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Abstract—In the past two decades, computer vision and arti-
ficial intelligence (AI) have made significant strides in delivering
practical solutions to aid farmers directly in the fields, thereby
contributing to the integration of advanced technology in pre-
cision agriculture. However, extending these methods to diverse
crops and broader applications, including low-resource situations,
raises several concerns. Indeed, the adaptability of AI methods to
new cases and domains is not always straightforward. Moreover,
the dynamic global panorama requires a continuous adaptation
and refinement of artificial intelligence models. In this position
paper, we examine the current opportunities and challenges, and
propose a new approach to address these issues, currently in the
implementation phase at CNR-ISTI.

Index Terms—Sustainable Agriculture; Artificial Intelligence;
Deep Learning; Crowd-sensing; Citizen science

I. INTRODUCTION

In recent years, the emergence of deep learning, com-
bined with the increasingly widespread use of visual mon-
itoring technologies for crops, has significantly contribut-
edto the advancement of precision agriculture [1]. Uncrewed
Aerial Vehicles (UAVs) equipped with colour or multispec-
tral/hyperspectral cameras, as well as other robotic platforms
designed for close-range operations with crops, have paved the
way for the introduction of AI-assisted, data-driven approaches
in agriculture [2]. This has permitted the implementation
of precise monitoring, treatment, and harvesting techniques.
However, these advancements have primarily impacted a nar-
row range of cultivated crops, particularly specialized ones
yielding high revenues, such as high-end wine production [3].

It is clear that Artificial Intelligence (AI) and Machine
Learning (ML), including Deep Learning (DL) methods, are
versatile methodologies capable of being applied to disparate
fields, including agriculture, where their potential impact has
yet to be fully realized. However, the transfer from specific do-
mains to new ones is not always feasible or cost-effective due

to the associated efforts required for designing and developing
new models.

Numerous research and academic initiatives focus on a wide
range of crops, encompassing intensive cultivation practices
that have a significant impact on the global food supply [4].
In these contexts, DL models have demonstrated unparalleled
performance on standardized datasets [5].

Concerning such topics, the state of research on AI appli-
cations in agriculture is wide. There is still no standardized
approach, but the literature encompasses a lot of strategies
that are all focused on improving crop quality and production.
While modern DL models excel in image analysis for product
quality enhancement, other critical agricultural domains, like
water control [6], soil management, and production chain
optimization, primarily rely on tabular data or emerging multi-
modal approaches. Real-time object detection is a prominent
AI application in agriculture, though classification algorithms
often demonstrate superior performance [7] in specific con-
texts.

Recent works, as [8], try to employ knowledge-distillation
techniques to improve weed mapping, adapting complex trans-
former architecture to the agricultural domain. At the same
time, other studies [9] analyse various detection algorithms
and design possible edge computing solutions for their real-
time applications in precision agriculture. Image acquisition
modality plays a pivotal role in plant analysis studies [10],
as shown by the advancements in multi-modal imaging tech-
niques that enhance the accuracy of trait estimation and
facilitate the analysis of plant morphology and development.
For instance, integrating visible light, fluorescence, and near-
infrared imaging allows for a comprehensive assessment of
plant structures, improving the segmentation and quantifica-
tion of traits critical for phenotyping. These diverse imaging
modalities not only provide complementary information. But
also address challenges related to variable illumination and
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plant colouration, ultimately leading to more robust phe-
notypic data extraction and analysis. Object detection and
segmentation algorithms are usually more complex than their
classification counterpart; therefore, translating these models
and approaches into practical use for corporate farmers of
all scales presents challenges, as real-world variability differs
from the conditions in static benchmark datasets. To date,
while there is a right to benchmarking agricultural datasets,
no foundational models have been trained in this domain,
making only possible transfer learning strategies and training
from scratch solutions. Non-technological factors, including
user acceptability, also hinder the widespread adoption of the
latest research findings [7].

In this context, there is a growing need for developing
new methodologies to overcome the current limitations of
AI-assisted technologies. Specifically, these necessitate broad-
ening their application to new crops and different scales of
cultivation to support niche, small-scale, local, and organic
productions while preserving biodiversity and environments
through sustainable resource management. These demands
come from various stakeholders, including farmers and policy-
makers (such as the European Community [11]). At the same
time, they also originate from the Sustainable Development
Goals set by the United Nations [12], particularly Goal 2 “Zero
Hunger”. This goal includes targets such as doubling agri-
cultural productivity (Target 2.3), ensuring sustainable food
production systems, implementing resilient farming practices,
and improving land and soil quality (Target 2.4), as well as
maintaining genetic diversity through well-managed seed and
plant banks (Target 2.5).

This position paper intends to present prospective ideas
that might contribute to achieving the Sustainable Develop-
ment Goals and fulfilling the requirements for the widespread
adoption and implementation of practical artificial intelligence.
While AI has potential applications across various domains,
we focus specifically on using image-based intelligent sys-
tems to support farmers in their day-to-day operations. These
systems can act as effective assistants, enabling informed
decision-making and promoting the best practices for in-
creased yet sustainable production.

The paper is organized as follows. In Section II, we critically
review previous experiences, including ours, and highlight
their limitations. In Section III, we enumerate a set of chal-
lenges and research questions that should be addressed to reach
the scope described in this introduction. In Section IV, we
analyze the current opportunities provided by technological
advances and then explain the proposed approach rationale.
Section V concludes the paper with remarks for further anal-
ysis and prospective implementation.

II. PREVIOUS EXPERIENCES

In light of advancements in image processing, computer vi-
sion, and machine learning, considerable research efforts have
been directed toward developing intelligent systems to support
agriculture. These efforts include the creation of algorithms
for detecting, classifying, and quantifying crops and various

potential threats such as weeds, diseases, insects, and other
stressors that could impact successful harvesting. The focus
has been on analyzing remote sensing images captured by
UAVs and close-range photography obtained through handheld
devices or robot platforms.

The curation of benchmark datasets, particularly those re-
leased as open data, has played a pivotal role in enhancing the
reproducibility and extensibility of research across different
domains. Surveys on existing datasets, as documented in the
work by Lu et al. [13], have become readily available. For
instance, the PlantVillage dataset [14] has emerged as a de
facto benchmark for leaf disease classification even though
images, while numerous, may not fully represent the entirety
of natural variability. Consequently, the performance of deep
learning models on such datasets has been exceptional, with
approaches achieving maximal accuracy levels [15].

Significant endeavours have been put forth within the
AGROSAT+ project, sponsored by Barilla, to address detect-
ing and classifying weeds. Under this initiative, collaborative
efforts between CNR-ISTI and CNR-IBE have led to curating
a dataset specific to cereal crop weeds [16]. This dataset might
be valuable for weed detection and classification problems
through close-range imaging or high-resolution UAV surveys.
Additionally, its suitability for machine learning methods has
been demonstrated in [17], where again the top performance
was obtained. While intriguing and of great importance for
advancing research, the current approaches have limitations
regarding practical applications. The models’ ability to gener-
alize when processing uncontrolled, real-world images is un-
satisfactory, with a significant performance degradation of over
20%. This lack of reliability and inconsistent performance may
be unacceptable to users in real-world deployments, leading
to distrust in artificial intelligence and overall dissatisfaction,
ultimately resulting in the technology’s failure to be adopted.

In the context of the AGROSAT+ project, an additional
initiative was undertaken to address these challenges, leading
to the development of an app called “GranoScan”. This app is
designed to serve as an expert system that can be used directly
in the field to identify plant diseases and stress, as well as
detect weeds, insects, and other potential threats simply by
using pictures captured through the smartphone camera. The
app’s backend is driven by deep learning models that handle
various visual recognition tasks [18]. One notable aspect of
the app is its approach, which is somewhat independent of
the specific computational models employed. In more detail,
following an intensive period of initial data collection to train
the machine learning models, GranoScan has now entered the
production stage. Since then, a continuous stream of images
from diverse users has been processed, with user consent, and
stored to augment the dataset. This data has provided a wealth
of information that can be leveraged to enhance and refine the
models developed over the years using semi-assisted and semi-
supervised methods. The experience is still ongoing.



III. CHALLENGES

Based on the previous experiences reported in Section II, a
critical gap in the current AI technology for sustainable agri-
culture is the absence of a well-established methodology for
the rapid deployment of models, namely of trained deep learn-
ing architecture for solving visual tasks related to agronomical
problems. These AI models must satisfy various requirements,
including robustness, adaptability, and maintainability, while
being versatile enough to address various crops. Notably, the
methodology should also ensure that the models can be easily
transferred across different domains while maintaining their
effectiveness and accuracy. For example, the models should
be capable of adapting from one crop variety to another,
regardless of similarities or differences in cultivation practices
based on geographical location, climate, and other environ-
mental conditions such as soil quality, water availability, and
farming methods (e.g. organic, with biological or natural pest
control, traditional). Developing such a methodology involves
confronting several key challenges outlined below.

One of the primary challenges in deploying AI models in
agriculture is the limited availability of comprehensive and
high-quality datasets. Indeed, as shown in the survey [13],
agricultural datasets, particularly those related to specific crops
or regions, are often sparse, fragmented, or inconsistent (see,
for instance, the dataset proposed for the challenge [19]). As
we have seen, thanks to data augmentation strategies and the
definition of ad hoc architectures, such a scarcity has not
prevented the realization of performant AI models on static
benchmark datasets. However, the generalization capabilities
observed in practice have been, in our experience, somewhat
disappointing.

Additionally, the agricultural environment is highly dynamic
and is influenced by seasonal variations, pest outbreaks, and
other temporal factors. To ensure that AI models can ef-
fectively generalize, it is crucial to train them using data
collected over multiple growing seasons in order to capture
these variations accurately. Longitudinal studies that span
several agricultural cycles can provide valuable insights into
long-term trends and enhance the model’s ability to generalize
across different conditions and time periods. Such longitudinal
assessment is feasible when analyzing routine remote sensing
images captured by satellite-borne sensors. However, when
considering the smaller scale of details (e.g., airborne sensors
and close-range images), there are currently no relevant and
accessible datasets that span multiple harvest seasons.

Climate change introduces significant unpredictability into
agricultural systems, affecting crop yields, pest prevalence, and
overall farm productivity. For this reason, AI models need to
be capable of not only interpolating within the known data
but also extrapolating to predict the impact of unprecedented
climate scenarios. This is a feature that should be taken into
account when selecting the deep learning architecture or other
machine learning paradigm to be used in a classification or
regression task. Indeed, some methods are only suited to ana-
lyze data within the convex hull of the training set, producing

in output something within the convex hull of the labels in the
training data. Although most of the classification and object
detection tasks are not apparently conditioned by these issues,
in general, reasoning about crop status, these issues should be
taken into account. In particular, this might require integrating
climate models with agricultural data to create AI systems that
can adapt to changing climatic conditions and provide reliable
recommendations for farmers.

The ultimate objective of utilizing AI-based systems in
agriculture is to convert predictive insights into actionable
knowledge that farmers can easily put into practice. This
involves not only creating user-friendly interfaces and pro-
viding effective training for farmers but also ensuring that the
AI recommendations are reliable, practical, and economically
feasible. In addition, there is a need for processes that facilitate
continuous feedback from the field to refine and update the
models, ensuring that their relevance and accuracy in real-
world applications remain stable without being affected by
potential non-stationary conditions.

IV. PROPOSED APPROACH

Having discussed the challenges towards the implementa-
tion and actual deployment of robust, adaptable, and manage-
able AI models for tackling agronomic tasks, it is important
to note that several opportunities are linked to technological
advances that can ease the identification of possible solutions.

From one side, indeed, there has been a flourishing of
research towards identifying highly efficient and robust AI
models with improved insensitivity to data variability [20].

Secondly, methods have also been analyzed from the point
of view of carbon footprint, [21] taking into account not only
the training and inference costs but also the overhead linked,
for instance, to data transfer. This is an aspect in deciding
where to collocate computationally intensive tasks over the
computational continuum, determining whether to process
directly near the node where the data has been captured
(i.e. directly on the smartphone capturing the image or on
a robotic platform) with no transfer overhead or, conversely,
on the cloud (with variable transfer costs). In such a context,
progress in hardware also allows for more freedom in such
design choices, given the general availability of computational
resources, including GPU resources, along the computational
continuum.

Finally, a third opportunity arises from the successful im-
plementation of crowd-sensing that can be attributed to two
key aspects: - the first aspect is technical, in which modern
accessible devices, such as smartphones, now offer enhanced
sensing capabilities, including LiDAR technology, multiple
camera lenses, and advanced geolocation features; - the second
aspect relates to the growing awareness and willingness of
individuals to participate in citizen science initiatives.

In this section, we propose the envisaged rationale and then
discuss in detail the three main points it leverages.

A. Rationale
The rationale of the approaches is based on the use of

three main levers that are considered to be able to effectively



contribute to fast and efficient deployments, respecting the
requirements discussed in the previous section. The first aspect
is based on the provision, not only of statistic classification or
number produced by ML/DL models, but also on integrating
these methods with Decision Support Services (Section IV-B).
This is envisaged to respond to the need to translate insights
into actionable knowledge. Indeed, not only the output of the
image processing will be produced, but it is necessary to ac-
company this output with an explanation (in an explainability
effort) and suggestions on how this output may be used in
practice to optimize treatment, for instance, by devising an
adaptive treatment plan. Secondly, a better tradeoff between
performance and generalization capabilities should be sought
(Section IV-C). This attains research efforts in ML/DL where
new methods that have already proved promising, based on
ensembling, can achieve improved generalization capabilities
and allow for a faster domain transfer. A third ingredient is
represented by a more strategic approach to filtering crowd-
sensed information, considering uncertainty in their evaluation
since they originate from non-authoritative sources (Section
IV-D). In this case, new methodologies can be enlisted to
determine data quality and define the confidence level the new
data has to enter into the decisional processes.

In the current envisaged activities such rationale is going
to be validated (see Figure 1) in a variety of cases addressing
i) plant position detection, ii) plant count, iii) control of the
growing phase (e.g. pre/post-germination, developed, budding,
pre-flowering, pre-fruiting, ripening depending on the cultiva-
tion) and iv) anomaly detection (abnormal growth compared to
market standards, sufficient/insufficient gems,. . . ) and v) plant
threats (weeds, pests, and diseases). In addition, vi) time (of
budding, flowering, fruiting, ripening,. . . ) and vii) and volume
predictions (number of plants/flowers/fruits/biomass) as well
as viii) quality of the final product will be considered.

B. Integration with DSS

A DSS must consider several factors depending on the plant
species, including sprout number, flowering time, loss of first
flowering, and other variables.

The proposed model envisages the DSS’s intervention point
as at least twofold. Indeed, the DSS intervenes before and after
the AI models, (a) first to decide which ones to run based
on historical data, context conditions, seasons, situations, and
others, and (b) then to provide suggestions based on the results.

A hybrid DSS integrates different technologies and infor-
mation types in order to provide greater flexibility, scalability
and efficiency in helping make the right decision, the correct
application, and the proper treatment in the right place and
at the right time: knowledge-based modules allow a semantic
representation of data to extract and infer helpful informa-
tion and can include Data Mining and predictive analytics
to identify hidden patterns and relationships between data,
providing high quality and a clear explanation of decisions;
model-based modules allow optimizing the internal decision
processes by analyzing specific issues, such as the irrigation
scheduling or the crop prediction processing data, when the

target audience/stakeholder is not interested in understanding
the decision-making process but only in the results produced.

DSS can also be utilized to communicate and present
information as needed. For example, AI tools that predict
future outcomes based on historical data and trends (e.g.
forecasting flowering or fruiting times or spreading a disease)
can be activated proactively in response to specific events. The
resulting output can then be promptly presented to the user,
allowing for optimal treatment and harvesting planning.

C. Model adaptation, generalization capabilities and contin-
uous learning

A key factor is the ability of AI models to adapt to new
data, to generalize their knowledge, to apply them to new
contexts, to ensure that models are able to function properly
in different situations and to improve their accuracy over
time. At the same time, we need a model capable of learning
fast without relying on an extensive corpus of knowledge,
represented in this specific case by a dataset annotated with
ground truth. In DL, the capabilities of transfer learning are
well known: deep models trained on a dataset belonging to a
certain domain, often general purpose such as in the case of
ImageNet, are then capable of adapting more quickly and with
better performance to new domains with respect to the same
architectures initialized in a random way. In addition, zero-
shot and few-shot learning have been considered in several
contexts, achieving classification with minimal training data
[22].

In our view, we aim to address these elements by exploiting
adaptive ensembling and continuous learning.

More specifically, in adaptive ensembling [5], a few weak
models are trained in parallel, resulting in a set of specialized
modules. Such weak models are based on DL models and,
specifically, in architectures belonging to the EfficientNet
family [23]. As such, they comprise a first set of layers,
performing feature extraction and a final layer-producing clas-
sification. In our approach, such weak models are combined
together to produce a strong classifier at the deep feature level.
Namely, the original classification layer of each weak model
is neglected, and a new global classification layer, taking into
input the concatenation of the feature vectors provided by
all the weak models, is introduced and trained to obtain the
desired ensemble. Such an approach has been proven to give
promising results in domain adaptation, as in the case of olive
diseases [7], but extended analysis and diverse dataset partition
methodology should be studied to assess the added value in
robustness.

Ensembling is also suitable to support continuous learning.
As already introduced based on the yearly campaign or on a
steady stream of data coming from the field, the concept of a
static dataset has to be surpassed. The data flow indeed offers
the opportunity to update models based on deep learning to
provide increasingly accurate answers by taking advantage of
the expansion of the available case studies. To this end, it
is neither practical nor convenient to retrain the models from
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Fig. 1. Key steps diagram of a possible chain of activities as a rationale for plant monitoring and analysis

scratch at each update, but it is advisable to use a continuous
learning approach.

The possibility of shifting toward a continual learning
paradigm has significant potential: beyond providing constant
retraining, it also enables enhanced models through continuous
updates, making the system more resilient to unseen threats.
This approach is more accurate and trustworthy than consider-
ing all boundary conditions simultaneously. While classical su-
pervised deep learning algorithms can detect seasonal patterns,
they often fail to accurately predict anomalous conditions.
Moreover, they often fail to detect points of instability, which
can adversely impact the evolution of the studied environment
and potentially lead to catastrophic consequences.

From a technical perspective outside of research contexts,
the use of ensemble methods is often not aligned with com-
pany objectives and means because it requires continuous
resources. Other strategies, such as using state-of-the-art ma-
chine learning models with a priori studies of data distribu-
tion, can effectively produce one-shot models with an initial
better performance. Ultimately, the support from advanced
techniques demonstrates that moving beyond conventional
methods can lead to developing more effective models, such
as those achieved through ensemble approaches.

In the main studies of the AGROSAT+ project, it has
become clear that transferring technology and know-how from
the public to the private sector plays an important role. Even
though large companies have the possibility and the means
to sustain the production of high levels, in AGROSAT+, the

resources employed in the developed DL model are far lower
than the computational necessity of Large Language Models
(LLMs). Indeed, the training of a state-of-the-art model [15]
required only a mid-range workstation (equipped with two
RTX QUADRO 5000 GPUs, which have now become an
example of affordable accelerators), and the inference of the
trained model worked on the CPU of this machine. This API
solution lets users control their production directly with their
phone (basic technologies approach). The proposed ensemble
model was also used successfully in other scientific fields [24],
showing the potential of open-access research.

Accuracy, Precision, Recall, F1 & R1 score and any other
method largely treated in the statistical literature are the main
methods to evaluate the goodness of a DL model. Still, the
black-box nature of these algorithms hinders trust in their
performance. The public is sceptical of their benefits since it
is impossible to fully understand their inner working. For the
same reason, the scientific community, with their government
counterparts, is questioning the danger, limits, and rightfulness
of the DL models. Good practices, such as strict control
of no train-test data contamination, augmentation strategies,
and eXplainable Artificial Intelligence (XAI), are common
methods to ensure that the systems are accurate but also
trustworthy and plausible. Knowledge-based DL algorithms
are other possible solutions; in genomic and molecular biology,
AlphaFold [25] is a good example of how to evaluate the
quality of a model. AlphaFold architecture combines the
transformer attention mechanism in pairs with the Evoformer



module; this processes correctly evaluate the data of the
biological sequence and the pair representation to output a
new possible structure. Another possible solution is Physic-
Informed Neural Networks (PiNNs) [26] that guide the sys-
tems’ output towards valid output thanks to the incorporation
of the boundary conditions of the described problem. The
listed procedures suggest that leveraging information from
crop traits could provide an intrinsic validation method for
the model, as the proposed approach aligns with natural
observations. Last, it is worth mentioning the possible benefits
of incorporating continual learning strategies to validate the
model over time. Continual learning enhances the adaptability
of DL algorithms by enabling them to incrementally acquire
information from new data while retaining the old ones used
for the previous state. This approach not only mitigates the risk
of catastrophic forgetting but also allows for dynamic updates,
thereby outputting an unbiased overall accuracy of real-world
phenomena. Consequently, the ability to control and fine-tune
the model’s performance across diverse tasks and datasets is
significantly enhanced, ensuring that the model remains robust
and effective over time.

D. Filtering and analysis of crowd-sensed data

In our previous experience with the AGROSAT+ project,
researchers dealt with the quality of data collected from
voluntary users. While the information provided, including
new images to enhance the datasets, was effective in meeting
the need for more varied spatial and temporal data, it is
essential to implement suitable filtering to avoid errors or
biases due to the non-authoritative nature of the information.
To this end, one of the first elements integrated into the
GranoScan app is a deep learning method, achieved through
supervised learning, to differentiate relevant images from those
that may not be suitable for a specific computer vision task.
However, this approach can be improved and expanded by: a)
incorporating blind general-purpose image quality assessment
methods, such as those based on deep learning (e.g., [27],
[28]), and b) developing appropriate object detectors to verify
that the image is relevant to the computer vision task (for
example, if the visual task involves identifying leaf diseases,
there should be at least one leaf in the picture, and it should
occupy a significant area). After passing through the specified
filters and if the user provides feedback, the processed image
can be stored in an expanded version of the datasets suitable
for potential model updates and fine-tuning, also according
to online procedures and to the continuous learning approach
described in Section IV-C. Furthermore, additional filtering
should be conducted to analyze the cross-correlation between
contextual and image data. This is primarily focused on iden-
tifying potential anomalies within the data, such as a disease
reported in a region of the world or during a time of year when
the disease is not expected. While such anomalies may indicate
the nonstationarity of the observed global situation (also as an
outcome of climate change), they should be carefully reviewed
by additional AI agents and, ultimately, by human observers.
This is somewhat related to the continuous monitoring of

the expert system in the operational phase to prevent biases
and drifts and contribute to the overall maintainability of the
system.

V. CONCLUSIONS

In this position paper, we have revised and enumerated
challenges and opportunities for developing AI models that
can tackle visual tasks relevant to agronomy. These mod-
els must exhibit high levels of robustness, adaptability, and
maintainability to be considered trustworthy for deployment
across various scenarios. Our proposed approach focuses on
three key elements: developing technologies for model domain
adaptation, utilizing crowd-sensing with awareness of uncer-
tainty, and integrating with reasoning and recommendation
systems to transform computational intelligence outputs into
actionable knowledge. The synergy among these three points
is also inspired by the general principles of responsibility,
accountability, explainability, and trustworthiness, which col-
lectively enhance the acceptability of our proposed solutions
by addressing both technical and non-technical requirements.

Work is currently underway as part of the STRIVE project,
and it will continue over the next two years. During this time,
experiments will be conducted to test the proposed approach,
evaluate its effectiveness, and understand its limitations. Ad-
ditional measures will involve working with the community
of farmers to raise awareness and encourage engagement.

The additional benefits of engaging the farming community
in this precision approach to agricultural practices include
building trust and improving perceptions of this tool.

An active community can guarantee a steady flow of data,
allowing the continual learning implementation part of our
solution, and communicate additional information, enabling
real-time adjustments to the predictive component of the
employed algorithm, which would otherwise not be possible.

In the future, we may consider utilizing Generative AI
and LLMs to enhance communication and interaction with
end users. However, we will proceed cautiously, as these
technologies are not yet fully mature, language support is
not consistent, and the portability and sustainability of the
technology still need to be assessed. Therefore, we may
need to postpone their application in scenarios where actual
deployment is being pursued.
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