α) � 1. The agreement improves as α gets larger,
which is reasonable considering that the argument developed
above amounts to a correction to the front speed in the RCE
(13) due to finite α. The more important deviations observed
when α approaches 3 are likely due to the increased statistical
significance of persistent walks of particularly large duration.
Moreover, the case α = 3 is marginally diffusive as 〈x2(t )〉 ∼
t log(t ). For α = 4 and 8 we also studied the dependence of
the front speed on Np. We found that the fluctuations induced
by demographic stochasticity have effects that are quantita-
tively similar to those discussed in the case of the persistent
random walk for low (Sec. IV A) and high (Sec. IV B) reaction
rates (results not shown). However, it is worth mentioning
that for smaller values of α the probability of walks lasting
for a long time increases and the assessment of the effects
of discreteness becomes more difficult, as longer simulations
as well as averages over a larger number of realizations are
needed to safely estimate the front speed.

VI. CONCLUSIONS

We investigated the dynamics of a system of logistically
reacting individuals that move according to a one-dimensional
persistent random walk, focusing on front propagation and
the effect of finite-population fluctuations on it. Such a de-
scription of the transport process allows one to remedy the
unphysical features (such as infinite velocities) of the standard
diffusive approximation, which cause an overestimate of the
speed of traveling waves.

After deriving the continuum limit of the individual-based
model, which corresponds to the RCE, in order to study the ef-
fects of discreteness, we introduced a low-population-density
cutoff in the reaction term of the continuous-model equa-
tion. This allowed us to quantify the correction to the front
speed due to the finite number of particles. For low reaction
rates (rτ < 1) it has been possible to analytically compute it
by generalizing the treatment previously introduced for the
FKPP model [25–27]. Similar to that case, we found that
the correction is logarithmic with the density of carrying
capacity N, v0 − vf ∼ [log(1/N )]−2 (with v0 the value from
the continuum theory), in good agreement with the results of
numerical simulations of the discrete model. For high reaction
rates (rτ > 1), instead, the numerics indicate that the RCE is
insensitive to the cutoff. However, demographic stochasticity
does impact the particle dynamics. This result is subtle and
tightly related to the definition of the front speed. When the
latter is computed from the position of the farthest particle
from the origin, the results of the continuum are reproduced.
Nevertheless, when vf is computed from the growth rate
of the total number of particles, our numerical calculations
indicate that u − vf ∼ N−1

p , where Np is the local carrying
capacity. Such a reduction of the front speed (with respect
to the ballistic velocity) hence originates from the effect of
the stochastic nature of the dynamics on the bulk properties
of the system, namely from the reduction of the effective
(average) carrying capacity, as also confirmed by a simplified
probabilistic model (developed in Appendix B).

While the results for the case rτ < 1 share important
formal similarities with the analogous ones holding for FKPP
dynamics [25], those obtained for rτ > 1 are more original

and specific to the RCE, and had not been documented before.
It is worth remarking that, from a biological point of view, the
latter regime corresponds to a situation in which individuals
reproduce faster than the typical time at which they change
their direction. According to previous studies [10] this condi-
tion is difficult to achieve even by selecting organisms with
high intrinsic growth rate r . Nevertheless, we believe that it
might still be of importance in the case of fast reproducing
(parasites or pathogens) species that, similar to the spreading
by long-range dispersal considered in [48], are transported by
other organisms, characterized by a highly correlated motion.

Finally, we provided an extension of the above picture for
power-law distributed walk durations, as is the case when
transport is governed by a Lévy walk process relevant to
several biological populations [40–43]. In particular, in the
diffusive regime (α > 3), we have shown that the front speed
of reaction fronts is well predicted by the RCE with the
appropriate diffusion coefficient, at least for not too small
values of α, and we determined the α-dependent correction
to the asymptotic front speed in the low-reaction-rate limit.

The predictions obtained in this work concern measurable
quantities, such as the front speed and the carrying capacity.
Therefore, they can be usefully compared to experimental
data. We hope that they can stimulate experimental research
and contribute to the understanding of the complex dynamics
of biological and chemical reactive species in realistic situa-
tions, where correlated movements represent an unavoidable
feature.
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APPENDIX A: CALCULATION OF THE FRONT SPEED
FOR THE RCE WITH A SMALL CUTOFF

We consider here the RCE (9) with a cutoff ε in the reaction
term, i.e., f (n) is replaced by f (n)�(n − ε), � being the
Heaviside step function. Following Ref. [25] we compute the
corrections to the front speed due to the cutoff, obtaining
Eq. (14) for the RCE.

Assuming n(x, t ) = h(x − vεt ) = h(z), Eq. (9) takes the
form(

1 − av2
ε

)
h′′ + vε[1 − af ′(h)�(n − ε)] + f (h)�(n − ε)

= 0, (A1)

with f (h) = h(1 − h). For ε � 1 we can identify three re-
gions: (I) ε � h � 1, where the cutoff has no influence on the
front; (II) ε � h � 1, where the cutoff effects are important;
(III) h < ε, where the reaction is absent.

In region (I) the front, being unaffected by the cutoff, for
large z and small h, will be of the form

hI (z) ≈ Az e−λ0z, (A2)

with λ0 as in (12). Indeed for λ = λ0 the dispersion relation
(11) attains its minimum where λ0 is a degenerate root of the
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characteristic equation. In regions (II) and (III), Eq. (A1) can
be linearized as

(
1 − av2

ε

)
h′′

II + vε (1 − a)h′
II + hII = 0, (A3)(

1 − av2
ε

)
h′′

III + vεh
′
III = 0. (A4)

Equation (A3) is the same as Eq. (10), and can be solved
similarly by assuming hII (z) ∝ e−λεz. However, here we have
an effect of the cutoff ε, i.e., the λε solving the character-
istic equation depends on ε. Denoting with 0 < � � 1 the
difference v0 − vε , since v0 corresponds to the minimum of
the dispersion relation (11) we have that

vε − v0 = −� ≈ (1/2)v′′(λ0)(λε − λ0)2, (A5)

implying that we have two complex conjugate roots, i.e.,
λε = λr

ε ± iλi
ε , and from (A5) clearly we have λi

ε ∼ �1/2,
while λr

ε ≈ λ0. Since we now have two complex conjugate
roots, Eq. (A3) is solved by

hII (z) ≈ C e−λr
εz sin

(
λi

εz + D
)
. (A6)

Equation (A4) instead has the solution

hIII (z) = ε exp[−vε (z − z0)/(1 − avε )], (A7)

the front reaching the cutoff value at z0.
Thus we end up with four unknowns: C, D, z0, and vε

(assuming A as given from the unperturbed dynamics), which
have to be fixed imposing the continuity of h and of its
derivative at the borders between regions I/II and II/III. It
is easy to see that, to match the functions (A2) and (A6),
one must require D = 0 so that, thanks to the fact that λi

ε ∼
�1/2 � 1, by expanding the sine and to leading order in �1/2

we have C = A/λi
ε . Then, by imposing the continuity of (A6)

and (A7) and of their derivatives at z0, we obtain the two
relations

Ae−λr
εz0 sin

(
λi

εz0
) = ελi

ε,

A e−λr
εz0

[−λr
ε sin

(
λi

εz0
) + λi

ε cos
(
λi

εz0
)] = −ελi

ε

vε(
1 − av2

ε

) .

(A8)

Dividing the second by the first yields

−λr
ε + λi

ε

tan
(
λi

εz0
) = − vε

1 − av2
ε

, (A9)

which is similar but not identical to that obtained by [25].
In order to fix the value of z0 using the above expression
we recall that λi

ε ∼ �1/2 and λr
ε ≈ λ0, and to the same or-

der vε ≈ v0. Substituting these approximations in (A9) and
using Eq. (12), after simple algebra one obtains λi

ε/λ
2
0 ≈

− tan(λi
εz0). The last equation can be solved by assuming

λi
εz0 ≈ π − β with β � 1 and Taylor expanding the tangent

which gives β = λi
ε/λ

2
0 ∝ �1/2, consistent with the assump-

tion of a small quantity. Substituting λi
εz0 ≈ π − β in the

argument of the sine in the first of (A8), Taylor expanding
and solving for z0 we obtain to leading order for ε � 1: z0 ≈
− log(ελ2

0)/λ0 ≈ − log ε/λ0. Then, to order �1/2, we have
λi

ε ≈ π/z0 ≈ −πλ0/ log ε. Finally, using the above results,
the fact that λε − λ0 ≈ iλi

ε , and Eq. (A5) we obtain the result
(14) of Sec. III B, which was the goal of this Appendix.
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APPENDIX B: EXACT SOLUTION OF THE STOCHASTIC
LOGISTIC EQUATION

In this section we consider the discrete logistic dynamics
in the absence of transport. The number of individuals at
time t, n(t ), evolves according to the kinetics (3)–(5), i.e., it
increases (decreases) by one with a rate W+(n) = rn respec-
tively W−(n) = rn2/Np, Np denoting the carrying capacity.
Thus the probability to have n individuals at time t evolves
according to the master equation,

∂tPt (n) = W+(n − 1)Pt (n − 1) + W−(n + 1)Pt (n + 1)

− [W+(n) + W−(n)]Pt (n). (B1)

At equilibrium, the detailed balance condition P (n +
1)W−(n + 1) = P (n)W+(n) [where P (n) = limt→∞ Pt (n)]
should hold, so that we can write the recurrence relation
P (n + 1) = nNp

(n+1)2 P (n), which is solved by

P (n) = (Np )n

n · n!
P (1), (B2)

where P (1) can be fixed using the normalization condition∑∞
n=1 P (n) = 1. Using Mathematica we obtained

1

P (1)
=

∞∑
n=1

(Np )n

n · n!
= −γ − �(0,−Np ) − log(−Np ),

(B3)
where γ is the Euler-Mascheroni constant and �(0,−Np ) is
the upper incomplete Gamma function. Once we have the
expression for P (n) we can compute the average number of
individuals, 〈n〉, at stationarity as

〈n〉 =
∞∑

n=1

nP (n) = (eNp − 1)P (1), (B4)

which asymptotically reaches Np, but the correction for large
Np goes as follows (see also Fig. 8):

〈n〉 ≈ Np − 1. (B5)
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