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a b s t r a c t

The emergence of microservices architecture calls for novel methodologies and technological frame-
works that support the design, development, and maintenance of applications structured according to
this new architectural style. In this paper, we consider the issue of designing suitable strategies for
the governance of testing activities within the microservices paradigm. We focus on the problem of
discovering implicit relations between test programs that help to avoid re-running all the available
test suites each time one of its constituents evolves. We propose a dynamic analysis technique and
its supporting framework that collects information about the invocations of local and remote APIs.
Information on test program execution is obtained in two ways: instrumenting the test program
code or running a symbolic execution engine. The extracted information is processed by a rule-based
automated reasoning engine, which infers implicit similarities among test programs. We show that
our analysis technique can be used to support the reduction of test suites, and therefore has good
application potential in the context of regression test optimisation. The proposed approach has been
validated against two real-world microservices applications.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The microservices architecture style consists in building a
oftware application as a collection of distributed software units,
ach abiding by the single responsibility principle (Cerny et al.,
018). The functionalities offered by a microservice are supposed
o be contained within clearly defined boundaries, encapsulat-
ng the implementation of atomic features in the considered
omain (Lewis and Fowler, 2014). Also, the microservices archi-
ecture principles suggest a strong control of the coupling among
oftware units, advocating the adoption of design solutions that
itigate the impact of the evolution of each microservice. In other
ords, going through the various life-cycle phases of each mi-
roservice (i.e., its design, development, deployment, or update)
hould require minimal (or even zero) coordination effort with
he others, possibly limited to immediate dependencies.

Both the technical and the managerial independence of mi-
roservices should cope with a dynamic scenario for the develop-
ent and maintenance of applications built within this paradigm:

he evolution of one or more constituents could occur according
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to several governance schemata, opening to different degrees of
challenges about the resulting system (Bertolino et al., 2019).
In order to take full advantage of this architectural style, novel
methodologies and new technological frameworks are needed
for designing, developing, and maintaining microservices applica-
tions. Also, testing activities demand appropriate strategies and
tools covering each test phase: from unit testing to integration,
and contract testing, up to end-to-end testing (Clemson, 2014).
In addition, the continuous evolution of any of the constituents
suggests the establishment of procedures and resources ascer-
taining that changes have not caused novel and undesired issues.
Across the different stages of testing activities, regression test-
ing (Yoo and Harman, 2012) aims to guarantee that the changes
introduced in a software module do not harm its behaviour or the
one exposed by the whole software system.

In the case of governance of regression testing activities, sev-
eral classes of approaches aim at preventing the retest-all strategy
by: (i) skipping redundant test cases from the test suite (Va-
habzadeh et al., 2018), or (ii) selecting some test cases (Kazmi
et al., 2017), or (iii) prioritising those expected to yield earlier
fault detection (Khatibsyarbini et al., 2018; Paterson et al., 2019).
However, in most cases, these approaches require some knowl-
edge about the considered set of microservices, their immediate
dependencies, and their possible interactions. Unfortunately, the
lack of detailed specifications for the considered microservices
and, in some cases, the unavailability of the source code could
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hamper the direct application of such testing techniques (Mariani
et al., 2007).

In addition, regression testing activities have to cope with the
aintenance and the evolution of the regression test suites (Har-

old and Orso, 2008): augmenting their significance by deriving
ew test cases from existing ones or by inferring a better under-
tanding of the considered software system by leveraging pieces
f evidence from the test cases. In this respect, the observation of
he actual interactions among microservices instances can be ex-
loited as a means of contributing to the evolution of regression
esting test suite (Gazzola et al., 2020). Also, test cases have been
roposed as viable solutions for checking compliance of contracts
cross service releases (Bruno et al., 2005).
This work contributes to the governance of regression testing

n the specific context of microservices applications. One relevant
iece of information often useful when designing regression test-
ng strategies is the similarity between test cases. For example,
est cases could be considered similar if they include the same
ctivities but focus on a different testing strategy; if they target
he same testing goal and strategy but use different test data; or
f parametric tests have significant overlaps for some values of
he parameters. Inferring such relationships is a complex task in
he general case, as they strongly depend on the specific nature of
he considered software system (e.g., application domain, referred
rchitectural style, adopted technologies). As detailed in the fol-
owing, this work leverages the specificity of the microservices
aradigm in order to structure similarity information retrieval
rocedures that enable reasoning about test program similarities.
hen, the knowledge of test case similarities allows the design
f flexible regression testing strategies and policies, which avoid
erunning all test programs in an order fixed in advance.

Specifically, this work assumes that a set of test programs
or a given microservices application is available because they
re shipped with the microservices, or some system integrator
ade them available (e.g., contract tests for microservices that
re commonly used together), or the integrator of the overall
pplication provides them. Then, we propose a dynamic analysis
f the given test programs to discover suitable similarities among
hem. Our analysis relies on both instrumented and symbolic
xecution techniques (Cadar and Sen, 2013) to gather information
bout the behaviour of a test program and the interactions it
stablishes among the microservices in the application under test.
hile the instrumented execution allows us to collect the trace of
ne concrete execution quickly, the symbolic approach allows the
xploration of sets of concrete executions and allows us to handle
arametric tests naturally. The information extracted is processed
sing logic-based reasoning techniques (Wielemaker et al., 2012)
n order to establish similarity relations.

In order to evaluate our approach, we have implemented our
nalysis and reasoning techniques on a tool, called Hyperion,
hich is publicly available as open-source software.1 Then, we
ave worked out two real-world case studies and we have shown
hat Hyperion is indeed capable of discovering similarities be-
ween sets of test programs, according to the various criteria
e have defined. Our results also show that the similarities
iscovered can be used profitably, for example, to reduce the
est case suite, and thus our approach has good potential for use
n regression test optimisation. However, providing full-blown
trategies for regression test optimisation, e.g., test case priori-
isation, minimisation or selection, is beyond the scope of this
aper.
This paper builds on the results presented in previous pa-

ers (De Angelis et al., 2021; De Angelis et al., 2021) and extends
hem in several ways. In particular, a first extension concerns the

1 Source code available at http://saks.iasi.cnr.it/tools/hyperion.
2

definition of a new set of similarity metrics: the work in De An-
gelis et al. (2021) does not concern similarity metrics, while the
work in De Angelis et al. (2021) only refers to a collection of
set-based similarity criteria; this work also defines and imple-
ments several sequence-based similarity criteria. Furthermore,
both previous works only refer to scenarios where the similarities
are computed starting from the symbolic execution of the test
programs; in this work, we have extended both the methodology
and its supporting framework to evaluate similarities starting
from the concrete execution of the test programs. Finally, this
work also enhances the validation of the proposed approach
by performing, as mentioned above, an empirical evaluation on
two popular open-source applications designed according to the
microservices architectural style.

The rest of the paper is organised as follows. Section 2 pro-
vides some background about the main techniques used in this
work. In Section 3 we present our overall approach to extracting
relations among test programs from their concrete or symbolic
executions. In Section 4 we describe the technique used to extract
information from test programs, while in Section 5 we introduce
the rules to determine their similarity. Section 6 describes the
validation methodology that we have applied in the empirical
study reported in Section 7. In Section 8 we comment on the
threats to the validity of the empirical evaluation of our tech-
nique. Section 9 discusses related work and, finally, Section 10
draws the conclusions of this work.

2. Background

This section recalls some background notions about symbolic
execution, software instrumentation, and logic programming,
which are the core assets for the proposed contribution.

2.1. Symbolic execution

Symbolic execution (Baldoni et al., 2018) is an established
technique in automated software testing (Cadar and Sen, 2013)
for exploring program executions in search for runs that lead to
error states, that is, states where some specified conditions are
violated. Unlike concrete execution, where a program is run on
a specific input, and a single control flow path is explored, the
basic idea of symbolic execution is to allow symbolic variables,
that is, variables that take on symbolic values, besides concrete
values. The use of symbolic variables allows the simultaneous
exploration of multiple paths a program can take under different
inputs. Every time that some condition is checked against a
symbolic variable, a branch is taken and alternative control flows
are maintained simultaneously by the symbolic execution engine.

For clarity, let us consider the example code snippet in Fig. 1.
Symbolic execution can effectively determine which inputs make
the final assertion fail without having to enumerate the whole set
of possible input values. Indeed, by relying on symbolic variables,
one could reason on classes of inputs.

Every time a conditional branch instruction is symbolically
executed, the symbolic execution engine creates a ‘‘snapshot’’ of
the execution context up to that point. This snapshot can be used
to backtrack to a previous execution state and restart the execu-
tion to explore alternative execution possibilities. Therefore, the
overall symbolic execution of the program can be represented
as a tree, where each conditional branch instruction generates
two additional sub-trees describing the possible outcomes of the
comparison.

The symbolic execution engine that supports the symbolic ex-
ecution can be regarded as an abstract machine, which maintains
a state represented by the triple ⟨insn, σ , π⟩, where:

http://saks.iasi.cnr.it/tools/hyperion
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Fig. 1. Which values of a and b make the assert() fail?
Fig. 2. Symbolic execution tree of the example program in Fig. 1. Dashed boxes correspond to states in which a branch is taken. The leaf node marked with a is
associated with a terminal state which violates the assert() in the example program.
A

insn is the program point that has been reached during the
symbolic execution of the program;

σ is a symbolic memory store, associating variables with either
expressions over concrete values or symbolic values αi;

π is a first-order logic formula—the so-called path condition–
i.e., a formula that expresses a set of constraints on the
symbols αi built during the execution of the branches
observed up to insn.

Any branch instruction executed on a symbolic variable up-
ates the path condition π , while assignments update the sym-
olic store σ . A Satisfiability Modulo Theories (SMT) solver checks
hether there are any violations of the constraints along each
xplored path and if the path itself is feasible. The tree associated
ith the code example in Fig. 1 is shown in Fig. 2. In this figure,
e can observe that multiple symbolic states are traversed to
each leaf states. In the leaves, the symbolic store is used to check
hether or not the assert condition fails.
The fact that symbolic execution traverses all states ⟨insn, σ ,

⟩ up to a certain program point opens up for further exploita-
ion of this technique, which is the basis of this work. Indeed,
hile the original goal of symbolic execution was to explore
ll the possible execution paths to determine what inputs to a
est program might generate an error condition, since we can
bserve all the states during the symbolic execution, we can

extract information about all possible activities carried out by a
parametric test program. This can also be done in terms of the
parts of the system under test (i.e., SUT), which are exercised
by the test program itself, independently of the concrete values
passed as input to the test by the developers.

2.2. Software instrumentation

Another technique typically employed to support code cover-
age analysis is software instrumentation (Yang et al., 2009). In
Java, code instrumentation is typically carried out either at the
3

source code level or the bytecode level. For our purposes, we
focus on the latter.

Bytecode instrumentation techniques can be broadly classified
as static, or dynamic approaches. In static bytecode instrumen-
tation, all instrumentation code (e.g., software probes to inspect
the application’s behaviour) is inserted in the application before
the program starts execution. Typically, this approach causes less
runtime overhead, as all the bytecode mangling is performed
before the process is launched. The major drawback is that dy-
namically generated or loaded code cannot be instrumented.

Conversely, dynamic bytecode instrumentation is interleaved
with the program’s execution under instrumentation. Typically,
this approach relies on an instrumentation agent that is invoked
every time a new class is loaded. The agent can analyse the
bytecode of the loaded class and augment the loaded bytecode
with instrumentation code. The major benefit of this approach is
that multiple agents can coexist, and typical support offered by
the Java Virtual Machine allows all the available agents to chain
the bytecode modification. Usually, this induces higher overhead
(mainly at program startup) and may affect measurements due to
the runtime instrumentation process. Dynamic instrumentation
also has the additional benefit that only those classes being
actually loaded are instrumented, while static instrumentation
requires processing all the classes, even though some may not
be executed in a given scenario.

Typically, both static and dynamic instrumentation rely on
bytecode engineering libraries, such as ASM (Bruneton et al., 2002),
or Javassist (Chiba, 2000).

2.3. Logic programming

We recall the basic concepts of logic programming that we will
use to reason about the similarity of test programs.

The logic programming syntax builds upon terms and state-
ments. A term is either a variable, a constant, or a compound term.
statement is either a fact, a rule, or a query.
A fact is used to state a relation among objects, and is repre-

sented as an atomic formula, that is, a predicate symbol of arity
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f
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n ≥ 0 applied to n terms. A rule is an implication of the form
ead :- body, where: (i) head is an atomic formula representing
he conclusion of the implication, (ii) ‘:-’ denotes the (reverse)
mplication symbol←, and (iii) body is a conjunction of atomic
ormulas representing the premise of the implication. A logic
rogram consists of a set of facts and rules. A query is used to ask
hether a relation among objects holds. Syntactically, queries are
tomic formulas, like facts, but the usage context can distinguish
hem. Any answer to a query with free variables provides values
or the variables that make the query a logical consequence of the
ogic program.

We use the Prolog programming language as a concrete real-
sation of the logic programming paradigm and the SWI-Prolog
ystem (Wielemaker et al., 2012) as the reference implementa-
ion of Prolog. In presenting logic programs, we will follow the
sual conventions of Prolog: variables begin with an uppercase
etter, while constant, function, and predicate names begin with
lowercase letter.

. Overall approach

Often Quality Assurance (QA) teams agree on policies and
trategies for regression testing within a shared governance fra-
ework (Bertolino et al., 2019). Such a framework supports the
ecision process during the testing campaigns, for example, by
uiding the activities that could support the root-cause analysis
f issues that have been spotted.
The enforcement of specific decisions can be either planned

n advance of the regression testing activities (e.g., test suite
eduction, test case selection/prioritisation) or online through a
est case orchestrator (García et al., 2018) that dynamically makes
ecisions on how the regression testing process proceeds by tak-
ng into consideration the actual outcomes resulting from the test
ases executions. In both cases, the role of test suites dependen-
ies/similarities can foster the definition of parallel, sequential,
r alternative flows of test cases to be executed (Bertolino et al.,
019).
Different factors can lead to establishing dependencies across

egression test cases. On the one hand, members of the QA team
r even software developers could declare them either in the soft-
are specifications or in the configurations of the referred build
utomation frameworks. On the other hand, implicit similarities
an also be drawn from available software artefacts (e.g., test
rograms) using some (semi-)automatic mining procedures. In
his article, we focus on this latter scenario.

The microservices architectural style suggests the design of
ighly modular applications, where the responsibilities of each
icroservice, its boundaries, and its interconnections are clearly

dentifiable (Lewis and Fowler, 2014). Given a collection of inte-
ration test cases, their elements could be considered similar if
hey concern the same set of microservices. In addition, all the
nitary tests for a given microservicemsi could also be considered
elated to integration tests that involve msi: a failing integration
est should also prompt to check whether any unit regression
as occurred in the microservices it refers to. Criteria of this
ind have been initially introduced in Bertolino et al. (2019)
here the discussion also covered dependencies that could be
stablished at all the test levels (e.g., contracts, end-to-end). In
he following, test programs for microservices applications are
onsidered ‘‘similar’’ if they:

1. involve the same microservice instance, or they connect to
the same remote API;

2. locally activate overlapping APIs (i.e., they refer similar
local modules/libraries).
4

Microservices are distributed components whose interactions
ccur across some abstraction of the network interface and, in
ost cases, abide by the REST architectural style (Cerny et al.,
018). Test programs opening connections against the same re-
ote APIs act as test drivers for the same type of microservices
r, in some cases, among the same instances. Such connections to
emote APIs can be directly coded in the test program employ-
ng basic frameworks that provide functionalities for accessing
esources via HTTP (e.g., the HTTP Clients in the JDK or Apache
ibraries). Also, their implementation could be mediated by means
f some structured application framework (e.g., Spring2 or Post-
an3), or even mediated by means of some local libraries auto-
atically generated starting from the remote APIs specifications

e.g., the client SDKs generated by means of Swagger Codegen4).
his last technological solution opens the possibility of looking
or similarities among those test programs that locally activate
verlapping APIs. In addition, item 2 is also considered useful
hen looking for test programs that converge onto a cohesive set
f activities: for testing purposes, but also for the configuration of
he test environment or their referred assertions.

Our overall approach is depicted in Fig. 3. Identifying similari-
ies among test programs is guided by an automatic analysis of
heir implementations and executions, which does not rely on
ny specification of the tests. The analysis procedure assumes
hat test programs are clearly identifiable from the rest of the
ource code or compiled classes, for example, through explicit
Unit annotations. Also, it is based on two different modes of test
rogram execution: concrete or symbolic.
When the former mode is enabled, the analysis procedure

uns each available test program and, through program instru-
entation, automatically records the API that the test program

ocally activates. This mode aims to extract implicit dependencies
cross test programs that are actually coded in their implementa-
ions or due to specific values associated with the test program’s
rguments (see Fig. 3(a)). By enabling the latter, the analysis
rocedure still runs the available test programs, but it can also
e configured to automatically switch their execution to symbolic
rocessing (see Fig. 3(b)). The aim of this mode is twofold: (i)
o carve test data by exploring admissible but not explicitly
oded executions that are subsumed by the test program, and
ii) to exercise (parametric) test programs independently of their
rguments.
The outcome of the execution phase is a knowledge base con-

isting of facts representing the configurations reached by either
oncrete or symbolic execution. Then, in a subsequent phase, the
nowledge base is analysed to reveal existing similarities among
est programs (see Fig. 3(c)). Specifically, this second phase builds
pon a given set of inference rules that define similarity criteria
mong test programs, and whose evaluation is performed by
uerying the knowledge base generated during the execution
hase.
An initial set of inference rules has been investigated in De An-

elis et al. (2021) and then extended in De Angelis et al. (2021).
ven though the proposed approaches are modular enough to
over additional dependency criteria, in this work, we have fur-
her improved the existing inference rules and validated them by
eans of broader experimental activities that cover outcomes of
oth the concrete and symbolic modes of the analysis procedure.

. Carving behavioural features from test programs

This section details the methodology used to represent the in-
ormation carved from test programs and the techniques we have
xplored to generate such data, namely symbolic and concrete
xecution. We also discuss our reference implementations.

2 See: https://spring.io/microservices.
3 See: https://www.postman.com.
4 See: https://swagger.io/tools/swagger-codegen/.

https://spring.io/microservices
https://www.postman.com
https://swagger.io/tools/swagger-codegen/
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Fig. 3. Overall approach.
4.1. Program traces representation

In order to identify the behavioural features of test programs
for subsequent similarity characterisation, we must first be able
to represent the execution trace of these programs.

Our representation is based on a set of Prolog facts that repre-
sent an invocation of a particular method within a specific class
from a certain caller, then enabling suitable rule-based reasoning
techniques. The simplest format of these facts is the following:

invokes(TestProgram, Caller, Callee)

where invokes is the predicate name, TestProgram is a unique
dentifier of the test program in the currently-analysed test suite,
aller is the invoking method, and Callee is the invoked
ethod.
With this format, we are not explicitly considering the twofold

ature of carving methods. In particular, when generating facts
rom a symbolic execution, we must keep track of the point where
ne specific invocation was observed in the symbolic execution
ree. Conversely, we only refer to a single execution trace in
concrete execution. In other words, the facts must maintain

he information that, in symbolic execution, they describe the
ossibility that, for specific concrete inputs to the test program, a
articular method invocation could be materialised in a concrete
xecution.
To this end, we introduce a list of branching points, which are

linear representation of a path in the symbolic execution tree.
hese facts thus become:

invokes(TestProgram, BranchingPointList, Caller, Callee)

Of course, in the case of a concrete execution, Branching-
ointList will be set to a placeholder value identifying that
nly a single execution trace has been generated, meaning that
o branching was observed nor relevant.
To understand whether this format is sufficient to represent

n execution trace to carry out a behavioural analysis, let us
ow consider the example code snippet in Listing 1. Here, we
ind repeated invocations to g(), which will in turn generate
ultiple invokes facts, as shown in Listing 2—[1] is used as
ranchingPointList to indicate that the example in the listing

refers to a single execution. The invokes in the figure are exactly
the same, but one could argue that every single invokes fact
5

1 public void f() {
2 for(int i = 0; i < 5; i++)
3 g();
4 }

Listing 1: A function with calls within a for loop.

1 invokes(f, [1], f, g)
2 invokes(f, [1], f, g)
3 invokes(f, [1], f, g)
4 invokes(f, [1], f, g)
5 invokes(f, [1], f, g)

Listing 2: Sequence of invokes generated from Listing 1.

1 public void a(int count) {
2 b();
3 if(count > 0)
4 a(0);
5 c();
6 }

Listing 3: A recursive function.

generated by a call to g() is a different incarnation and should
be therefore considered different. To enforce this difference, we
extend the form of the invokes facts as follows: where SeqNum
is a monotonic counter which is incremented every time that an
invokes fact is generated. Therefore, every invocation of g() in
the example in Listing 1 will bear a different value for SeqNum,
thus allowing us to disambiguate invocations within iterations.

Let us now consider the example shown in Listing 3. Here,
a different set of methods is invoked depending on the (either
concrete or symbolic) value of the method parameter count. If
the example program is invoked as a(1), a sequence of facts
corresponding to the invocations of b(), a(0), b(), c(), c()
will be generated, all appearing as being called from a(). Here,
the problem is that the same sequence of facts could also be
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1 public void a(int count) {
2 if(count == 0)
3 return;
4 b();
5 a(0);
6 b();
7 c();
8 c();
9 }

Listing 4: A fragment generating a sequence of invokes
equivalent to that of Listing 3.

1 invokes(a, [1], 1, a, b)
2 invokes(a, [1], 2, a, a)
3 invokes(a, [1], 3, a, b)
4 invokes(a, [1], 3, a, c)
5 invokes(a, [1], 3, a, c)

Listing 5: A sequence of invokes that can be associated with
both Listing 3 and Listing 4.

generated by the example program in Listing 4. In particular, both
programs would generate the sequence of invokes shown in
Listing 5. The two programs are inherently different though, and
should not be described by the very same sequence of invokes.

hile the example deals with a recursive invocation, we note that
he same problem might arise with repeated invocations of the
ame method from the same caller.
This anomaly stems from two different issues. First, the in-

okes fact as defined above cannot distinguish between different
nvocation contexts. Second, the invocations are different because
hey come from two different places in the source programs. To
vercome this limitation, we enhance the form of the invokes
acts as follows:

invokes(TestProgram, BranchingPointList, SeqNum, Caller,
ProgramPoint, FrameEpoch, Callee)

where ProgramPoint is a unique identifier of the location of
he method call in the original program (for example its line
umber in the original source file), and FrameEpoch is an ad-
itional monotonic counter handled as follows. Every time a
ethod invocation occurs in the symbolic execution, this counter

s incremented. The new value is then pushed onto a stack.
very invokes fact is annotated with the value associated with

the caller, i.e., the second-to-top element on the stack. Every
time a return instruction is symbolically executed, we pop the
top element from the stack. In this way, recursive or repeated
invocations will bring a different frame epoch for every called
method. This construction allows us to mimic the behaviour of
stack frames employed by computer architectures for the same
purpose. Additionally, if a method is invoked from a different
location in the original source, it will have a different Program-
oint value. The resulting (different) invokes for the snippets
isting 3 and Listing 4 in are reported in Listing 6.
Finally, we might consider two invocations to the same method

s similar if they have the same set of parameters—in the case of
ymbolic execution, the parameters might be symbolic as well.
e note that in the microservices scenario we target, we are not

nterested in argument values (except for strings) but rather in
arameter types. Similarly, discriminating whether two invoca-
ions are the same might entail considering also the symbolic
ath condition. To this end, the final incarnation of the invokes
ecomes:
 m

6

1 Invokes for Listing 3:
2 invokes(a, [1], 1, a, 2, 1, b)
3 invokes(a, [1], 2, a, 4, 1, a)
4 invokes(a, [1], 3, a, 2, 2, b)
5 invokes(a, [1], 4, a, 5, 2, c)
6 invokes(a, [1], 5, a, 5, 1, c)
7
8 Invokes for Listing 4:
9 invokes(a, [1], 1, a, 4, 1, b)

10 invokes(a, [1], 2, a, 5, 1, a)
11 invokes(a, [1], 3, a, 6, 1, b)
12 invokes(a, [1], 4, a, 7, 1, c)
13 invokes(a, [1], 5, a, 7, 1, c)

Listing 6: Invokes discriminating Listing 3 and Listing 4.

invokes(TestProgram, BranchingPointList, SeqNum, Caller,
ProgramPoint, FrameEpoch, PathCondition, Callee, Parameters)

Similarly to the BranchingPoint case, PathCondition is
et to a don’t care value if the facts are generated from a concrete
xecution.

.2. Information extraction via symbolic execution

Symbolic execution is one of the two primary techniques
e have considered to extract information from (parametric)
est programs. Indeed, being able to observe all execution states
cross which symbolic execution transits allows us to extract a
arge amount of information associated with what methods of
he SUT are used or, more in general, what parts of the SUT are
xercised.
Our solution for extracting behavioural features is based on

hree main execution phases: (i) test program enumeration;
ii) feature extraction; (iii) Prolog facts generation, according to
he format described in Section 4.1. In the following, we detail
he methodological/technical organisation of these phases.

est program enumeration The analysis technique is based on
Unit 4/5 annotations and is controlled by a JSON configuration
ile. This file enables the declaration of those paths to be scanned
o find the compiled test classes. The JSON file’s structure and
he presentation of the configuration it admits are reported in the
ppendix.5

eature extraction As the symbolic execution engine, we use the
ava Bytecode Symbolic Executor (JBSE) (Braione et al., 2016). JBSE
s a symbolic Java Virtual Machine that deals with complex heap
ata structures.
At startup, we load all classes associated with test programs

eclared in the JSON configuration file, all classes associated with
he SUT, and all those additional classes are needed to run the
pplication. These paths will be included in the JBSE classpath,
nabling the lazy loading of classes on demand. In this way, JBSE
an symbolically run all test programs, as we describe below.
To reduce the time required to perform the symbolic exe-

ution and focus only on the test programs, we use a form of
oncolic execution (Sen, 2007). It is essentially a ‘‘mixed’’ con-
rete/symbolic execution which we use to quickly reach (in a
oncrete way) each test program’s entry point, which is later
xecuted symbolically. This way, we do not explore parts of the
xecution irrelevant for extracting similarity information, such as
hose in charge of setting up the environment for a test program
xecution (e.g., @Before or @BeforeClass in JUnit), as well as

5 The appendix has been submitted in a separate file as ‘‘Supplementary
aterial for on-line publication only’’.
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related to multiple mocking frameworks (Spadini et al., 2018)
(e.g., Mockito).

As already mentioned, we are interested in extracting general
information to support multiple decision strategies when sim-
ilarity measures are constructed at a later stage. To this end,
we inspect all symbolic execution states explored by JBSE, and
we focus only on the states associated with the invocation of
some (local) method. We keep track of all invoked methods, in
all explored branches, in an in-memory data structure.

Prolog facts generation When the symbolic execution is com-
pleted, we dump a set of invokes Prolog facts to a file on disk.
These facts are easily derived from the in-memory representation
of the symbolic states of interest.

4.3. Information extraction via concrete execution

To collect behavioural information in a concrete execution, we
rely on the Java Agent technology for the byte-code inspection
and manipulation. Specifically, we developed a Java Agent in
Javassist, directly attached to the JUnit run, relying on the Maven
Surefire plugin. The very first time a class is loaded in memory,
we check if it should be instrumented (i.e., it belongs to the test
program or the SUT). Thus, the Java Agent injects tracing probes
in some specific points of interest.

Specifically, the instrumented methods include a combination
of activities performed just after its invocation and before it re-
turns to the caller. These activities allow us to build an in-memory
representation of the Prolog facts described in Section 4.1 and
also consider the specific test programs that originated the call.
Further operative information about the implementation is avail-
able in the appendix5.

4.4. Prolog facts processing

The information extraction phase, obtained through either
symbolic or concrete execution, generates a knowledge base con-
sisting of invokes facts that is used to carry out automated logic-
based reasoning to determine test program similarity, according
to some (user-specified) criteria.

In order to analyse the sequence of methods executed by
running a test program, that is, an execution trace of a test pro-
gram, we provide the predicate trace(TP,Trace) (see Listing
7), which relates a test program TP to an execution trace Trace
of the method annotated by @Test in TP, that is, the entry point
of TP. The execution trace Trace is a list of invokesfacts whose
head Ep is the entry point of TP.
1 trace(TP,Trace) :-
2 tp_entry_point(TP,Ep),
3 trace_starting_with(Ep,Trace).

isting 7: Prolog rule that defines trace(TP,Trace).

Now, we can get the execution traces generated by exe-
cuting a test program by collecting the answers to the query
trace(TP,Trace), where TP is bound to the test program name
and Trace is an unbound variable, thereby getting values for
Trace that can be further processed by using suitable helper
predicates, and finally analysed to discover similarity relations
between test programs. In particular, we provide the helper
predicate filter, whose implementation details are reported
in the appendix, which allows us to sieve through the invokes
facts and reshape them into suitable data structures to be used
within queries for reasoning about the test program similarity.
Notably, in testing microservices applications, where we are
interested only in analysing the similarity between test programs
concerning their remote API invocations, the filter predicate
7

allows us to perform the following operations: (1) select those
invokes facts that represent invocations of methods belonging
to remote APIs, (2) extract from the selected invokes facts
specific information related to the remote API invocation, that is,
the HTTP method used to perform the request (e.g., get and post)
and its URI, and (3) generate new facts, called endpoint, with
the following structure:
endpoint(TestProgram , Caller, HTTPMethod , URI)

These facts showcase that the method Caller of the test
program TestProgram invokes the remote API identified by URI
using the HTTP method HTTPMethod.

In the appendix, we also report the query to perform opera-
tions (1)–(3).

5. Rules for similarity

We now present the Prolog rules defining similarity relations
between test programs, and we show how to use them to query
the knowledge base consisting of invokes and endpoint facts
for inferring the similarity of test programs.

We start by introducing two basic notions defining the sim-
ilarity between elements of the domain, that is, the similarity
between invokes facts and between endpoint facts. The simi-
larity between elements of the domain is evaluated by using the
predicate matching(Dom,O1,O2) shown in Listing 8, where Dom
defines the domain of the elements O1 and O2 (either invokes
or endpoint) compared according to the definitions introduced
as follows. Given two invokes facts I1 and I2, we say that they
are similar if and only if (c1) I1 invokes the same method of I2
(line 4). Given two endpoint facts E1 and E2, we say that they
are similar if and only if: (c2) they make use of the same HTTP
method to invoke a remote API (line 8), and (c3) their URIs match
(line 9).

Every occurrence of an anonymous variable ‘_’ represents a
distinct variable. It is used to denote any argument that is not
taken into consideration for establishing the similarity between
invokes(and between endpoint) facts.
1 matching(invokes,I1,I2) :-
2 I1 = invokes(_,_,_,_,_,_,_,Callee1,_),
3 I2 = invokes(_,_,_,_,_,_,_,Callee2,_),
4 Callee1 == Callee2. % (c1)
5 matching(endpoint ,E1,E2) :-
6 E1 = endpoint(_,_,HTTPMethod1 ,URI1),
7 E2 = endpoint(_,_,HTTPMethod2 ,URI2),
8 HTTPMethod1 == HTTPMethod2 , % (c2)
9 matching_URIs(URI1,URI2). % (c3)

Listing 8: Prolog rules that define matching(Dom,O1,O2).

Now, building upon the matching predicate, we can define
the similar_tp predicate, which evaluates the similarity be-
tween two test programs.
1 similar_tp(Dom,DomSrc,SimCr,TP1,TP2,WT1,WT2,Score)

Listing 9: Prolog rule that defines similar_tp.

The predicate in Listing 9 states that the test program TP1
is similar to TP2 according to the similarity criterion SimCr
based on the matching of elements, belonging to the domain
Dom, generated during the feature extraction phase from the
knowledge-base source DomSrc. In particular, if we specify the
parameter trace for DomSrc, the elements of Dom are generated
from the invokes facts occurring in execution traces. WT1 and
WT2 are lists of elements in Dom that witness the similarity of TP1
and TP2, and Score is a numeric value that quantifies the degree
of similarity between TP1 and TP2.

Note that the execution of a test program based on sym-
bolic execution may generate several execution traces, for a
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Table 1
Values of Score for set-based SimCr similarity criteria. πDom is either (i) the
unction πinvokes that, for any invokes fact i, returns the Callee argument of i,
r (ii) the function πendpoint that, for any endpoint fact e, returns the pair ⟨m, re⟩

where m is the HTTPMethod argument of e and re is the regular expression
accepting the URI argument of e.

SimCr Score

nonemptyEqSet 1

nonemptySubSet
|setOf(WT1, πDom)|
|setOf(WT2, πDom)|

nonemptyIntersection
|setOf(WT1, πDom) ∩ setOf(WT2, πDom)|

min(|setOf(WT1, πDom)|, |setOf(WT2, πDom)|)

pair ⟨TP1, TP2⟩ of test programs there may be several pairs
⟨WT1, WT2⟩ of witnesses, and hence several score values.

We have defined several similarity criteria specified by means
f the SimCr parameter of the similar_tp predicate. When
efining the criterion SimCr, we will say that ‘‘the similarity

criterion SimCr holds’’ as a shorthand for ‘‘the predicate sim-
ilar_tp with similarity criterion SimCr holds’’.

First, we present the following set-based similarity criteria:

• nonemptyEqSet holds if WT1 and WT2 are nonempty lists
and every element of WT1 matches an element of WT2 and
vice-versa;
• nonemptySubSet holds if WT1 is a nonempty list and every

element of WT1 matches an element of WT2;
• nonemptyIntersection holds if there exists an element

of WT1 that matches an element of WT2.

The value of Score is 0 if the similarity criterion does not
hold and, otherwise, it is a non-negative value computed as
shown in Table 1, where setOf(L, πDom) denotes the set {πDom(o) | o
is an element of L}, for any function πDom on the domain Dom of
the elements of list L.

As an example, let us consider the concrete execution traces
of the two test programs t1 and t2 shown in Fig. 4. Specifically,
both traces record (relevant) methods that have been invoked
when executing the corresponding test programs and their rel-
ative invocation order. The methods occurring in the tails of
lists starting with t1 and t2, respectively, represent the Callee
arguments of the invokes facts. Given that among the methods
invoked by t1 there is m1 that is not invoked by t2, and among
the methods invoked by t2 there is m44 that is not invoked by
t1, the similarity criteria nonemptyEqSet and nonemptySubSet
between t1 and t2 do not hold. Conversely, the similarity criteria
nonemptyIntersection holds because t1 and t2 have some
method invocations in common, specifically they both invoke the
methods m2, m7, m5, and m6. Therefore, the degree of similarity
between t1 and t2 is as shown in Box I.

We have also defined the following sequence-based similarity
criteria for a pair of nonempty lists WT1 and WT2 of the form

⟨a1, . . . , an⟩ and ⟨b1, . . . , bm⟩, respectively: r

8

Table 2
Values of Score for sequence-based SimCr similarity criteria. match-
ngSeq(L1,L2) is the longest non-empty list L3 such that the similarity criteria
nonemptySubSeq holds between L1 and L3, and between L2 and L3.

SimCr Score

nonemptyEqSeq 1

nonemptySubSeq
length(WT1)
length(WT2)

nonemptyCommonSeq
length(matchingSeq(WT1, WT2))
min(length(WT1), length(WT2))

• nonemptyEqSeq holds if n = m and, for i = 1, . . . , n, ai
matches bi.
• nonemptySubSeq holds if m ≥ n and, by deleting zero

or more elements from WT2, we get a list WT3 such that
nonemptyEqSeq holds for WT1 and WT3;
• nonemptyCommonSeq holds if nonemptyIntersection

holds.

Similarly to set-based criteria, the value of Score is 0 if the
imilarity criterion does not hold; otherwise, it is a non-negative
alue computed as shown in Table 2.
Let us consider again the execution traces shown in Fig. 3(a).

imilarly to nonemptyEqSet and nonemptySubSet, the similar-
ty criteria nonemptyEqSeq and nonemptySubSeq do not hold
ue to the presence of methods invoked by t1 that are not invoked
y t2, and vice versa. However, by considering the similarity
riterion nonemptyCommonSeq, which holds whenever the cri-
erion nonemptyIntersection holds, the degree of similarity
etween t1 and t2 is as shown in Box II. In this section we have in-
roduced various criteria that aim to evaluate the similarity of test
rograms by taking advantage of the information about the local
nd remote API methods they invoke. As mentioned in Section 3,
y taking advantage of such information collected during the
ynamic analysis of test programs, these criteria can contribute
o defining flexible policies within a governance framework for
egression testing. Notably, they can be used to select test pro-
rams useful to exercise the modified microservices component,
nd therefore to avoid rerunning all available test programs when
small component changes. In the next sections, we present the
alidation methodology and the experimental evaluation we have
erformed to study the performance of the proposed criteria in
nferring the similarity among test programs that belong to two
est suites.

. Validation methodology

In the rest of this section, we first describe the research
uestions (RQs) that guide our validation methodology (see Sec-
ion 6.1); then, Section 6.2 presents the two case studies we
eferred to in our study.
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length(⟨m5,m6,m7⟩)
min(length(⟨m1,m2,m3,m7,m3,m5,m6,m7,m11,m12⟩), length(⟨m2,m44,m51,m88,m5,m6,m7,m14,m44⟩))

= 0.33
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.1. RQs, strategies, and methods

The following presents the RQs we set out to answer in this
ork. For each RQ, we report the strategy we followed in order
o provide an answer and the method we planned to conduct the
xperimental studies.

Q1: Can implicit similarities extracted from test programs support
ecisions in the context of a governance framework for regression
esting? The behavioural features extracted from each test pro-
ram represent a valuable source of information that can be
xploited while making decisions during the regression testing
ctivities. In this work, we propose a technique to analyse the
verlaps (if any) that execution traces of two test programs reveal
ither during either concrete or symbolic executions. In answer-
ng RQ1, we aim to show that our technique is indeed capable
f inferring similarities and differences between test programs,
ccording to the criteria defined in Section 5, thus making this
nformation available for practical use. In particular, when an-
wering RQ3 defined below, we will argue that the similarity in-
ormation has a very good potential to support test case reduction
n microservices applications. However, as already mentioned, the
esign and implementation of specific techniques for optimising
egression testing are beyond the scope of this paper.

Q2: How stable are the similarity criteria? Implicit similarities
mong test programs are identified using logic reasoning on the
ey features carved from their execution traces. Given a set of
est programs (i.e., TS) for a SUT, a similarity criterion can be
sed to group test programs in clusters according to an agreed
inimum degree of similarity (i.e., smin). We consider that a
imilarity criterion is stable if the clusters it defines are composed
f homogeneous test programs: any test program taken from a
luster should be a sample that is good enough to represent all
he other test programs in that cluster. In other words, given a
hreshold smin, all the possible subsets of TS built from an arbi-
rary selection of one element per cluster should always provide
omparable outcomes.
To answer RQ2, we planned the following strategy for each

imilarity criterion. First, we build a subset TS-small from TS.
pecifically, we randomly pick a test program t from TS and
dd it to TS-small only if its similarity score with all the current
lements in TS-small is always lower than smin(i.e., t is different
nough from the elements in TS-small). All the test programs in TS
re considered just once. When this first phase ends, the resulting
S-small is run against the referenced SUT, and we register the
bserved coverage. Both phases are repeated multiple times to
xperiment with different selections of TS-small for the same
imilarity criterion. The analysis of the coverage data and their
ariance across several repetitions gives arguments to answer
Q2.

Q3: Can the similarity criteria impact the decisions about test suite
eduction? Once the stability of the similarity criteria has been
ddressed, we are interested in investigating if and how much
ach similarity criterion can contribute to a test suite selection
olicy. In other words, we are trying to estimate the quality grain
f the proposed selection criteria.
In this sense, we use two software coverage metrics as a

onsolidated and widely used means of estimating fault detection
9

apabilities: higher levels of code coverage correspond to (but
o not guarantee) higher confidence in the ability to detect the
resence of bugs. Thus, given a software system and two different
est suites for it, the difference in the coverage scored by the test
uites estimates their relative potential for defect detection.
In general, any test-suite reduction strategy impacts the SUT

overage: fewer test programs to execute can only decrease the
overage metrics. Our notion of quality is concerned with esti-
ating the coverage drop caused by the selection criteria. We
ant to exclude as many test programs as possible from the
xecution, but with limited impact on the coverage of the SUT.
n the following, we refer to the quality of a similarity criterion
s its capability to define proper subsets of TS whose cardinality
s smaller than the one achieved by a random selection of test
rograms in TS but resulting in the same coverage drop.
Notably, information on code coverage is of limited use if

he aim is to detect defects earlier. However, since this work
ntends to discover potential similarities between test programs
n a microservices application, the answer to RQ3 is limited to
n analysis of the relative defect detection capabilities of the
onsidered test suites. Furthermore, in the context of regres-
ion testing, it can be assumed that the available test suites are
uite stable, while the SUT (frequently) evolves over time. Thus,
he calculation of similarities between test programs and their
nalysis can be done once. The resulting results are expected to
e valid until some element in the regression test suites changes.
or this reason, the answer to RQ3 does not include any study of
he cost of computing the similarities between test programs.

The method we plan to support our validation strategy is
imilar to the approach described for RQ2. Specifically, for each
imilarity criterion, we select a subset of test programs TS-small
s described above,6 and for all the resulting TS-smallwe compute
heir coverage of the referenced SUT. We repeat these phases
everal times and then calculate the mean coverage value and the
ean number of selected test programs per similarity criterion.
In addition, we also build random subsets of TS: we have

recisely one random subset of TS(i.e., TS-small-rnd) for each
ardinality between 1 (i.e., a selection with the maximum saving
n terms of test programs to be executed) and the total number of
est programs in TS(i.e., there is no selection and thus no saving).
or all these TS-small-rnds, we register their coverage of the SUT.
e repeat this procedure several times to compute the mean

overage value expected by a defined-size random selection of
est programs.

Thus, we finally answer RQ3 by analysing the mean coverage
utcomes led by the similarity criteria and those resulting from
he random selections. Specifically, having agreed on an accept-
ble coverage drop for running the whole TS, we compare the
umber of test programs in TS-small and those in TS-small-rnd.

.2 Subjects

In this section, we introduce the subjects on which we con-
ucted our study about test programs’ similarity. The choice of
enchmarks for our experimental study was guided by several
actors. Firstly, we decided to use benchmarks from the research

6 In the empirical evaluation, we have used the same subsets TS-small used
for RQ2.
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Fig. 5. Subject: Fullteaching; Domain: endpoint; Criterion: nonemptyIntersection.
community rather than building ad-hoc synthetic applications in
order to avoid bias in the experiments. This made it possible
to test our approach using applications built by third parties
in a completely independent way of the testability purposes
inherent in our proposal. Given the focus on microservices, we
concentrated our selection on all applications implemented ac-
cording to this paradigm. Furthermore, for technological reasons,
we considered all and only those applications written in Java.
Finally, the selection focused on applications that provided a test
suite of non-minimal size, including integration and contract tests
that exercised the microservices API. All these guiding factors
led us to select two popular open-source applications, designed
according to the microservice architectural style, against which
we exercised the reference implementation of our proposal.

The first benchmark that we have used is Fullteaching,7 an ed-
ucational platform based upon OpenVidu, an open-source video
conferencing system employing the WebRTC API (Johnston and
Burnett, 2012). It provides a test suite implemented using JUnit
4, including 88 test programs. Among them, 29 tests require
contacting remote URIs for integration or end-to-end testing pur-
poses. These are the test programs used for our case study, as they
involve invocating URIs using get, post, put, and delete methods.
All RESTful requests are managed through the MockMvc class by
he Spring framework[].

The second benchmark used in our study is a medium-size
icroservices application called TrainTicket,8 which implements
system for railway ticketing. TrainTicket allows users to inquire
bout the train tickets between two cities on a certain day,
eserve tickets for a specific passenger on a specific class/seat, pay
or the reservations (and send the related confirmation email) and
anage ticket changes.
TrainTicket comprises 43 total microservices, 38 of which are

mplemented in Java. These 38 microservices ship with a total
f 682 test programs implemented using JUnit 4. All the test
rograms have been used in our empirical evaluation.

Empirical evaluation

In this section, we present the result of our empirical evalua-
ion based on the applications described in Section 6. The refer-
nce implementation of our methodology has been embedded in
he Hyperion tool, which is released as open-source software (see
he section titled: ‘‘Replication Package and Data Availability’’).
e use the results to answer the RQs listed in Section 6.1.

7 https://github.com/OpenVidu/full-teaching
8 https://github.com/FudanSELab/train-ticket
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7.1 Capability to detect similarity

By the rules discussed in Section 4.4, we have generated the
endpoint facts that describe the URI(s) invoked by the test pro-
grams for both benchmark applications. An excerpt for the Full-
teaching application is provided in Fig. 6, where we show a subset
of the endpoint facts generated from the symbolic execution of
the two test programs modifySessionTest and deleteSes-
sionTest. These facts allow us to answer multiple queries, such
as: ‘‘which test programs invoke the /api-users/new endpoint?’’,
or ‘‘which test programs use the /api-courses/new RESTful API
after /api-users/new?’’. In general, these facts prominently
capture that a given test program (the first argument) invokes a
certain URI (the fourth argument) with a given method (the third
argument), which is fundamental for detecting similarity in the
context of microservices applications.

To answer RQ1, we now consider the result of the similarity
analysis using various criteria. We consider the results related to
both method invocation and endpoint activation. In the case of
TrainTicket, we are considering the complete test suite. We only
discuss some exemplary results related to symbolic execution at
this point because they enable us to consider a broader range of
similarity values and explore additional analysis possibilities. The
reader can find the results associated with all the combinations
of metrics, domains, and carving techniques in the appendix of
this article.

We present similarity results in the form of matrices (heat
maps). The value of the similarity score is represented by a
coloured cell for each test program pair. Regarding the Fullteach-
ing application, in Fig. 5 we present the results related to the
nonemptyIntersection metric evaluated over the endpoint
domain. Since symbolic execution can extract multiple traces
from the execution of a single test program, no single similar-
ity score value can be associated with a pair of test programs.
Therefore, we report in Fig. 5(a) and Fig. 5(b) the minimum and
the maximum score values, respectively—the diagonal is zero in
all cells, as we do not compute the similarity between a test
program and itself. By construction, the similarity matrix for the
nonemptyIntersection metric is symmetric.

To understand whether this information can be used effec-
tively to detect implicit similarities between test programs in the
context of a governance framework for regression testing, let us
discuss some values related to Figs. 5(a) and 5(b). If we consider
the test program logInSecurityTest, which tests the login
capabilities of Fullteaching users, we observe that it is associated
with a minimum/maximum similarity score of 0.5 with respect
to all other test programs. The test programs we have taken
into account are all associated with authenticated APIs: all test

https://github.com/OpenVidu/full-teaching
https://github.com/FudanSELab/train-ticket
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Fig. 6. Example of generated endpoint facts. Subject: Fullteaching.
Fig. 7. Effect of multiple symbolic traces on pairs of test programs. Subject:
Fullteaching; Domain: endpoint; Criterion: nonemptyIntersection.

programs try to create a user (if it does not exist), authenticate
it, perform some action, and conclude the session. Therefore,
logInSecurityTest’s similarity score is stable compared to the
other test programs, and it is set to a low value. In this sense, we
cannot consider it significantly similar to other test programs.

Let us now focus on the test program deleteSession-
Test. If we compare the minimum and maximum scores against
newCourseTest and getCourseByIdTest, we may try to an-
swer the question: ‘‘to which test is deleteSessionTest most
similar?’’. The pair deleteSessionTest–newCourseTest is as-
sociated with a minimum/maximum value of 1.0, while delete-
SessionTest–getCourseByIdTest has a minimum/maximum
value of 0.75. We might conclude that, as far as endpoint invo-
cations are concerned, deleteSessionTest is more similar to
newCourseTest than getCourseByIdTest. On the other hand,
if we compare the values of the pairs deleteSessionTest–
modifySessionTest and deleteSessionTest–getCourseBy
IdTest, the pair deleteSessionTest–modifySessionTest
shows a minimum value of 0.75 and a maximum value of 1.0
(depending again on the multiple observed symbolic execution
traces), while deleteSessionTest–getCourseByIdTest is
stable at 0.67. In this case, we cannot conclude much on the
similarity among deleteSessionTest, modifySessionTest,
and getCourseByIdTest.

However, if we observe the results in Fig. 7, we can extract
more information. In the figure, we have picked deleteSes-

sionTest and displayed the dispersion of the similarity score

11
compared to all the other test programs. By looking at these re-
sults, we might conclude that deleteSessionTest is more sim-
ilar to modifySessionTest than getCourseByIdTest. Con-
versely, let us also consider newSessionTest. We might con-
clude that deleteSessionTest is more similar to newSes-
sionTest than getCourseByIdTest, but not as much as we
might imagine by looking at Fig. 5. It is also interesting to note
that, for some pairs (e.g., deleteSessionTest–loginSecuri-
tyTest), there is no dispersion at all—this is also reflected in
Fig. 5, where both the minimum and maximum values are the
same. This phenomenon can be related to the fact that, in the
symbolic execution tree, there is only one feasible path for the
test program loginSecurityTest. In contrast, for other test
programs, there are multiple execution traces to compare; there-
fore, different similarity scores are derived.

In Fig. 8, we show the number of test programs that can be
deemed similar by relying on our metric. In particular, for each
test program, we report the number of other test programs that
have a median similarity score among all symbolic execution
traces above 0.75 (Fig. 8(a)) and exactly 1.00 (Fig. 8(b)). As ex-
pected, the number of test programs deemed similar decreases
for higher median values. This result is an additional indication
of the versatility of our approach. Indeed, higher similarity score
values might help define narrower governance policies that can
be enforced to reduce regression test suites by selecting some test
cases, skipping redundant ones, or prioritising those expected to
yield earlier fault detection.

In Fig. 9 we report the similarity matrices (again, distinguish-
ing between the minimum and maximum score values) for the
nonemptySubSet criterion. As expected from the definition of
nonemptySubSet, we observe from the results that this criterion
provides non-symmetric results. The first important difference
compared to the results in Fig. 5 is the different cardinality of the
sets of test programs deemed similar. In particular, more conser-
vative similarity criteria, such as nonemptySubSet, consider as
similar fewer test programs than more inclusive criteria such as
the aforementioned nonemptyIntersection.

The values of the similarity scores obtained by the different
criteria are also interesting to discuss. The nonemptyEqSet cri-
terion (see Fig. 10) associates each pair of similar test programs
with the value 1—non-similar test programs are not shown.
Therefore, this criterion behaves very selectively, deeming two
test programs either as (fully) similar or not. This criterion is
even more selective than nonemptySubSet (fewer test programs
are deemed similar). Yet, it is more difficult to discriminate the
relative similarity between pairs of test programs due to the
boolean nature of the similarity score. Conversely, the afore-
mentioned nonemptySubSet criterion shows a (small) number
of intermediate similarity score values, while slightly increas-
ing the number of test programs deemed similar compared to

nonemptyEqSet. If we compare the results in Figs. 9 and 10,
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Fig. 8. Number of test programs deemed similar. Subject: Fullteaching; Domain: endpoint; Criterion: nonemptyIntersection.
Fig. 9. Subject: Fullteaching; Domain: endpoint; Criterion: nonemptySubSet.
Fig. 10. Subject: Fullteaching; Domain: invokes; Criterion: nonemptyEqSeq.
we notice that many pairs have been evaluated as similar also
by the nonemptyEqSet similarity criterion with the same score.
Indeed, this is expected by the definition of nonemptyEqSet,
as every time that nonemptyEqSet assigns a score 1, so does
nonemptySubSet. Nevertheless, nonemptySubSet is slightly
more inclusive, and captures also the fact that some test programs
are ‘‘not completely’’ similar, a notion that could be fruitfully
exploited when prioritising the execution of test programs.

Concerning the similarity comparison based on invokes, we
only present here the results related to the nonemptyInter-
section and nonemptyCommonSeq—the complete experimental
data are again located in the appendix. An interesting result can
be observed by comparing Figs. 5 and 11. Indeed, the results are
mostly comparable. This result is related to the nature of the test
suite in Fullteaching. Indeed, the test programs that contact some
remote endpoints also directly exercise non-minimal parts of the
SUT as if they were compounded unit tests. If a test program con-
tacts the same endpoint, it will likely exercise the same parts of
12
the SUT. This behaviour is not common for all test suites. Indeed,
in Fig. 12 we report the results for both invokes and endpoints
in the case of TrainTicket, for the same nonemptyCommonSeq
criterion—we only report the minimum scores. As can be seen,
the results are highly different. The TrainTicket test suite is such
that few test programs exercise the same endpoints. Conversely,
the SUT is directly exercised more at large. This characteristic
is clearly emerging from the results, considering the relevantly
different number of test programs deemed similar by the same
metric using the two different domains and the more diversified
similarity scores observed in the invokes case.

To conclude the analysis, in Fig. 13 we present the results
related to Fullteaching when using the nonemptyCommonSeq
criterion. When compared to nonemptyIntersection (Fig. 11),
we observe that the number of test programs considered similar
is the same. Nevertheless, the score values are more scattered in
the range. By the definition of the criteria, this is an expected
result. Indeed, considering sequences rather than sets allows us
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t
o

Fig. 11. Subject: Fullteaching; Domain: invokes; Criterion: nonemptyIntersection.
Fig. 12. Subject: TrainTicket; Criterion: nonemptyIntersection.
Fig. 13. Subject: Fullteaching; Domain: invokes; Criterion: nonemptyCommonSeq.
o gather more stringent similarity information. An analysis based
n nonemptyCommonSeq (and based on sequences in general)

could enable a more fine-tuned selection of test programs in the
considered governance framework for regression testing.

Overall, the criteria provide results that are comparably dif-
ferent. nonemptyEqSet is a stronger similarity criterion, which
anyhow leaves out many test programs from the suite. nonemp-
tyIntersection, on the other hand, includes a larger number
of test programs while being less ‘‘categorical’’ about the sim-
ilarity between test programs. nonemptySubSet and nonemp-
tyCommonSeq capture capabilities of both criteria. Concerning
RQ1, we can conclude that the criteria can detect similarities
13
between test programs to various degrees, which can be benefi-
cial depending on the current phase of the application’s lifecycle.
For example, when dealing with testing during feature develop-
ment, the nonemptyEqSet criterion might help determine what
test programs to execute after a failure to reduce the time to
completion of the test suite—a test program similar to the failed
one might be skipped. Conversely, the nonemptyIntersection
criterion might help in determining what test programs could
be run in parallel before releasing a new stable version of the
application, e.g., in the possible attempt to detect reentrance
bugs—multiple test programs that invoke methods from the same
package of the application might be run concurrently.
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Fig. 14. Subject: Fullteaching.
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Answer to RQ1: The proposed criteria can detect im-
plicit similarities between test programs to various
degrees: some criteria are more inclusive and they high-
light coarse-grained implicit similarities, while others are
more conservative as they report only very narrow sim-
ilarities. Overall, the implicit similarities extracted from
test programs can be used to support decisions in the
context of a governance framework (as also argued when
answering RQ3 below). However, the actual benefit they
provide likely depends on the current phase of the appli-
cation’s lifecycle and needs the development of specific
techniques, whose design is beyond the scope of the
present paper.

7.2 Stability of the similarity criteria

In this part of our empirical evaluation, we explicitly pursue
n answer to RQ2. We have not considered symbolic execu-
ion traces for this part of the analysis precisely due to their
ymbolic nature. Indeed, we focus only on traces generated by
nstrumented execution because they provide a single score for
ach test program. This approach is helpful when studying the
tability of the criteria because it removes a possible source of
nstability related to the multiple paths explored by the sym-
olic execution rather than to the criteria themselves. Indeed,
ymbolic traces would explore execution paths that might not
e taken by the actual execution of the test program. Moreover,
e target a comparison with a randomly-selected test suite built
ithout considering the symbolic trace. Building TS-small based
n symbolic execution would lead to incomparable results.
As mentioned in Section 6.1, we focus on multiple TS-small

ubsets of the original test suite and study the coverage variance
14
to consider a similarity criterion as stable. We have set the
similarity threshold smin to 0.5 for both applications as an inter-
mediate value, allowing a non-minimal number of test programs
to be deemed similar. Our experimental assessment has shown
that if the threshold is changed, the trends in the experimental re-
sults are comparable, although with different slopes related to the
increased/reduced number of test programs included. Coverage
data have been obtained by relying on JaCoCo (Hoffmann et al.,
2022). We report the result of this experiment when considering
three different TS-small subsets for each configuration, in Figs. 14
(for Fullteaching) and 15 (for TrainTicket).

We observe from the results that the coverage drop is pretty
stable in all configurations as far as the endpoint domain is
concerned. The only exception is in the Fullteaching case when
relying on the nonemptyIntersection criterion. As discussed
above, nonemptyIntersection is the less stringent criterion.
Therefore, the TS-small suite built based on this criterion is likely
to offer a more significant number of selection possibilities. The
high variability is also related to many test programs overlapping
in the Fullteaching test suite concerning the invoked endpoints.
Therefore, a totally-random selection with a larger degree of
freedom can produce the observed high variability.

Interestingly, many criteria provide a 0% coverage drop in Full-
teaching. This result is an early indication of the capability of the
proposed criteria to support the exclusion of test programs that
are likely to exercise the same parts of the SUT. This behaviour is
more evident in the TrainTicket case (see Fig. 15).

Concerning the invokes domain, we observe more variability.
esides the already mentioned nonemptyIntersection (par-

ticularly in TrainTicket), also nonemptyCommonSeq shows high
variability. The reason for this variability can be found in Fig. 16,
where we report the associated heatmap. Indeed, from the re-
sults, we note that the largest part of the test programs is con-
sidered similar, with scores that are around 0.5. Therefore, also
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eq.

n this case, given the large number of test programs and similar
alues for the scores, the degree of freedom is quite high.

Answer to RQ2: The most stable criteria are the
most stringent ones (i.e., nonemptyEqSet and nonemp-
tyEqSeq). For more inclusive criteria, the stability
significantly depends on the nature of the test suite.

7.3 Quality of the similarity criteria

To answer RQ3, we consider the results provided in Fig. 17,
here we report the average coverage drop obtained when a
ertain percentage of test programs is dropped. These results have
een collected by running ten different randomly-constructed
15
test suites (TS-small-rnd) for each point in the plots—we show
average values and 90% confidence intervals. These data allow
answering the following question: ‘‘if you plan to skip x% test
rograms to save the time to run the test suite, what is the coverage
rop that you must be prepared to observe if you have no way to
ake an informed selection of the test programs?’’. As an example,

n Fullteaching (Fig. 17(a)), if you skip 60% of the test programs,
n average, you can observe a 40% performance drop. Similarly,
f you skip 60% of test programs in TrainTicket (Fig. 17(b)), you
hould be prepared to face a 50% coverage drop.
Therefore, to answer RQ3, we want to determine whether,

elying on the similarity criteria that we have proposed, it is
ossible to obtain a certain level of test program execution saving
ssociated with an equal or lower coverage drop. In Figs. 14 and
5, we also present the test program savings we have observed
hen running the various TS-small test suites generated based

on the similarity scores. By comparing the results in Figs. 14, 15,
and 17, we notice that no domain/criterion configuration shows
a coverage drop higher than in the case of a random selection
of test programs, with the same amount of saving. Most notably,
many configurations exhibit a lower coverage drop.

Answer to RQ3: Without any prior knowledge of the
test suite, the proposed similarity criteria can extract
similarity information from the test programs in a way
that can be effectively exploited in governance frame-
works for regression testing, and specifically for test suite
reduction.

8 Threats to validity

In the following, we discuss some of the threats that may
potentially affect our empirical evaluation’s validity, and thus the
validity of the conclusions we have drawn.
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.1 Threats to construct validity

Any explicit or implicit assumption concerning the setup of
he validation scenarios may lead to questionable conclusions. In
he following, we discuss the more relevant decisions that may
ave impacted the interpretation of the observed outcomes.

nowledge base carved from the test programs: Implicit depen-
encies across test programs are extracted by considering a
ell-defined but limited set of statements coded within the tests’

mplementations. Indeed, our approach considers only those sta-
ements that activate shared local/remote APIs. While present-
ng our work’s research context and motivation, we discussed
hy these information sources could help study test programs’
imilarities in microservices applications. However, we agree that
alse-positive and false-negative similarities may result from this
arrowed analysis of the test programs’ traces. As we also ac-
nowledged in Sections 7.2 and 7.3, these considerations become
uch more relevant when employing the symbolic execution

races. Thus we cannot exclude that a more sophisticated analysis
f the behaviour exposed by test programs’ implementation may
ead to a finer observation of actual similarities.

nference rules: Similarly to the specific constructs in the test
rograms, the way we processed the information collected during
he concrete/symbolic executions may concern the appropriate-
ess of the analysis. Section 5 reports the set of inference rules
hich define the considered similarity criteria. In other words,
hese inference rules represent the core definitions of test pro-
rams’ implicit dependencies. Clearly, a different set of similarity
riteria could lead to different results and conclusions, but we can
rgue that the study is limited only to those criteria. However,
ven focusing on the given group of similarity criteria, we are
ware that the current definitions of the rules in Prolog may
uffer from typical implementation issues (e.g., related to the
16
acktracking strategies). Such issues may lead to tiny differences
etween the outcome expected by the abstract formulation of
he similarity criterion and the outcome returned by its imple-
entation in a Prolog rule. The Prolog implementations referred

o in this work are built, extended, and refined on a set of
nference rules from previous works (De Angelis et al., 2021;
e Angelis et al., 2021). In addition, before their exploitation in
ur empirical evaluation, we carefully analysed them in peer-
eviewing sessions that also included dedicated testing activities
hat should have mitigated such risks.

.2 Threats to internal validity

This class of threats to validity refers to those aspects that
ould have influenced the observed outcome.

hoice of the case study: The empirical evaluation referred to
wo different subjects. They have been selected because both
rojects are open-source, abiding by the microservices archi-
ectural style, and their development toolchain could be inte-
rated easily into our reference implementation. Nevertheless,
oth subjects may have hidden or uncontrolled influences on the
xperimentation, and more case studies may be useful for a more
horough experimental evaluation of our approach.

inimum degree of similarity: The validation methods adopted
or answering RQ2 and RQ3 rely on the parameter smin to cluster
est programs for a given similarity criterion (see Section 6.1). In
hese specific settings, we considered two test programs similar if
heir score was higher than 0.5 over a range [0–1]. We are aware
hat a different tuning of this parameter impacts the presentation
f both the quality and the stability of the similarity criteria.
owever, the results for both concepts are also influenced by
he specific composition of the available test suites. Thus, we
ried to make a neutral choice that could also overcome the
uality/variety of the actual test suites in the considered subjects.
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8.3 Threats to external validity

The expected scenario for a study is to draw conclusions to
uch an extent that they are valid also in other studies. However,
eneralised conclusions are difficult to achieve as various factors
ften threaten them.

tatistical power: Overall the study considered a set of 711 test
rograms: 29 from Fullteaching, and 682 from TrainTicket. Though
he number is not small, it is also evident that it is insufficient
o advocate a strong significance for the observed outcomes.
n addition, the experimental evaluation only focused on two
ubjects. Thus our interpretations could be influenced by hidden
spects present in both subjects.

eneralisation: The results we collect in this study may strictly
epend on the experiments we planned for the specific case stud-
es we selected. Thus, we cannot draw fully general conclusions
hat claim the proposed approach can always provide valuable
esults for any application. We clarify that such a statement needs
ore extensive validation against different case studies.
In order to support other researchers to repeat our experience

r replicate it with different subjects, we make available the
hole artefacts developed within the context of this work (see
he section titled: ‘‘Replication Package and Data Availability’’).
lso, the appendix details all the similarities of the test programs
e produced during this study. We believe this information could
upport future works aiming to validate the generalisation of the
utcomes observed in this study.

Related work

Regression testing is an interesting application context that
as been intensively investigated, as reported, for instance, in
he survey paper by Yoo and Harman (2012). Some of the works
lassified in the survey focus on discovering and processing test
ases in a given test suite that traverse modifications in the orig-
nal SUT. Among others, the survey reports on approaches that
everage analysis on control (Laski and Szermer, 1992; Rothermel
nd Harrold, 1997) or data (Gupta et al., 1992) flows, symbolic
xecution (Yau and Kishimoto, 1987), textual difference in source
ode of the SUT (Vokolos and Frankl, 1997). Our work comple-
ents these approaches by starting the analysis of similarity

rom the test program implementations. The results reveal ad-
itional information that can potentially be used in other com-
on regression testing activities such as test case prioritisation,
inimisation or selection.
A recent systematic mapping study by Waseem et al. (2020)

urveys techniques for testing microservice-based applications.
mong these, the paper by Sotomayor et al. (2022) targets open-
ource testing tools for microservices.
Some of the surveyed techniques propose the use of formal

ethods (e.g., model checking) for automated testing, specifically
or test case generation, scheduling, and execution (Meinke and
ycander, 2015; Quenum and Aknine, 2018; Hillah et al., 2017;
amilli et al., 2018).
In order to improve the effectiveness of testing, Rahman et al.

2015) introduce a framework for parallel execution of tests that,
y cutting down the execution time, enables frequent re-running
f the entire test suite during the development of microservices-
ased applications. While we share the same goal, and indeed our
ramework can contribute to the design of flexible policies for
ffective and efficient regression testing, our approach is closer
o those aimed at avoiding re-running all available tests when
small component of the SUT changes, and instead supporting

he selection of tests that are useful to exercise the changed
omponent. In order to retrieve subsets of test cases required
17
to deal with microservice changes, Ma et al. (2019) propose
a graph-based approach for analysing the dependencies among
microservices based on their APIs. A dynamic analysis of mi-
croservices, based on their workload characteristics, is used by
Schulz et al. (2019) to generate tailored test cases for exercising
specific microservices of an application in isolation.

However, the issue of inferring dependencies and similarities
among test programs has received very little attention, especially
compared to their structural or behavioural analysis. Indeed, in-
stead of analysing microservices, our approach is based on the
dynamic analysis (either concrete or symbolic) of the test suite
to determine which microservices are tested (therefore, allow-
ing the selection of only those required to test the modified
component).

In the more general context of automated software engineer-
ing, the problem of identifying similarities among test programs
is related to the broader issue of identifying similarities among
generic programs (Walenstein et al., 2007), which has been stud-
ied for multiple purposes (and with different techniques), such
as duplicate code detection (Sheneamer and Kalita, 2016), plagia-
rism detection or copyright infringement (Lancaster and Culwin,
2004), and code compression (Evans and Fraser, 2003).

The idea of using test case similarity to design effective testing
strategies has been explored in several works (Noor and Hem-
mati, 2015; Wang et al., 2015; Hao et al., 2008; Ledru et al.,
2012; Miranda et al., 2018). Noor and Hemmati (2015) propose an
approach for prioritising test cases based on their similarity with
those that failed on previous versions of the software system un-
der consideration. The similarity between test cases is defined by
comparing sequences of method calls extracted from execution
traces. That paper uses concrete execution while we perform a
logic-based similarity analysis on traces extracted via symbolic
execution.

Another similarity-based approach for regression test case
prioritisation is presented by Wang et al. (2015). The execution
order of the test cases is scheduled based on the distance between
them, where the notion of distance is defined concerning branch
coverage. That paper evaluates six similarity measures and shows
that Euclidean distance gives the best result through experiments
on a few benchmark programs.

Test case similarity is defined by Ledru et al. (2012) based on
the string distance between the test cases, and hence no notion
of execution is considered. Also Miranda et al. (2018) base their
test case prioritisation technique on similarity relations defined
on test cases and not on their execution. To enforce scalability,
the similarity is computed by algorithms usually applied in the
context of big data processing.

Similarity has been exploited for fault-localisation in the paper
by Hao et al. (2008), where the similarity between test cases is de-
fined by using a fuzzy set representation of a matrix relating test
cases and program statements, and candidate faulty statements
are selected on a probabilistic basis.

Some papers propose techniques for computing the similar-
ity of programs (not necessarily test programs) based on static
analysis or fuzz testing, whereas we employ symbolic execution.
In particular, Raman et al. (2017) use the call-dependency rela-
tion among program APIs to generate a trace of the API calling
sequence. Wang and Wu (2017) present a method that uses fuzz
testing for similarity analysis of binary code. The similarity score
of two behaviour traces generated by fuzzing from two pro-
gram functions is computed according to their longest common
subsequence.

In automated software testing, symbolic execution has been
largely used as an effective technique for finding errors in
software applications and generating high-coverage test suites
(Meudec, 2001; Visser et al., 2004; Cadar and Engler, 2005;
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Godefroid et al., 2005; Sen, 2007; Cadar and Sen, 2013; Braione
et al., 2018; Nivethithaa and Krishnapriya, 2018). This technique,
which was first introduced in the mid 1970’s, has been conceived
to exercise a software system by searching for potential configu-
rations/states violating a given set of assertions. The basic idea of
symbolic execution is strongly related to techniques for bounded
model checking of software, which use SMT solvers for checking
that a specified program property is not violated by any execution
path up to a given length bound (Armando et al., 2009).

The symbolic exploration of the software of states requires
the generation of a very complex combination of constraints.
The resolution of these constraints frequently leads pure sym-
bolic approaches to suffer severe scalability issues. Concolic ap-
proaches mitigate such a risk by combining symbolic evaluation
with concrete execution and, in some cases, random data gener-
ation (Visser et al., 2004; Williams et al., 2005; Cadar and Engler,
2005; Sen, 2007; Godefroid et al., 2005).

In implementing our technique, we use the JBSE, a symbolic
Java Virtual Machine which can deal with complex heap data
structures. We also use a form of concolic execution to handle
methods in charge of setting up the environment for a test pro-
gram execution (e.g., @Before in JUnit). However, the main goal
of our work is neither the search for errors nor the generation
of test cases. In fact, we want to infer relations between test
programs, e.g., various forms of dependency or similarity, and
we do so by extracting high-level information from symbolic
execution paths and states. Our approach is particularly suitable
when dealing with parametric test programs.

Some techniques for relational verification make use of con-
straint logic programming (i.e., logic programming augmented
with constraint solving) to verify relations between programs
(Felsing et al., 2014; De Angelis et al., 2016). However, the kind
of properties targeted by relational verification is very strong (in
general, undecidable) relations, such as full functional equiva-
lence, while here we focus on test programs, and we are inter-
ested in much weaker dependency and similarity relations based
on suitable abstractions of the finite set of paths generated by
symbolic execution. In this respect, our work parallels symbolic
execution techniques for crosschecking optimised versions of
data-parallel programs against the unoptimised ones (Colling-
bourne et al., 2014).

10 Conclusions and future work

We have discussed a methodology to extract similarity re-
lations among test programs for microservices applications. By
dynamic analysis (i.e., either instrumented or symbolic), we can
extract from a test suite relevant information about the methods
called by the test programs. A set of Prolog rules processes this
information to filter the execution traces of interest and generate
additional facts to enlarge the knowledge base, e.g., to determine
the endpoints that may be activated by running the various test
programs. Other Prolog rules compute a similarity score accord-
ing to multiple criteria. In two case studies, we have observed that
our approach can generate a significant amount of information,
which can be used in the context of a governance framework
for regression testing, for example, by supporting decisions that
could prevent the enforcement of a retest-all strategy.

Additionally, our empirical evaluation shows that the pro-
osed criteria support the selection of test programs that can
e stable and effective at automatically identifying what test
rograms shall be excluded. Nevertheless, the overall quality of
he test suite offered by the application being tested plays a
ignificant role in the selection power of the proposed approach.
Future work includes devising additional rules to cope with

est suites that have a high overlap degree across different test
18
programs. Moreover, we plan to exploit the similarity relations
to support an online selection procedure that could quickly de-
termine what test programs to execute after the outcome of a
previous set of executed test programs is gathered.
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